Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R109-R119, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36409022

RESUMEN

The fundamental body functions that determine maximal O2 uptake (V̇o2max) have not been studied in Aqp5-/- mice (aquaporin 5, AQP5). We measured V̇o2max to globally assess these functions and then investigated why it was found altered in Aqp5-/- mice. V̇o2max was measured by the Helox technique, which elicits maximal metabolic rate by intense cold exposure of the animals. We found V̇o2max reduced in Aqp5-/- mice by 20%-30% compared with wild-type (WT) mice. As AQP5 has been implicated to act as a membrane channel for respiratory gases, we studied whether this is caused by the known lack of AQP5 in the alveolar epithelial membranes of Aqp5-/- mice. Lung function parameters as well as arterial O2 saturation were normal and identical between Aqp5-/- and WT mice, indicating that AQP5 does not contribute to pulmonary O2 exchange. The cause for the decreased V̇o2max thus might be found in decreased O2 consumption of an intensely O2-consuming peripheral organ such as activated brown adipose tissue (BAT). We found indeed that absence of AQP5 greatly reduces the amount of interscapular BAT formed in response to 4 wk of cold exposure, from 63% in WT to 25% in Aqp5-/- animals. We conclude that lack of AQP5 does not affect pulmonary O2 exchange, but greatly inhibits transformation of white to brown adipose tissue. As under cold exposure, BAT is a major source of the animals' heat production, reduction of BAT likely causes the decrease in V̇o2max under this condition.


Asunto(s)
Tejido Adiposo Pardo , Intercambio Gaseoso Pulmonar , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Termogénesis/fisiología , Pulmón , Consumo de Oxígeno , Frío
2.
Cell Mol Life Sci ; 78(23): 7649-7662, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34694438

RESUMEN

Oxygen on its transport route from lung to tissue mitochondria has to cross several cell membranes. The permeability value of membranes for O2 (PO2), although of fundamental importance, is controversial. Previous studies by mostly indirect methods diverge between 0.6 and 125 cm/s. Here, we use a most direct approach by observing transmembrane O2 fluxes out of 100 nm liposomes at defined transmembrane O2 gradients in a stopped-flow system. Due to the small size of the liposomes intra- as well as extraliposomal diffusion processes do not affect the overall kinetics of the O2 release process. We find, for cholesterol-free liposomes, the unexpectedly low PO2 value of 0.03 cm/s at 35 °C. This PO2 would present a serious obstacle to O2 entering or leaving the erythrocyte. Cholesterol turns out to be a novel major modifier of PO2, able to increase PO2 by an order of magnitude. With a membrane cholesterol of 45 mol% as it occurs in erythrocytes, PO2 rises to 0.2 cm/s at 35 °C. This PO2 is just sufficient to ensure complete O2 loading during passage of erythrocytes through the lung's capillary bed under the conditions of rest as well as maximal exercise.


Asunto(s)
Permeabilidad de la Membrana Celular , Colesterol/metabolismo , Eritrocitos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Consumo de Oxígeno , Oxígeno/metabolismo , Humanos
3.
J Biol Chem ; 295(18): 5970-5983, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32184353

RESUMEN

Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7-/- mice. Although palmitoylation of barttin in kidneys of Zdhhc7-/- animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7-/- mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension.


Asunto(s)
Aciltransferasas/metabolismo , Canales de Cloruro/metabolismo , Ácido Palmítico/metabolismo , Procesamiento Proteico-Postraduccional , Aciltransferasas/deficiencia , Aciltransferasas/genética , Animales , Perros , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Riñón/citología , Riñón/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Mutación , Fenotipo
4.
J Enzyme Inhib Med Chem ; 36(1): 1602-1606, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34261373

RESUMEN

We have studied the CO2 permeability of the erythrocyte membrane of the rat using a mass spectrometric method that employs 18 O-labelled CO2. The method yields, in addition, the intraerythrocytic carbonic anhydrase activity and the membrane HCO3- permeability. For normal rat erythrocytes, we find at 37 °C a CO2 permeability of 0.078 ± 0.015 cm/s, an intracellular carbonic anhydrase activity of 64,100, and a bicarbonate permeability of 2.1 × 10-3 cm/s. We studied whether the rat erythrocyte membrane possesses protein CO2 channels similar to the human red cell membrane by applying the potential CO2 channel inhibitors pCMBS, Dibac, phloretin, and DIDS. Phloretin and DIDS were able to reduce the CO2 permeability by up to 50%. Since these effects cannot be attributed to the lipid part of the membrane, we conclude that the rat erythrocyte membrane is equipped with protein CO2 channels that are responsible for at least 50% of its CO2 permeability.


Asunto(s)
Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Dióxido de Carbono/antagonistas & inhibidores , Permeabilidad de la Membrana Celular/efectos de los fármacos , Membrana Eritrocítica/efectos de los fármacos , Floretina/farmacología , Animales , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Membrana Eritrocítica/metabolismo , Espectrometría de Masas , Ratas , Ratas Endogámicas Lew
5.
Am J Physiol Cell Physiol ; 315(2): C137-C140, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29874108

RESUMEN

We present here a compilation of membrane CO2 permeabilities (Pco2) for various cell types from the literature. Pco2 values vary over more than two orders of magnitude. Relating Pco2 to the cholesterol content of the membranes shows that, with the exception of red blood cells, it is essentially membrane cholesterol that determines the value of Pco2. Thus, the observed strong modulation of Pco2 in the majority of membranes is caused by cholesterol rather than gas channels.


Asunto(s)
Transporte Biológico/fisiología , Dióxido de Carbono/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Membrana Celular/metabolismo , Colesterol/metabolismo , Eritrocitos/metabolismo , Humanos
6.
Cell Physiol Biochem ; 46(3): 1198-1208, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29684917

RESUMEN

BACKGROUND/AIMS: It has been described that cells in culture with very low oxidative metabolism possess a low CO2 membrane permeability, PCO2, of ∼ 0.01 cm/s. On the other hand, cardiomyocytes and mitochondria with extremely high rates of O2 consumption exhibit very high CO2 membrane permeabilities of 0.1 and 0.3 cm/s, repectively. To ascertain that this represents a systematic relationship, we determine here PCO2 of hepatocytes, which exhibit an intermediate rate of O2 consumption. METHODS: We isolated intact hepatocytes with vitalities of ∼ 70% from rat liver and measured their CO2 permeability by the previously published mass spectrometric 18O exchange technique. RESULTS: We find a PCO2 of hepatocytes of 0.03 cm/s in the presence of FC5-208A and verapamil. FC5-208A was necessary to inhibt extracellular carbonic anhydrase, and verapamil was necessary to inhibit intracellular uptake of FC5-208A by the organic cation transporter OCT1 of hepatocytes. CONCLUSION: Rat hepatocytes with their intermediate rate of oxygen consumption also possess an intermediate CO2 permeability. From pairs of data for five types of cells/organelles, we find an excellent positive linear correlation between PCO2 and metabolic rate, suggesting an adaptation of PCO2 to the rate of O2 consumption.


Asunto(s)
Dióxido de Carbono/metabolismo , Animales , Bicarbonatos/metabolismo , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Femenino , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Espectrometría de Masas , Transportador 1 de Catión Orgánico/antagonistas & inhibidores , Transportador 1 de Catión Orgánico/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Isótopos de Oxígeno/química , Ratas , Ratas Endogámicas Lew , Verapamilo/farmacología
7.
Anal Biochem ; 550: 132-136, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29729279

RESUMEN

The most widely recognized activity of the large family of the metalloenzyme carbonic anhydrases (CAs) is the diffusion-controlled hydration of CO2 to HCO3- and one proton, and the less rapid dehydration of HCO3- to CO2: CO2 + H2O ⇆ HCO3- + H+. CAs also catalyze the reaction of water with other electrophiles such as aromatic esters, sulfates and phosphates, thus contributing to lending to CAs esterase, sulfatase and phosphatase activity, respectively. Renal CAII and CAIV are involved in the reabsorption of nitrite, the autoxidation product of the signalling molecule nitric oxide (NO): 4 NO + O2 + 2 H2O → 4 ONO- + 4 H+. Bovine and human CAII and CAIV have been reported to exert nitrite reductase and nitrous anhydride activity: 2 NO2- + 2 H+ ⇆ [2 HONO] ⇆ N2O3 + H2O. In the presence of L-cysteine, NO may be formed. In the literature, these issues are controversial, mainly due to analytical shortcomings, i.e., the inability to detect authentic HONO and N2O3. Here, we present a gas chromatography-mass spectrometry (GC-MS) assay to unambiguously detect and quantify the nitrous anhydrase activity of CAs. The assay is based on the hydrolysis of N2O3 in H218O to form ON18O- and 18ON18O-. After pentafluorobenzyl bromide derivatization and electron capture negative-ion chemical ionization of the pentafluorobenzyl nitro derivatives, quantification is performed by selected-ion monitoring of the anions with mass-to-charge (m/z) ratios of 46 (ONO-), m/z 48 (ON18O- and 18ONO-), m/z 50 (18ON18O-) and m/z 47 (O15NO-, internal standard).


Asunto(s)
Anhidrasa Carbónica II/química , Anhidrasa Carbónica IV/química , Óxido Nítrico/química , Nitrito Reductasas/química , Dióxido de Nitrógeno/química , Animales , Bovinos , Humanos
9.
Cell Physiol Biochem ; 39(5): 2014-2024, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27771717

RESUMEN

BACKGROUND/AIMS: Across the mitochondrial membrane an exceptionally intense exchange of O2 and CO2 occurs. We have asked, 1) whether the CO2 permeability, PM,CO2, of this membrane is also exceptionally high, and 2) whether the mitochondrial membrane is sufficiently permeable to HCO3- to make passage of this ion an alternative pathway for exit of metabolically produced CO2. METHODS: The two permeabilities were measured using the previously published mass spectrometric 18O exchange technique to study suspensions of mitochondria freshly isolated from rat livers. The mitochondria were functionally and morphologically in excellent condition. RESULTS: The intramitochondrial CA activity was exclusively localized in the matrix. PM,CO2 of the inner mitochondrial membrane was 0.33 (SD ± 0.03) cm/s, which is the highest value reported for any biological membrane, even two times higher than PM,CO2 of the red cell membrane. PM,HCO3- was 2· 10-6 (SD ± 2· 10-6) cm/s and thus extremely low, almost 3 orders of magnitude lower than PM,HCO3- of the red cell membrane. CONCLUSION: The inner mitochondrial membrane is almost impermeable to HCO3- but extremely permeable to CO2. Since gas channels are absent, this membrane constitutes a unique example of a membrane of very high gas permeability due to its extremely low content of cholesterol.


Asunto(s)
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Mitocondrias Hepáticas/metabolismo , Membranas Mitocondriales/metabolismo , Oxígeno/metabolismo , Animales , Transporte Biológico , Cinética , Hígado , Masculino , Espectrometría de Masas , Membranas Mitocondriales/química , Isótopos de Oxígeno , Permeabilidad , Ratas , Ratas Endogámicas Lew
10.
FASEB J ; 29(5): 1780-93, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25609423

RESUMEN

Here we ask the following: 1) what is the CO2 permeability (Pco2) of unilamellar liposomes composed of l-α-phosphatidylcholine (PC)/l-α-phosphatidylserine (PS) = 4:1 and containing cholesterol (Chol) at levels often occurring in biologic membranes (50 mol%), and 2) does incorporation of the CO2 channel aquaporin (AQP)1 cause a significant increase in membrane Pco2? Presently, a drastic discrepancy exists between the answers to these two questions obtained from mass-spectrometric (18)O-exchange measurements (Chol reduces Pco2 100-fold, AQP1 increases Pco2 10-fold) vs. from stopped-flow approaches observing CO2 uptake (no effects of either Chol or AQP1). A novel theory of CO2 uptake by vesicles predicts that in a stopped-flow apparatus this fast process can only be resolved temporally and interpreted quantitatively, if 1) a very low CO2 partial pressure (pCO2) is used (e.g., 18 mmHg), and 2) intravesicular carbonic anhydrase (CA) activity is precisely known. With these prerequisites fulfilled, we find by stopped-flow that 1) Chol-containing vesicles possess a Pco2 = 0.01cm/s, and Chol-free vesicles exhibit ∼1 cm/s, and 2) the Pco2 of 0.01 cm/s is increased ≥ 10-fold by AQP1. Both results agree with previous mass-spectrometric results and thus resolve the apparent discrepancy between the two techniques. We confirm that biologic membranes have an intrinsically low Pco2 that can be raised when functionally necessary by incorporating protein-gas channels such as AQP1.


Asunto(s)
Acuaporina 1/metabolismo , Dióxido de Carbono/metabolismo , Permeabilidad de la Membrana Celular , Colesterol/metabolismo , Liposomas/metabolismo , Fosfatidilcolinas/metabolismo , Espectrometría de Fluorescencia/métodos , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Nitric Oxide ; 55-56: 25-35, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26976364

RESUMEN

Inorganic nitrite (NO2(-), ON-O(-) ←→ (-)O-NO) is the autoxidation product of nitric oxide (NO). Nitrite can also be formed from inorganic nitrate (ONO2(-)), the major oxidation product of NO in erythrocytes, by the catalytic action of bacterial nitrate reductase in gut and oral microflora. Nitrite can be reduced to NO by certain cellular proteins and enzymes, as well as in the gastric juice under acidic conditions. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to convert nitrite to NO. Renal CA isoforms are involved in the reabsorption of nitrite and may, therefore, play an important role in NO homeostasis. Yet, the mechanisms underlying the action of CA on nitrite are incompletely understood. The nitrate/nitrite system is regarded as a reservoir of NO. We have recently shown that nitrite reacts chemically with carbon dioxide (CO2), the regular substrate of CA. The present communication reports a stable isotope ratio mass spectrometry (IRMS) study on the reaction of NO2(-) and CO2 performed in 50 mM HEPES buffer of pH 7.4 at 37 °C. By using (18)O-labelled nitrite ((18)ON-O(-)/(-18)O-NO) and CO2 we observed formation of (18)O-labelled CO2. This finding is an unequivocal evidence of the chemical reaction of (18)ON-O(-)/(-18)O-NO with CO2. The reaction is rapid and involves nucleophilic attack of the negatively charged nitrite via one of its oxygen atoms on the partially positively charged CO2 molecule to form the putative intermediate (18)ON-O-CO2(-)/(-)O2C-(18)O-NO. The by far largest fraction of this intermediate decomposes back to (18)ON-O(-)/(-18)O-NO and CO2. A very small fraction of the intermediate, however, rearranges and finally decomposes to form (18)OCO and nitrite. This reaction is slower in the presence of an isolated erythrocytic CA isoform II. In summary, NO2(-), CO2 and CA are ubiquitous. The chemical reaction of NO2(-) with CO2 and its modulation by CA isoforms may play important roles in the transport of nitrite in red blood cells, the kidney and other cells and organs.


Asunto(s)
Dióxido de Carbono/química , Nitritos/química , Tampones (Química) , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Radioisótopos de Oxígeno
12.
J Physiol ; 591(20): 4963-82, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23878365

RESUMEN

We have investigated the previously published 'metabolon hypothesis' postulating that a close association of the anion exchanger 1 (AE1) and cytosolic carbonic anhydrase II (CAII) exists that greatly increases the transport activity of AE1. We study whether there is a physical association of and direct functional interaction between CAII and AE1 in the native human red cell and in tsA201 cells coexpressing heterologous fluorescent fusion proteins CAII-CyPet and YPet-AE1. In these doubly transfected tsA201 cells, YPet-AE1 is clearly associated with the cell membrane, whereas CAII-CyPet is homogeneously distributed throughout the cell in a cytoplasmic pattern. Förster resonance energy transfer measurements fail to detect close proximity of YPet-AE1 and CAII-CyPet. The absence of an association of AE1 and CAII is supported by immunoprecipitation experiments using Flag-antibody against Flag-tagged AE1 expressed in tsA201 cells, which does not co-precipitate native CAII but co-precipitates coexpressed ankyrin. Both the CAII and the AE1 fusion proteins are fully functional in tsA201 cells as judged by CA activity and by cellular HCO3(-) permeability (P(HCO3(-))) sensitive to inhibition by 4,4-Diisothiocyano-2,2-stilbenedisulfonic acid. Expression of the non-catalytic CAII mutant V143Y leads to a drastic reduction of endogenous CAII and to a corresponding reduction of total intracellular CA activity. Overexpression of an N-terminally truncated CAII lacking the proposed site of interaction with the C-terminal cytoplasmic tail of AE1 substantially increases intracellular CA activity, as does overexpression of wild-type CAII. These variously co-transfected tsA201 cells exhibit a positive correlation between cellular P(HCO3(-)) and intracellular CA activity. The relationship reflects that expected from changes in cytoplasmic CA activity improving substrate supply to or removal from AE1, without requirement for a CAII-AE1 metabolon involving physical interaction. A functional contribution of the hypothesized CAII-AE1 metabolon to erythroid AE1-mediated HCO3(-) transport was further tested in normal red cells and red cells from CAII-deficient patients that retain substantial CA activity associated with the erythroid CAI protein lacking the proposed AE1-binding sequence. Erythroid P(HCO3(-)) was indistinguishable in these two cell types, providing no support for the proposed functional importance of the physical interaction of CAII and AE1. A theoretical model predicts that homogeneous cytoplasmic distribution of CAII is more favourable for cellular transport of HCO3(-) and CO2 than is association of CAII with the cytoplasmic surface of the plasma membrane. This is due to the fact that the relatively slow intracellular transport of H(+) makes it most efficient to place the CA in the vicinity of the haemoglobin molecules, which are homogeneously distributed over the cytoplasm.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Anhidrasa Carbónica II/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Ancirinas/metabolismo , Anhidrasa Carbónica II/genética , Citoplasma/metabolismo , Células HEK293 , Humanos , Transporte Iónico , Modelos Biológicos , Unión Proteica , Transporte de Proteínas
13.
FASEB J ; 26(12): 5182-91, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22964306

RESUMEN

Recent observations that some membrane proteins act as gas channels seem surprising in view of the classical concept that membranes generally are highly permeable to gases. Here, we study the gas permeability of membranes for the case of CO(2), using a previously established mass spectrometric technique. We first show that biological membranes lacking protein gas channels but containing normal amounts of cholesterol (30-50 mol% of total lipid), e.g., MDCK and tsA201 cells, in fact possess an unexpectedly low CO(2) permeability (P(CO2)) of ∼0.01 cm/s, which is 2 orders of magnitude lower than the P(CO2) of pure planar phospholipid bilayers (∼1 cm/s). Phospholipid vesicles enriched with similar amounts of cholesterol also exhibit P(CO2) ≈ 0.01 cm/s, identifying cholesterol as the major determinant of membrane P(CO2). This is confirmed by the demonstration that MDCK cells depleted of or enriched with membrane cholesterol show dramatic increases or decreases in P(CO2), respectively. We demonstrate, furthermore, that reconstitution of human AQP-1 into cholesterol-containing vesicles, as well as expression of human AQP-1 in MDCK cells, leads to drastic increases in P(CO2), indicating that gas channels are of high functional significance for gas transfer across membranes of low intrinsic gas permeability.


Asunto(s)
Dióxido de Carbono/metabolismo , Permeabilidad de la Membrana Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Acuaporina 1/química , Acuaporina 1/metabolismo , Transporte Biológico , Línea Celular , Membrana Celular/química , Perros , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/química , Liposomas/metabolismo , Células de Riñón Canino Madin Darby , Espectrometría de Masas , Fosfolípidos/química , Fosfolípidos/metabolismo , Proteolípidos/química , Proteolípidos/metabolismo
14.
J Physiol ; 587(Pt 6): 1153-67, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19139045

RESUMEN

We have developed an experimental approach that allows us to quantify unstirred layers around cells suspended in stirred solutions. This technique is applicable to all types of transport measurements and was applied here to the (18)O technique used to measure CO(2) permeability of red cells (PCO2). We measure PCO2 in well-stirred red cell (RBC) suspensions of various viscosities adjusted by adding different amounts of 60 kDa dextran. Plotting 1/PCO2 vs. viscosity nu gives a linear relation, which can be extrapolated to nu=0. Theoretical hydrodynamics predicts that extracellular unstirred layers vanish at zero viscosity when stirring is maintained, and thus this extrapolation gives us an estimate of the PCO2 free from extracellular unstirred layer artifacts. The extrapolated value is found to be 0.16 cm s(-1) instead of the experimental value in saline of 0.12 cm s(-1) (+30%). This effect corresponds to an unstirred layer thickness of 0.5 microm. In addition, we present a theoretical approach modelling the actual geometrical and physico-chemical conditions of (18)O exchange in our experiments. It confirms the role of an extracellular unstirred layer in the determination of PCO2. Also, it allows us to quantify the contribution of the so-called intracellular unstirred layer, which results from the fact that in these transport measurements--as in all such measurements in general--the intracellular space is not stirred. The apparent thickness of this intracellular unstirred layer is about 1/4-1/3 of the maximal intracellular diffusion distance, and correction for it results in a true PCO2 of the RBC membrane of 0.20 cm s(-1). Thus, the order of magnitude of this is PCO2 unaltered compared to our previous reports. Discussion of the available evidence in the light of these results confirms that CO(2) channels exist in red cell and other membranes, and that PCO2 of red cell membranes in the absence of these channels is quite low.


Asunto(s)
Dióxido de Carbono/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Membrana Eritrocítica/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Espectrometría de Masas/métodos , Isótopos de Oxígeno/química , Algoritmos , Bicarbonatos/metabolismo , Transporte Biológico/fisiología , Simulación por Computador , Dextranos/química , Difusión , Humanos , Modelos Biológicos , Reología , Cloruro de Sodio/química , Viscosidad
15.
Biochim Biophys Acta ; 1783(5): 813-25, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18211829

RESUMEN

We have investigated the mechanism of the changes in the profile of metabolic enzyme expression that occur in association with fast-to-slow transformation of rabbit skeletal muscle. The hypotheses assessed are: do 1) lowered intracellular ATP concentration or 2) reduction of the muscular glycogen stores act as triggers of metabolic transformation? We find that 3 days of decreased cytosolic ATP content have no impact on the investigated metabolic markers, whereas incubation of the cells with little or no glucose leads to decreases in glycogen in conjunction with decreases in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter activity, GAPDH mRNA and specific GAPDH enzyme activity (indicators of the anaerobic glycolytic pathway), and furthermore to increases in mitochondrial acetoacetyl-CoA thiolase (MAT, also known as ACAT) promoter activity, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) expression and citrate synthase (CS) specific enzyme activity (all indicators of oxidative metabolic pathways). The AMP-activated protein kinase (AMPK) activity under these conditions is reduced compared to controls. In experiments with two inhibitors of glycogen degradation we show that the observed metabolic transformation caused by low glucose takes place even if intracellular glycogen content is high. These findings for the first time provide evidence that metabolic adaptation of skeletal muscle cells from rabbit in primary culture can be induced not only by elevation of intracellular calcium concentration or by a rise of AMPK activity, but also by reduction of glucose supply. Contrary to expectations, neither an increase in phospho-AMPK nor a reduction of muscular glycogen content are crucial events in the glucose-dependent induction of metabolic transformation in the muscle cell culture system studied.


Asunto(s)
Glucosa/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP , Adenosina Trifosfato/metabolismo , Animales , Biomarcadores/metabolismo , Calcimicina/farmacología , Células Cultivadas , Citrato (si)-Sintasa/metabolismo , Medios de Cultivo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Glucógeno/metabolismo , Guanidinas/farmacología , Ionóforos/farmacología , Complejos Multienzimáticos/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/enzimología , Músculo Esquelético/enzimología , Propionatos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Conejos
16.
FASEB J ; 22(1): 64-73, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17712059

RESUMEN

We have determined CO2 permeabilities, P(CO2), of red cells of normal human blood and of blood deficient in various blood group proteins by a previously described mass spectrometric technique. While P(CO2) of normal red cells is approximately 0.15 cm/s, we find in red blood cells (RBCs) lacking the Rh protein complex (Rh(null)) a significantly reduced P(CO2) of 0.07 cm/s +/-0.02 cm/s (P<0.02). This value is similar to the value we have reported previously for RBCs lacking aquaporin-1 protein (AQP-1(null)), suggesting that each of the Rh and AQP-1 proteins is responsible for approximately 1/2 of the normal CO2 permeability of the RBC membrane. Four other blood group deficiencies tested lack diverse membrane proteins but exhibit normal CO2 permeability. The CO2 pathway constituted by Rh proteins was inhibitable at pH(e)= 7.4 by NH4Cl with an I50 of approximately 10 mM corresponding to an I50 for NH3 of approximately 0.3 mM. The pathway independent of Rh proteins, presumably that constituted by AQP-1, was not inhibitable by NH4Cl/NH3. However, both pathways were strongly inhibited by DIDS, which accounts for the marked inhibitory effect of DIDS on normal P(CO2), while in contrast another AE1 inhibitor, DiBAC, does not inhibit P(CO2), although it markedly reduces P(HCO3-). We conclude that Rh protein, presumably the Rh-associated glycoprotein RhAG, possesses a gas channel that allows passage of CO2 in addition to NH3.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Dióxido de Carbono/metabolismo , Membrana Eritrocítica/metabolismo , Glicoproteínas de Membrana/metabolismo , Transporte Biológico , Humanos , Espectrometría de Masas , Sensibilidad y Especificidad
17.
Membranes (Basel) ; 7(4)2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29064458

RESUMEN

We summarize here, mainly for mammalian systems, the present knowledge of (a) the membrane CO2 permeabilities in various tissues; (b) the physiological significance of the value of the CO2 permeability;

19.
Front Physiol ; 7: 181, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27252655

RESUMEN

We have studied cardiac and respiratory functions of aquaporin-1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals' hearts were analyzed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min(-1) and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: (1) left ventricular wall thickness was reduced by 12%, (2) left ventricular mass, normalized to tibia length, was reduced by 10-20%, (3) cardiac muscle fiber cross sectional area was decreased by 17%, and (4) capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wild-type heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output.

20.
Front Physiol ; 7: 347, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27559317

RESUMEN

We have measured maximal oxygen consumption ([Formula: see text]O2,max) of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9, and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that [Formula: see text]O2,max as determined by the Helox technique is reduced by ~16%, when AQP1 is knocked out, but not when AQP9 or Rhag are lacking. This figure holds for animals respiring normoxic as well as hypoxic gas mixtures. To see whether the reduction of [Formula: see text]O2,max is due to impaired O2 uptake in the lung, we measured carotid arterial O2 saturation (SO2) by pulse oximetry. Neither under normoxic (inspiratory O2 21%) nor under hypoxic conditions (11% O2) is there a difference in SO2 between AQP1null and WT mice, suggesting that AQP1 is not critical for O2 uptake in the lung. The fact that the % reduction of [Formula: see text]O2,max is identical in normoxia and hypoxia indicates moreover that the limitation of [Formula: see text]O2,max is not due to an O2 diffusion problem, neither in the lung nor in the periphery. Instead, it appears likely that AQP1null animals exhibit a reduced [Formula: see text]O2,max due to the reduced wall thickness and muscle mass of the left ventricles of their hearts, as reported previously. We conclude that very likely the properties of the hearts of AQP1 knockout mice cause a reduced maximal cardiac output and thus cause a reduced [Formula: see text]O2,max, which constitutes a new phenotype of these mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA