Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 22(5): 100534, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958627

RESUMEN

Huntington's disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin (HTT) gene. The resulting polyglutamine (polyQ) tract alters the function of the HTT protein. Although HTT is expressed in different tissues, the medium-spiny projection neurons (MSNs) in the striatum are particularly vulnerable in HD. Thus, we sought to define the proteome of human HD patient-derived MSNs. We differentiated HD72-induced pluripotent stem cells and isogenic controls into MSNs and carried out quantitative proteomic analysis. Using data-dependent acquisitions with FAIMS for label-free quantification on the Orbitrap Lumos mass spectrometer, we identified 6323 proteins with at least two unique peptides. Of these, 901 proteins were altered significantly more in the HD72-MSNs than in isogenic controls. Functional enrichment analysis of upregulated proteins demonstrated extracellular matrix and DNA signaling (DNA replication pathway, double-strand break repair, G1/S transition) with the highest significance. Conversely, processes associated with the downregulated proteins included neurogenesis-axogenesis, the brain-derived neurotrophic factor-signaling pathway, Ephrin-A:EphA pathway, regulation of synaptic plasticity, triglyceride homeostasis cholesterol, plasmid lipoprotein particle immune response, interferon-γ signaling, immune system major histocompatibility complex, lipid metabolism, and cellular response to stimulus. Moreover, proteins involved in the formation and maintenance of axons, dendrites, and synapses (e.g., septin protein members) were dysregulated in HD72-MSNs. Importantly, lipid metabolism pathways were altered, and using quantitative image analysis, we found that lipid droplets accumulated in the HD72-MSN, suggesting a deficit in the turnover of lipids possibly through lipophagy. Our proteomics analysis of HD72-MSNs identified relevant pathways that are altered in MSNs and confirm current and new therapeutic targets for HD.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Animales , Neuronas/metabolismo , Neuronas Espinosas Medianas , Enfermedad de Huntington/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Gotas Lipídicas/metabolismo , Proteómica , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad
2.
Neurobiol Dis ; 190: 106367, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042508

RESUMEN

X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedades Neurodegenerativas , Trastornos Parkinsonianos , Humanos , Distonía/genética , Distonía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteómica , Factor de Transcripción TFIID/genética , Trastornos Distónicos/genética , Trastornos Distónicos/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo
3.
J Neuroinflammation ; 21(1): 66, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459557

RESUMEN

INTRODUCTION: Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the Huntingtin gene (HTT). Immune activation is abundant in the striatum of HD patients. Detection of active microglia at presymptomatic stages suggests that microgliosis is a key early driver of neuronal dysfunction and degeneration. Recent studies showed that deletion of Tyrobp, a microglial protein, ameliorates neuronal dysfunction in Alzheimer's disease amyloidopathy and tauopathy mouse models while decreasing components of the complement subnetwork. OBJECTIVE: While TYROBP/DAP12-mediated microglial activation is detrimental for some diseases such as peripheral nerve injury, it is beneficial for other diseases. We sought to determine whether the TYROBP network is implicated in HD and whether Tyrobp deletion impacts HD striatal function and transcriptomics. METHODS: To test the hypothesis that Tyrobp deficiency would be beneficial in an HD model, we placed the Q175 HD mouse model on a Tyrobp-null background. We characterized these mice with a combination of behavioral testing, immunohistochemistry, transcriptomic and proteomic profiling. Further, we evaluated the gene signature in isolated Q175 striatal microglia, with and without Tyrobp. RESULTS: Comprehensive analysis of publicly available human HD transcriptomic data revealed that the TYROBP network is overactivated in the HD putamen. The Q175 mice showed morphologic microglial activation, reduced levels of post-synaptic density-95 protein and motor deficits at 6 and 9 months of age, all of which were ameliorated on the Tyrobp-null background. Gene expression analysis revealed that lack of Tyrobp in the Q175 model does not prevent the decrease in the expression of striatal neuronal genes but reduces pro-inflammatory pathways that are specifically active in HD human brain, including genes identified as detrimental in neurodegenerative diseases, e.g. C1q and members of the Ccr5 signaling pathway. Integration of transcriptomic and proteomic data revealed that astrogliosis and complement system pathway were reduced after Tyrobp deletion, which was further validated by immunofluorescence analysis. CONCLUSIONS: Our data provide molecular and functional support demonstrating that Tyrobp deletion prevents many of the abnormalities in the HD Q175 mouse model, suggesting that the Tyrobp pathway is a potential therapeutic candidate for Huntington's disease.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Humanos , Enfermedad de Huntington/metabolismo , Microglía/metabolismo , Gliosis/genética , Gliosis/metabolismo , Proteómica , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
4.
Mov Disord ; 36(12): 2780-2794, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34403156

RESUMEN

BACKGROUND: X-linked dystonia parkinsonism is a generalized, progressive dystonia followed by parkinsonism with onset in adulthood and accompanied by striatal neurodegeneration. Causative mutations are located in a noncoding region of the TATA-box binding protein-associated factor 1 (TAF1) gene and result in aberrant splicing. There are 2 major TAF1 isoforms that may be decreased in symptomatic patients, including the ubiquitously expressed canonical cTAF1 and the neuronal-specific nTAF1. OBJECTIVE: The objective of this study was to determine the behavioral and transcriptomic effects of decreased cTAF1 and/or nTAF1 in vivo. METHODS: We generated adeno-associated viral (AAV) vectors encoding microRNAs targeting Taf1 in a splice-isoform selective manner. We performed intracerebroventricular viral injections in newborn mice and rats and intrastriatal infusions in 3-week-old rats. The effects of Taf1 knockdown were assayed at 4 months of age with evaluation of motor function, histology, and RNA sequencing of the striatum, followed by its validation. RESULTS: We report motor deficits in all cohorts, more pronounced in animals injected at P0, in which we also identified transcriptomic alterations in multiple neuronal pathways, including the cholinergic synapse. In both species, we show a reduced number of striatal cholinergic interneurons and their marker mRNAs after Taf1 knockdown in the newborn. CONCLUSION: This study provides novel information regarding the requirement for TAF1 in the postnatal maintenance of striatal cholinergic neurons, the dysfunction of which is involved in other inherited forms of dystonia. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Distónicos , Histona Acetiltransferasas/genética , Trastornos Parkinsonianos , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Adulto , Animales , Colinérgicos , Trastornos Distónicos/genética , Trastornos Distónicos/metabolismo , Humanos , Ratones , Isoformas de Proteínas , Ratas
5.
Amino Acids ; 53(12): 1927-1939, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34089390

RESUMEN

Proline dehydrogenase (PRODH) is a mitochondrial inner membrane flavoprotein critical for cancer cell survival under stress conditions and newly recognized as a potential target for cancer drug development. Reversible (competitive) and irreversible (suicide) inhibitors of PRODH have been shown in vivo to inhibit cancer cell growth with excellent host tolerance. Surprisingly, the PRODH suicide inhibitor N-propargylglycine (N-PPG) also induces rapid decay of PRODH with concordant upregulation of mitochondrial chaperones (HSP-60, GRP-75) and the inner membrane protease YME1L1, signifying activation of the mitochondrial unfolded protein response (UPRmt) independent of anticancer activity. The present study was undertaken to address two aims: (i) use PRODH overexpressing human cancer cells (ZR-75-1) to confirm the UPRmt inducing properties of N-PPG relative to another equipotent irreversible PRODH inhibitor, thiazolidine-2-carboxylate (T2C); and (ii) employ biochemical and transcriptomic approaches to determine if orally administered N-PPG can penetrate the blood-brain barrier, essential for its future use as a brain cancer therapeutic, and also potentially protect normal brain tissue by inducing mitohormesis. Oral daily treatments of N-PPG produced a dose-dependent decline in brain mitochondrial PRODH protein without detectable impairment in mouse health; furthermore, mice repeatedly dosed with 50 mg/kg N-PPG showed increased brain expression of the mitohormesis associated protease, YME1L1. Whole brain transcriptome (RNAseq) analyses of these mice revealed significant gene set enrichment in N-PPG stimulated neural processes (FDR p < 0.05). Given this in vivo evidence of brain bioavailability and neural mitohormesis induction, N-PPG appears to be unique among anticancer agents and should be evaluated for repurposing as a pharmaceutical capable of mitigating the proteotoxic mechanisms driving neurodegenerative disorders.


Asunto(s)
Alquinos/farmacología , Antineoplásicos/farmacología , Encéfalo/efectos de los fármacos , Glicina/análogos & derivados , Prolina Oxidasa/antagonistas & inhibidores , Prolina/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Barrera Hematorretinal/efectos de los fármacos , Barrera Hematorretinal/metabolismo , Encéfalo/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Glicina/farmacología , Humanos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Prolina/análogos & derivados , Prolina/farmacología , Tiazolidinas/farmacología , Transcriptoma/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
6.
Acta Neuropathol ; 140(5): 737-764, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32642868

RESUMEN

Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species.


Asunto(s)
Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Factor II del Crecimiento Similar a la Insulina/metabolismo , Agregación Patológica de Proteínas/metabolismo , Animales , Humanos , Factor II del Crecimiento Similar a la Insulina/farmacología , Ratones , Ratones Transgénicos , Agregado de Proteínas/efectos de los fármacos
7.
Proc Natl Acad Sci U S A ; 114(23): E4676-E4685, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533375

RESUMEN

The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology.


Asunto(s)
Enfermedad de Huntington/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Adulto , Anciano , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Enfermedad de Huntington/genética , Proteína 1 Asociada A ECH Tipo Kelch/química , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/prevención & control , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/química , Células-Madre Neurales/metabolismo , Fármacos Neuroprotectores/farmacología , Conformación Proteica/efectos de los fármacos , Ratas , Transducción de Señal
8.
Anal Bioanal Chem ; 411(26): 6995-7003, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31435686

RESUMEN

DNA repeat expansion sequences cause a myriad of neurological diseases when they expand beyond a critical threshold. Previous electrochemical approaches focused on the detection of trinucleotide repeats (CAG, CGG, and GAA) and relied on labeling of the probe and/or target strands or enzyme-linked assays. However, detection of expanded GC-rich sequences is challenging because they are prone to forming secondary structures such as cruciforms and quadruplexes. Here, we present label-free detection of hexanucleotide GGGGCC repeat sequences, which cause the leading genetic form of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The approach relies on capturing targets by surface-bound oligonucleotide probes with a different number of complementary repeats, which proportionately translates the length of the target strands into charge transfer resistance (RCT) signal measured by electrochemical impedance spectroscopy. The probe carrying three tandem repeats transduces the number of repeats into RCT with a 3× higher calibration sensitivity and detection limit. Chronocoulometric measurements show a decrease in surface density with increasing repeat length, which is opposite of the impedance trend. This implies that the length of the target itself can contribute to amplification of the impedance signal independent of the surface density. Moreover, the probe can distinguish between a control and patient sequences while remaining insensitive to non-specific Huntington's disease (CAG) repeats in the presence of a complementary target. This label-free strategy might be applied to detect the length of other neurodegenerative repeat sequences using short probes with a few complementary repeats. Graphical abstract Short oligomeric probes with multiple complementary repeats detect long neurodegenerative targets with high sensitivity and transduce into higher impedance signal.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN , Sondas de Oligonucleótidos/genética , Secuencia de Bases , Técnicas Biosensibles/métodos , Espectroscopía Dieléctrica/métodos , Humanos , Enfermedad de Huntington/genética , ARN/genética
9.
Hum Mol Genet ; 24(14): 3908-17, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25859008

RESUMEN

The neurodegenerative disorder spinocerebellar ataxia type 7 (SCA7) is caused by a polyglutamine (polyQ) expansion in the ataxin-7 protein, categorizing SCA7 as one member of a large class of heritable neurodegenerative proteinopathies. Cleavage of ataxin-7 by the protease caspase-7 has been demonstrated in vitro, and the accumulation of proteolytic cleavage products in SCA7 patients and mouse models has been identified as an early pathological change. However, it remains unknown whether a causal relationship exists between ataxin-7 proteolysis and in vivo SCA7 disease progression. To determine whether caspase cleavage is a critical event in SCA7 disease pathogenesis, we generated transgenic mice expressing polyQ-expanded ataxin-7 with a second-site mutation (D266N) to prevent caspase-7 proteolysis. When we compared SCA7-D266N mice with SCA7 mice lacking the D266N mutation, we found that SCA7-D266N mice exhibited improved motor performance, reduced neurodegeneration and substantial lifespan extension. Our findings indicate that proteolysis at the D266 caspase-7 cleavage site is an important mediator of ataxin-7 neurotoxicity, suggesting that inhibition of caspase-7 cleavage of polyQ-ataxin-7 may be a promising therapeutic strategy for this untreatable disorder.


Asunto(s)
Ataxina-7/metabolismo , Enfermedades Neurodegenerativas/genética , Péptidos/metabolismo , Regiones Promotoras Genéticas , Proteolisis , Degeneración Retiniana/genética , Animales , Ácido Aspártico/metabolismo , Ataxina-7/genética , Caspasa 7/genética , Caspasa 7/metabolismo , Modelos Animales de Enfermedad , Terapia Genética , Humanos , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/terapia , Fenotipo , Células de Purkinje/metabolismo , Degeneración Retiniana/terapia
10.
J Biol Chem ; 290(31): 19287-306, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26025364

RESUMEN

The cascade of events that lead to cognitive decline, motor deficits, and psychiatric symptoms in patients with Huntington disease (HD) is triggered by a polyglutamine expansion in the N-terminal region of the huntingtin (HTT) protein. A significant mechanism in HD is the generation of mutant HTT fragments, which are generally more toxic than the full-length HTT. The protein fragments observed in human HD tissue and mouse models of HD are formed by proteolysis or aberrant splicing of HTT. To systematically investigate the relative contribution of the various HTT protein proteolysis events observed in vivo, we generated transgenic mouse models of HD representing five distinct proteolysis fragments ending at amino acids 171, 463, 536, 552, and 586 with a polyglutamine length of 148. All lines contain a single integration at the ROSA26 locus, with expression of the fragments driven by the chicken ß-actin promoter at nearly identical levels. The transgenic mice N171-Q148 and N552-Q148 display significantly accelerated phenotypes and a shortened life span when compared with N463-Q148, N536-Q148, and N586-Q148 transgenic mice. We hypothesized that the accelerated phenotype was due to altered HTT protein interactions/complexes that accumulate with age. We found evidence for altered HTT complexes in caspase-2 fragment transgenic mice (N552-Q148) and a stronger interaction with the endogenous HTT protein. These findings correlate with an altered HTT molecular complex and distinct proteins in the HTT interactome set identified by mass spectrometry. In particular, we identified HSP90AA1 (HSP86) as a potential modulator of the distinct neurotoxicity of the caspase-2 fragment mice (N552-Q148) when compared with the caspase-6 transgenic mice (N586-Q148).


Asunto(s)
Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Animales , Encéfalo/patología , Codón sin Sentido , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/fisiopatología , Longevidad , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Mapeo de Interacción de Proteínas , Proteolisis
12.
PLoS Genet ; 8(11): e1003042, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209424

RESUMEN

A genome-scale RNAi screen was performed in a mammalian cell-based assay to identify modifiers of mutant huntingtin toxicity. Ontology analysis of suppressor data identified processes previously implicated in Huntington's disease, including proteolysis, glutamate excitotoxicity, and mitochondrial dysfunction. In addition to established mechanisms, the screen identified multiple components of the RRAS signaling pathway as loss-of-function suppressors of mutant huntingtin toxicity in human and mouse cell models. Loss-of-function in orthologous RRAS pathway members also suppressed motor dysfunction in a Drosophila model of Huntington's disease. Abnormal activation of RRAS and a down-stream effector, RAF1, was observed in cellular models and a mouse model of Huntington's disease. We also observe co-localization of RRAS and mutant huntingtin in cells and in mouse striatum, suggesting that activation of R-Ras may occur through protein interaction. These data indicate that mutant huntingtin exerts a pathogenic effect on this pathway that can be corrected at multiple intervention points including RRAS, FNTA/B, PIN1, and PLK1. Consistent with these results, chemical inhibition of farnesyltransferase can also suppress mutant huntingtin toxicity. These data suggest that pharmacological inhibition of RRAS signaling may confer therapeutic benefit in Huntington's disease.


Asunto(s)
Enfermedad de Huntington , Proteínas del Tejido Nervioso , Interferencia de ARN , Proteínas ras , Animales , Cuerpo Estriado/ultraestructura , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Genoma Humano , Células HEK293 , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Redes y Vías Metabólicas , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/toxicidad , Proteínas del Tejido Nervioso/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Triazoles/farmacología , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética , Proteínas ras/metabolismo
13.
Brain Res ; 1826: 148733, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38128812

RESUMEN

INTRODUCTION: There is an urgent need for new or repurposed therapeutics that protect against or significantly delay the clinical progression of neurodegenerative diseases, such as Huntington's disease (HD), Parkinson's disease and Alzheimer's disease. In particular, preclinical studies are needed for well tolerated and brain-penetrating small molecules capable of mitigating the proteotoxic mitochondrial processes that are hallmarks of these diseases. We identified a unique suicide inhibitor of mitochondrial proline dehydrogenase (Prodh), N-propargylglycine (N-PPG), which has anticancer and brain-enhancing mitohormesis properties, and we hypothesize that induction of mitohormesis by N-PPG protects against neurodegenerative diseases. We carried out a series of mouse studies designed to: i) compare brain and metabolic responses while on oral N-PPG treatment (50 mg/kg, 9-14 days) of B6CBA wildtype (WT) and short-lived transgenic R6/2 (HD) mice; and ii) evaluate potential brain and systemwide stress rebound responses in WT mice 2 months after cessation of extended mitohormesis induction by well-tolerated higher doses of N-PPG (100-200 mg/kg x 60 days). WT and HD mice showed comparable global evidence of N-PPG induced brain mitohormesis characterized by Prodh protein decay and increased mitochondrial expression of chaperone and Yme1l1 protease proteins. Interestingly, transcriptional analysis (RNAseq) showed partial normalization of HD whole brain transcriptomes toward those of WT mice. Comprehensive metabolomic profiles performed on control and N-PPG treated blood, brain, and kidney samples revealed expected N-PPG-induced tissue increases in proline levels in both WT and HD mice, accompanied by surprising parallel increases in hydroxyproline and sarcosine. Two months after cessation of the higher dose N-PPG stress treatments, WT mouse brains showed robust rebound increases in Prodh protein levels and mitochondrial transcriptome responses, as well as altered profiles of blood amino acid-related metabolites. Our HD and WT mouse preclinical findings point to the brain penetrating and mitohormesis-inducing potential of the drug candidate, N-PPG, and provide new rationale and application insights supporting its further preclinical testing in various models of neurodegenerative diseases characterized by loss of mitochondrial proteostasis.


Asunto(s)
Alquinos , Glicina/análogos & derivados , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Ratones , Animales , Ratones Transgénicos , Transcriptoma , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Perfilación de la Expresión Génica , Modelos Animales de Enfermedad
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166848, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37586438

RESUMEN

N-propargylglycine prevents 4-hydroxyproline catabolism in mouse liver and kidney. N-propargylglycine is a novel suicide inhibitor of PRODH2 and induces mitochondrial degradation of PRODH2. PRODH2 is selectively expressed in liver and kidney and contributes to primary hyperoxaluria (PH). Preclinical evaluation of N-propargylglycine efficacy as a new PH therapeutic is warranted.


Asunto(s)
Hiperoxaluria , Animales , Ratones , Alquinos/metabolismo , Glicina/uso terapéutico , Hiperoxaluria/metabolismo , Riñón/metabolismo
15.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352325

RESUMEN

The "gut-brain axis" is emerging as an important target in Alzheimer's disease (AD). However, immunological mechanisms underlying this axis remain poorly understood. Using single-cell RNA sequencing of the colon immune compartment in the 5XFAD amyloid-ß (Aß) mouse model, we uncovered AD-associated changes in ribosomal activity, oxidative stress, and BCR/plasma cell activity. Strikingly, levels of colon CXCR4 + antibody secreting cells (ASCs) were significantly reduced. This corresponded with accumulating CXCR4 + B cells and gut-specific IgA + cells in the brain and dura mater, respectively. Consistently, a chemokine ligand for CXCR4, CXCL12, was expressed at higher levels in 5XFAD glial cells and in in silico analyzed human brain studies, supporting altered neuroimmune trafficking. An inulin prebiotic fiber diet attenuated AD markers including Aß plaques and overall frailty. These changes corresponded to an expansion of gut IgA + cells and rescued peripheral T regs levels. Our study points to a key glia-gut axis and potential targets against AD. Study Highlights: AD is associated with altered immune parameters in the gut of 5XFAD mice. 5 XFAD colon has reduced ASCs, including CXCR4 + cells with a migratory gene signature. 5XFAD brain gliosis includes increased CXCL12 expression. CXCR4 + B cells and gut-specific IgA + ASCs accumulate in the 5XFAD brain and/or dura mater. Inulin diet attenuates AD disease parameters while boosting IgA + cell and T reg levels.

16.
Nat Commun ; 15(1): 467, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212606

RESUMEN

Dietary restriction (DR) delays aging, but the mechanism remains unclear. We identified polymorphisms in mtd, the fly homolog of OXR1, which influenced lifespan and mtd expression in response to DR. Knockdown in adulthood inhibited DR-mediated lifespan extension in female flies. We found that mtd/OXR1 expression declines with age and it interacts with the retromer, which regulates trafficking of proteins and lipids. Loss of mtd/OXR1 destabilized the retromer, causing improper protein trafficking and endolysosomal defects. Overexpression of retromer genes or pharmacological restabilization with R55 rescued lifespan and neurodegeneration in mtd-deficient flies and endolysosomal defects in fibroblasts from patients with lethal loss-of-function of OXR1 variants. Multi-omic analyses in flies and humans showed that decreased Mtd/OXR1 is associated with aging and neurological diseases. mtd/OXR1 overexpression rescued age-related visual decline and tauopathy in a fly model. Hence, OXR1 plays a conserved role in preserving retromer function and is critical for neuronal health and longevity.


Asunto(s)
Envejecimiento , Enfermedades del Sistema Nervioso , Humanos , Femenino , Envejecimiento/genética , Longevidad/genética , Neuronas/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Encéfalo/metabolismo , Restricción Calórica , Proteínas Mitocondriales/metabolismo
17.
J Neurosci ; 32(22): 7454-65, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22649225

RESUMEN

Huntington's disease (HD) is caused by a mutation in the huntingtin (htt) gene encoding an expansion of glutamine repeats at the N terminus of the Htt protein. Proteolysis of Htt has been identified as a critical pathological event in HD models. In particular, it has been postulated that proteolysis of Htt at the putative caspase-6 cleavage site (at amino acid Asp-586) plays a critical role in disease progression and pathogenesis. However, whether caspase-6 is indeed the essential enzyme that cleaves Htt at this site in vivo has not been determined. To evaluate, we crossed the BACHD mouse model with a caspase-6 knock-out mouse (Casp6(-/-)). Western blot and immunocytochemistry confirmed the lack of caspase-6 protein in Casp6(-/-) mice, regardless of HD genotype. We predicted the Casp6(-/-) mouse would have reduced levels of caspase-6 Htt fragments and increased levels of full-length Htt protein. In contrast, we found a significant reduction of full-length mutant Htt (mHtt) and fragments in the striatum of BACHD Casp6(-/-) mice. Importantly, we detected the presence of Htt fragments consistent with cleavage at amino acid Asp-586 of Htt in the BACHD Casp6(-/-) mouse, indicating that caspase-6 activity cannot fully account for the generation of the Htt 586 fragment in vivo. Our data are not consistent with the hypothesis that caspase-6 activity is critical in generating a potentially toxic 586 aa Htt fragment in vivo. However, our studies do suggest a role for caspase-6 activity in clearance pathways for mHtt protein.


Asunto(s)
Ácido Aspártico/metabolismo , Caspasa 6/metabolismo , Regulación de la Expresión Génica/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Factores de Edad , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Ácido Aspártico/genética , Peso Corporal/genética , Encéfalo/metabolismo , Encéfalo/patología , Caspasa 6/deficiencia , Células Cultivadas , Cuerpo Estriado/citología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Conducta Exploratoria/fisiología , Femenino , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Actividad Motora/genética , Proteínas del Tejido Nervioso/genética , Neuronas , Proteolisis , ARN Interferente Pequeño/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Expansión de Repetición de Trinucleótido/genética , Ubiquitinación/genética
18.
J Biol Chem ; 287(25): 21204-13, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22511757

RESUMEN

Huntington disease (HD) is a dominantly inherited neurodegenerative disease caused by a polyglutamine expansion in the protein huntingtin (Htt). Striatal and cortical neuronal loss are prominent features of this disease. No disease-modifying treatments have been discovered for HD. To identify new therapeutic targets in HD, we screened a kinase inhibitor library for molecules that block mutant Htt cellular toxicity in a mouse HD striatal cell model, Hdh(111Q/111Q) cells. We found that diacylglycerol kinase (DGK) inhibitor II (R59949) decreased caspase-3/7 activity after serum withdrawal in striatal Hdh(111Q/111Q) cells. In addition, R59949 decreased the accumulation of a 513-amino acid N-terminal Htt fragment processed by caspase-3 and blocked alterations in lipid metabolism during serum withdrawal. To identify the diacylglycerol kinase mediating this effect, we knocked down all four DGK isoforms expressed in the brain (ß, γ, ε, and ζ) using siRNA. Only the knockdown of the family member, DGKε, blocked striatal Hdh(111Q/111Q)-mediated toxicity. We also investigated the significance of these findings in vivo. First, we found that reduced function of the Drosophila DGKε homolog significantly improves Htt-induced motor dysfunction in a fly model of HD. In addition, we find that the levels of DGKε are increased in the striatum of R6/2 HD transgenic mice when compared with littermate controls. Together, these findings indicate that increased levels of kinase DGKε contribute to HD pathogenesis and suggest that reducing its levels or activity is a potential therapy for HD.


Asunto(s)
Diacilglicerol Quinasa/metabolismo , Enfermedad de Huntington/metabolismo , Metabolismo de los Lípidos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/genética , Caspasa 7/metabolismo , Línea Celular , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Diacilglicerol Quinasa/genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética
19.
Mol Cell Proteomics ; 10(10): M111.009829, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21685499

RESUMEN

Huntingtin (Htt) is a protein with a polyglutamine stretch in the N-terminus and expansion of the polyglutamine stretch causes Huntington's disease (HD). Htt is a multiple domain protein whose function has not been well characterized. Previous reports have shown, however, that post-translational modifications of Htt such as phosphorylation and acetylation modulate mutant Htt toxicity, localization, and vesicular trafficking. Lysine acetylation of Htt is of particular importance in HD as this modification regulates disease progression and toxicity. Treatment of mouse models with histone deacetylase inhibitors ameliorates HD-like symptoms and alterations in acetylation of Htt promotes clearance of the protein. Given the importance of acetylation in HD and other diseases, we focused on the systematic identification of lysine acetylation sites in Htt23Q (1-612) in a cell culture model using mass spectrometry. Myc-tagged Htt23Q (1-612) overexpressed in the HEK 293T cell line was immunoprecipitated, separated by SDS-PAGE, digested and subjected to high performance liquid chromatography tandem MS analysis. Five lysine acetylation sites were identified, including three novel sites Lys-178, Lys-236, Lys-345 and two previously described sites Lys-9 and Lys-444. Antibodies specific to three of the Htt acetylation sites were produced and confirmed the acetylation sites in Htt. A multiple reaction monitoring MS assay was developed to compare quantitatively the Lys-178 acetylation level between wild-type Htt23Q and mutant Htt148Q (1-612). This report represents the first comprehensive mapping of lysine acetylation sites in N-terminal region of Htt.


Asunto(s)
Enfermedad de Huntington/metabolismo , Lisina/análisis , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Anticuerpos , Encéfalo/metabolismo , Progresión de la Enfermedad , Células HEK293 , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Lisina/metabolismo , Espectrometría de Masas , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína
20.
J Bone Metab ; 30(1): 1-29, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36950837

RESUMEN

Molecular omics technologies, including proteomics, have enabled the elucidation of key signaling pathways that mediate bidirectional communication between the brain and bone tissues. Here we provide a brief summary of the clinical and molecular evidence of the need to study the bone-brain axis of cross-tissue cellular communication. Clear clinical and molecular evidence suggests biological interactions and similarities between bone and brain cells. Here we review the current mass spectrometric techniques for studying brain and bone diseases with an emphasis on neurodegenerative diseases and osteoarthritis/osteoporosis, respectively. Further study of the bone-brain axis on a molecular level and evaluation of the role of proteins, neuropeptides, osteokines, and hormones in molecular pathways linked to bone and brain diseases is critically needed. The use of mass spectrometry and other omics technologies to analyze these cross-tissue signaling events and interactions will help us better understand disease progression and comorbidities and potentially identify new pathways and targets for therapeutic interventions. Proteomic measurements are particularly favorable for investigating the role of signaling and secreted and circulating analytes and identifying molecular and metabolic pathways implicated in age-related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA