Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Aging (Albany NY) ; 15(9): 3230-3248, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36996499

RESUMEN

Breast cancer (BC) stem cells (CSCs) resist treatment and can exist as dormant cells in tissues such as the bone marrow (BM). Years before clinical diagnosis, BC cells (BCCs) could migrate from the primary site where the BM niche cells facilitate dedifferentiation into CSCs. Additionally, dedifferentiation could occur by cell autonomous methods. Here we studied the role of Msi 1, a RNA-binding protein, Musashi I (Msi 1). We also analyzed its relationship with the T-cell inhibitory molecule programmed death-ligand 1 (PD-L1) in CSCs. PD-L1 is an immune checkpoint that is a target in immune therapy for cancers. Msi 1 can support BCC growth through stabilization of oncogenic transcripts and modulation of stem cell-related gene expression. We reported on a role for Msi 1 to maintain CSCs. This seemed to occur by the differentiation of CSCs to more matured BCCs. This correlated with increased transition from cycling quiescence and reduced expression of stem cell-linked genes. CSCs co-expressed Msi 1 and PD-L1. Msi 1 knockdown led to a significant decrease in CSCs with undetectable PD-L1. This study has implications for Msi 1 as a therapeutic target, in combination with immune checkpoint inhibitor. Such treatment could also prevent dedifferentiation of breast cancer to CSCs, and to reverse tumor dormancy. The proposed combined treatment might be appropriate for other solid tumors.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama , Humanos , Femenino , Antígeno B7-H1/genética , Médula Ósea/patología , Neoplasias de la Mama/patología
2.
Aging (Albany NY) ; 13(21): 23981-24016, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34762598

RESUMEN

This study addresses the potential to reverse age-associated morbidity by establishing methods to restore the aged hematopoietic system. Parabiotic animal models indicated that young secretome could restore aged tissues, leading us to establish a heterochronic transwell system with aged mobilized peripheral blood (MPB), co-cultured with young MPB or umbilical cord blood (UCB) cells. Functional studies and omics approaches indicate that the miRNA cargo of microvesicles (MVs) restores the aged hematopoietic system. The in vitro findings were validated in immune deficient (NSG) mice carrying an aged hematopoietic system, improving aged hallmarks such as increased lymphoid:myeloid ratio, decreased inflammation and cellular senescence. Elevated MYC and E2F pathways, and decreased p53 were key to hematopoietic restoration. These processes require four restorative miRs that target the genes for transcription/differentiation, namely PAX and phosphatase PPMIF. These miRs when introduced in aged cells were sufficient to restore the aged hematopoietic system in NSG mice. The aged MPBs were the drivers of their own restoration, as evidenced by the changes from distinct baseline miR profiles in MPBs and UCB to comparable expressions after exposure to aged MPBs. Restorative natural killer cells eliminated dormant breast cancer cells in vivo, indicating the broad relevance of this cellular paradigm - preventing and reversing age-associated disorders such as clearance of early malignancies and enhanced responses to vaccine and infection.


Asunto(s)
Células de la Médula Ósea , Micropartículas Derivadas de Células , Senescencia Celular/fisiología , Hematopoyesis/fisiología , Adulto , Anciano , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/fisiología , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/fisiología , Femenino , Sangre Fetal/citología , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Secretoma , Adulto Joven
3.
Life Sci Alliance ; 4(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34078741

RESUMEN

The challenge for treating breast cancer (BC) is partly due to long-term dormancy driven by cancer stem cells (CSCs) capable of evading immune response and resist chemotherapy. BC cells show preference for the BM, resulting in poor prognosis. CSCs use connexin 43 (Cx43) to form gap junctional intercellular communication with BM niche cells, fibroblasts, and mesenchymal stem cells (MSCs). However, Cx43 is an unlikely target to reverse BC dormancy because of its role as a hematopoietic regulator. We found N-cadherin (CDH2) and its associated pathways as potential drug targets. CDH2, highly expressed in CSCs, interacts intracellularly with Cx43, colocalizes with Cx43 in BC cells within BM biopsies of patients, and is required for Cx43-mediated gap junctional intercellular communication with BM niche cells. Notably, CDH2 and anti-apoptotic pathways maintained BC dormancy. We thereby propose these pathways as potential pharmacological targets to prevent dormancy and chemosensitize resistant CSCs.


Asunto(s)
Antígenos CD/metabolismo , Neoplasias de la Mama/metabolismo , Cadherinas/metabolismo , Conexina 43/metabolismo , Antígenos CD/genética , Médula Ósea/metabolismo , Cadherinas/genética , Cadherinas/fisiología , Conexina 43/genética , Resistencia a Antineoplásicos/fisiología , Femenino , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Humanos , Células Madre Mesenquimatosas/metabolismo , Metástasis de la Neoplasia/patología , Células Madre Neoplásicas/metabolismo , Escape del Tumor/fisiología
4.
Cancer Res ; 81(6): 1567-1582, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33500249

RESUMEN

In the bone marrow (BM), breast cancer cells (BCC) can survive in dormancy for decades as cancer stem cells (CSC), resurging as tertiary metastasis. The endosteal region where BCCs exist as CSCs poses a challenge to target them, mostly due to the coexistence of endogenous hematopoietic stem cells. This study addresses the early period of dormancy when BCCs enter BM at the perivascular region to begin the transition into CSCs, which we propose as the final step in dormancy. A two-step process comprises the Wnt-ß-catenin pathway mediating BCC dedifferentiation into CSCs at the BM perivascular niche. At this site, BCCs responded to two types of mesenchymal stem cell (MSC)-released extracellular vesicles (EV) that may include exosomes. Early released EVs began the transition into cycling quiescence, DNA repair, and reorganization into distinct BCC subsets. After contact with breast cancer, the content of EVs changed (primed) to complete dedifferentiation into a more homogeneous population with CSC properties. BCC progenitors (Oct4alo), which are distant from CSCs in a hierarchical stratification, were sensitive to MSC EVs. Despite CSC function, Oct4alo BCCs expressed multipotent pathways similar to CSCs. Oct4alo BCCs dedifferentiated and colocalized with MSCs (murine and human BM) in vivo. Overall, these findings elucidate a mechanism of early dormancy at the BM perivascular region and provide evidence of epigenome reorganization as a potential new therapy for breast cancer. SIGNIFICANCE: These findings describe how the initial process of dormancy and dedifferentiation of breast cancer cells at the bone marrow perivascular niche requires mesenchymal stem cell-derived exosomes, indicating a potential target for therapeutic intervention.


Asunto(s)
Médula Ósea/patología , Neoplasias de la Mama/patología , Desdiferenciación Celular , Células Madre Mesenquimatosas/patología , Células Madre Neoplásicas/patología , Adolescente , Adulto , Animales , Biopsia , Reparación del ADN , Exosomas/metabolismo , Femenino , Voluntarios Sanos , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Vía de Señalización Wnt , Adulto Joven
5.
Cancer Lett ; 488: 9-17, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32479768

RESUMEN

Breast cancer (BC) remains a clinical challenge despite improved treatments and public awareness to ensure early diagnosis. A major issue is the ability of BC cells (BCCs) to survive as dormant cancer cells in the bone marrow (BM), resulting in the cancer surviving for decades with the potential to resurge as metastatic cancer. The experimental evidence indicates similarity between dormant BCCs and other stem cells, resulting in the preponderance of data to show dormant BCCs being cancer stem cells (CSCs). The BM niche and their secretome support BCC dormancy. Lacking in the literature is a comprehensive research to describe how the hypoxic environment within the BM may influence the behavior of BCCs. This information is relevant to understand the prognosis of BC in young and aged individuals whose oxygen levels differ in BM. This review discusses the changing information on vascularity in different regions of the BM and the impact on endogenous hematopoietic stem cells (HSCs). This review highlights the necessary information to provide insights on vascularity of different BM regions on the behavior of BCCs, in particular a dormant phase. For instance, how the transcription factor HIF1-α (hypoxia-inducible factor 1 alpha), functioning as first responder under hypoxic conditions, affects the expression of specific gene networks involved in energy metabolism, cell survival, tumor invasion and angiogenesis. This enables cell fate transition and facilitates tumor heterogeneity, which in turn favors tumor progression and resistance to anticancer treatments Thus, HIF1-α could be a potential target for cancer treatment. This review describes epigenetic mechanisms involved in hypoxic responses during cancer dormancy in the bone marrow. The varied hypoxic environment in the BM is relevant to understand the complex process of the aging bone marrow for insights on breast cancer outcome between the young and aged.


Asunto(s)
Neoplasias de la Médula Ósea/secundario , Neoplasias de la Mama/patología , Hipoxia de la Célula/fisiología , Células Madre Neoplásicas/patología , Microambiente Tumoral/fisiología , Animales , Médula Ósea/patología , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA