Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(7): e112165, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36795017

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa adapts to solid surfaces to enhance virulence and infect its host. Type IV pili (T4P), long and thin filaments that power surface-specific twitching motility, allow single cells to sense surfaces and control their direction of movement. T4P distribution is polarized to the sensing pole by the chemotaxis-like Chp system via a local positive feedback loop. However, how the initial spatially resolved mechanical signal is translated into T4P polarity is incompletely understood. Here, we demonstrate that the two Chp response regulators PilG and PilH enable dynamic cell polarization by antagonistically regulating T4P extension. By precisely quantifying the localization of fluorescent protein fusions, we show that phosphorylation of PilG by the histidine kinase ChpA controls PilG polarization. Although PilH is not strictly required for twitching reversals, it becomes activated upon phosphorylation and breaks the local positive feedback mechanism established by PilG, allowing forward-twitching cells to reverse. Chp thus uses a main output response regulator, PilG, to resolve mechanical signals in space and employs a second regulator, PilH, to break and respond when the signal changes. By identifying the molecular functions of two response regulators that dynamically control cell polarization, our work provides a rationale for the diversity of architectures often found in non-canonical chemotaxis systems.


Asunto(s)
Proteínas Bacterianas , Proteínas Fimbrias , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/metabolismo , Fimbrias Bacterianas/fisiología , Movimiento Celular
2.
J Cell Sci ; 135(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35188214

RESUMEN

February is LGBT+ history month, and to celebrate, Journal of Cell Science Editorial Advisory Board member David Bryant organised a conversation with a selection of scientists to explore their experiences of being LGBT+ in academia.


Asunto(s)
Liderazgo , Minorías Sexuales y de Género , Movilidad Laboral , Comunicación , Humanos
3.
Bioconjug Chem ; 35(4): 517-527, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38482815

RESUMEN

Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent "click" cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide-alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.


Asunto(s)
Azidas , Peptidoglicano , Humanos , Animales , Ratones , Azidas/química , Distribución Tisular , Tomografía de Emisión de Positrones , Bacterias , Aminoácidos , Alanina , Radioisótopos de Flúor/química
4.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301869

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa explores surfaces using twitching motility powered by retractile extracellular filaments called type IV pili (T4P). Single cells twitch by sequential T4P extension, attachment, and retraction. How single cells coordinate T4P to efficiently navigate surfaces remains unclear. We demonstrate that P. aeruginosa actively directs twitching in the direction of mechanical input from T4P in a process called mechanotaxis. The Chp chemotaxis-like system controls the balance of forward and reverse twitching migration of single cells in response to the mechanical signal. Collisions between twitching cells stimulate reversals, but Chp mutants either always or never reverse. As a result, while wild-type cells colonize surfaces uniformly, collision-blind Chp mutants jam, demonstrating a function for mechanosensing in regulating group behavior. On surfaces, Chp senses T4P attachment at one pole, thereby sensing a spatially resolved signal. As a result, the Chp response regulators PilG and PilH control the polarization of the extension motor PilB. PilG stimulates polarization favoring forward migration, while PilH inhibits polarization, inducing reversal. Subcellular segregation of PilG and PilH efficiently orchestrates their antagonistic functions, ultimately enabling rapid reversals upon perturbations. The distinct localization of response regulators establishes a signaling landscape known as local excitation-global inhibition in higher-order organisms, identifying a conserved strategy to transduce spatially resolved signals.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Mecanotransducción Celular , Pseudomonas aeruginosa/fisiología , Proteínas Bacterianas/genética , Movimiento Celular , Proteínas Fimbrias/genética , Transducción de Señal
5.
J Infect Dis ; 228(Suppl 4): S281-S290, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788505

RESUMEN

BACKGROUND: Vertebral discitis-osteomyelitis (VDO) is a devastating infection of the spine that is challenging to distinguish from noninfectious mimics using computed tomography and magnetic resonance imaging. We and others have developed novel metabolism-targeted positron emission tomography (PET) radiotracers for detecting living Staphylococcus aureus and other bacteria in vivo, but their head-to-head performance in a well-validated VDO animal model has not been reported. METHODS: We compared the performance of several PET radiotracers in a rat model of VDO. [11C]PABA and [18F]FDS were assessed for their ability to distinguish S aureus, the most common non-tuberculous pathogen VDO, from Escherichia coli. RESULTS: In the rat S aureus VDO model, [11C]PABA could detect as few as 103 bacteria and exhibited the highest signal-to-background ratio, with a 20-fold increased signal in VDO compared to uninfected tissues. In a proof-of-concept experiment, detection of bacterial infection and discrimination between S aureus and E coli was possible using a combination of [11C]PABA and [18F]FDS. CONCLUSIONS: Our work reveals that several bacteria-targeted PET radiotracers had sufficient signal to background in a rat model of S aureus VDO to be potentially clinically useful. [11C]PABA was the most promising tracer investigated and warrants further investigation in human VDO.


Asunto(s)
Discitis , Osteomielitis , Infecciones Estafilocócicas , Humanos , Ratas , Animales , Discitis/diagnóstico por imagen , Ácido 4-Aminobenzoico , Escherichia coli , Tomografía de Emisión de Positrones/métodos , Infecciones Estafilocócicas/diagnóstico por imagen , Osteomielitis/microbiología , Bacterias , Staphylococcus aureus , Radiofármacos
6.
J Am Chem Soc ; 145(32): 17632-17642, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37535945

RESUMEN

Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[18F]-fluoro-d-glucose ([18F]FDG), the most common tracer used in clinical imaging, to form [18F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [18F]FDG was reacted with ß-d-glucose-1-phosphate in the presence of maltose phosphorylase, the α-1,4- and α-1,3-linked products 2-deoxy-[18F]-fluoro-maltose ([18F]FDM) and 2-deoxy-2-[18F]-fluoro-sakebiose ([18F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (ß-1,3), and cellobiose (ß-1,4) phosphorylases to synthesize 2-deoxy-2-[18F]fluoro-trehalose ([18F]FDT), 2-deoxy-2-[18F]fluoro-laminaribiose ([18F]FDL), and 2-deoxy-2-[18F]fluoro-cellobiose ([18F]FDC). We subsequently tested [18F]FDM and [18F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. Both [18F]FDM and [18F]FSK were stable in human serum with high accumulation in preclinical infection models. The synthetic ease and high sensitivity of [18F]FDM and [18F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of these tracers to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [18F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.


Asunto(s)
Fluorodesoxiglucosa F18 , Trehalosa , Humanos , Celobiosa , Staphylococcus aureus , Tomografía de Emisión de Positrones/métodos , Bacterias
7.
Eur J Nucl Med Mol Imaging ; 49(11): 3761-3771, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35732972

RESUMEN

PURPOSE: Non-invasive imaging is a key clinical tool for detection and treatment monitoring of infections. Existing clinical imaging techniques are frequently unable to distinguish infection from tumors or sterile inflammation. This challenge is well-illustrated by prosthetic joint infections that often complicate joint replacements. D-methyl-11C-methionine (D-11C-Met) is a new bacteria-specific PET radiotracer, based on an amino acid D-enantiomer, that is rapidly incorporated into the bacterial cell wall. In this manuscript, we describe the biodistribution, radiation dosimetry, and initial human experience using D-11C-Met in patients with suspected prosthetic joint infections. METHODS: 614.5 ± 100.2 MBq of D-11C-Met was synthesized using an automated in-loop radiosynthesis method and administered to six healthy volunteers and five patients with suspected prosthetic joint infection, who were studied by PET/MRI. Time-activity curves were used to calculate residence times for each source organ. Absorbed doses to each organ and body effective doses were calculated using OLINDA/EXM 1.1 with both ICRP 60 and ICRP 103 tissue weighting factors. SUVmax and SUVpeak were calculated for volumes of interest (VOIs) in joints with suspected infection, the unaffected contralateral joint, blood pool, and soft tissue background. A two-tissue compartment model was used for kinetic modeling. RESULTS: D-11C-Met was well tolerated in all subjects. The tracer showed clearance from both urinary (rapid) and hepatobiliary (slow) pathways as well as low effective doses. Moreover, minimal background was observed in both organs with resident micro-flora and target organs, such as the spine and musculoskeletal system. Additionally, D-11C-Met showed increased focal uptake in areas of suspected infection, demonstrated by a significantly higher SUVmax and SUVpeak calculated from VOIs of joints with suspected infections compared to the contralateral joints, blood pool, and background (P < 0.01). Furthermore, higher distribution volume and binding potential were observed in suspected infections compared to the unaffected joints. CONCLUSION: D-11C-Met has a favorable radiation profile, minimal background uptake, and fast urinary extraction. Furthermore, D-11C-Met showed increased uptake in areas of suspected infection, making this a promising approach. Validation in larger clinical trials with a rigorous gold standard is still required.


Asunto(s)
Metionina , Tomografía de Emisión de Positrones , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones/métodos , Radiometría , Distribución Tisular
8.
Antimicrob Agents Chemother ; 65(7): e0169020, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33875435

RESUMEN

Antibiotic-resistant bacteria are an emerging global health threat. New antimicrobials are urgently needed. The injectisome type III secretion system (T3SS), required by dozens of Gram-negative bacteria for virulence but largely absent from nonpathogenic bacteria, is an attractive antimicrobial target. We previously identified synthetic cyclic peptomers, inspired by the natural product phepropeptin D, that inhibit protein secretion through the Yersinia Ysc and Pseudomonas aeruginosa Psc T3SSs but do not inhibit bacterial growth. Here, we describe the identification of an isomer, 4EpDN, that is 2-fold more potent (50% inhibitory concentration [IC50] of 4 µM) than its parental compound. Furthermore, 4EpDN inhibited the Yersinia Ysa and the Salmonella SPI-1 T3SSs, suggesting that this cyclic peptomer has broad efficacy against evolutionarily distant injectisome T3SSs. Indeed, 4EpDN strongly inhibited intracellular growth of Chlamydia trachomatis in HeLa cells, which requires the T3SS. 4EpDN did not inhibit the unrelated twin arginine translocation (Tat) system, nor did it impact T3SS gene transcription. Moreover, although the injectisome and flagellar T3SSs are evolutionarily and structurally related, the 4EpDN cyclic peptomer did not inhibit secretion of substrates through the Salmonella flagellar T3SS, indicating that cyclic peptomers broadly but specifically target the injectisome T3SS. 4EpDN reduced the number of T3SS needles detected on the surface of Yersinia pseudotuberculosis as detected by microscopy. Collectively, these data suggest that cyclic peptomers specifically inhibit the injectisome T3SS from a variety of Gram-negative bacteria, possibly by preventing complete T3SS assembly.


Asunto(s)
Sistemas de Secreción Tipo III , Yersinia pseudotuberculosis , Proteínas Bacterianas/genética , Células HeLa , Humanos , Pseudomonas aeruginosa , Sistemas de Secreción Tipo III/genética , Virulencia , Yersinia pseudotuberculosis/genética
9.
Biochem Biophys Res Commun ; 505(4): 1070-1076, 2018 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-30314703

RESUMEN

Chlamydia trachomatis is an obligate intracellular bacterium that replicates within a membranous compartment, the inclusion, in host cells. Its intracellular life cycle requires host sphingolipids, which are in part acquired through the ER-Golgi localized ceramide transport protein (CERT). The Chlamydia-encoded inclusion membrane protein IncD is composed of two closely linked long hydrophobic domains with their N- and C-termini exposed to the host cytosol. IncD binds directly to the pleckstrin homology (PH) domain of CERT, likely redirecting ceramide to the inclusion. The precise regions of IncD required for this interaction have not been delineated. Using co-transfection studies together with phylogenetic studies, we demonstrate that both the IncD N- and C-terminal regions are required for binding to the CERT PH domain and define key interaction residues. Native gel electrophoresis analysis demonstrates that the transmembrane region of IncD forms SDS-resistant but dithiothreitol-sensitive homodimers, which in turn can assemble to form higher order oligomers through additional N- and C-terminal domain contacts. IncD oligomerization may facilitate high affinity binding to CERT, allowing C. trachomatis to efficiently redirect host ceramide to the inclusion.


Asunto(s)
Proteínas Bacterianas/química , Chlamydia trachomatis/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/metabolismo , Humanos , Dominios Homólogos a Pleckstrina , Proteínas Serina-Treonina Quinasas/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(24): 7563-8, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26041805

RESUMEN

Bacteria have evolved a wide range of sensing systems to appropriately respond to environmental signals. Here we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa detects contact with surfaces on short timescales using the mechanical activity of its type IV pili, a major surface adhesin. This signal transduction mechanism requires attachment of type IV pili to a solid surface, followed by pilus retraction and signal transduction through the Chp chemosensory system, a chemotaxis-like sensory system that regulates cAMP production and transcription of hundreds of genes, including key virulence factors. Like other chemotaxis pathways, pili-mediated surface sensing results in a transient response amplified by a positive feedback that increases type IV pili activity, thereby promoting long-term surface attachment that can stimulate additional virulence and biofilm-inducing pathways. The methyl-accepting chemotaxis protein-like chemosensor PilJ directly interacts with the major pilin subunit PilA. Our results thus support a mechanochemical model where a chemosensory system measures the mechanically induced conformational changes in stretched type IV pili. These findings demonstrate that P. aeruginosa not only uses type IV pili for surface-specific twitching motility, but also as a sensor regulating surface-induced gene expression and pathogenicity.


Asunto(s)
Fimbrias Bacterianas/fisiología , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/patogenicidad , Factores de Virulencia/fisiología , Adhesión Bacteriana/fisiología , Fenómenos Biofísicos , AMP Cíclico/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/fisiología , Fimbrias Bacterianas/clasificación , Genes Bacterianos , Mecanotransducción Celular/genética , Mecanotransducción Celular/fisiología , Modelos Biológicos , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/fisiología , Mutación , Operón , Pseudomonas aeruginosa/genética
11.
Mol Microbiol ; 101(4): 590-605, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27145134

RESUMEN

Type IV pili (TFP) function as mechanosensors to trigger acute virulence programs in Pseudomonas aeruginosa. On surface contact, TFP retraction activates the Chp chemosensory system phosphorelay to upregulate 3', 5'-cyclic monophosphate (cAMP) production and transcription of virulence-associated genes. To dissect the specific interactions mediating the mechanochemical relay, we used affinity purification/mass spectrometry, directed co-immunoprecipitations in P. aeruginosa, single cell analysis of contact-dependent transcriptional reporters, subcellular localization and bacterial two hybrid assays. We demonstrate that FimL, a Chp chemosensory system accessory protein of unknown function, directly links the integral component of the TFP structural complex FimV, a peptidoglycan binding protein, with one of the Chp system output response regulators PilG. FimL and PilG colocalize at cell poles in a FimV-dependent manner. While PilG phosphorylation is required for TFP function and mechanochemical signaling, it is not required for polar localization or binding to FimL. Phylogenetic analysis reveals other bacterial species simultaneously encode TFP, the Chp system, FimL, FimV and adenylate cyclase homologs, suggesting that surface sensing may be widespread among TFP-expressing bacteria. We propose that FimL acts as a scaffold enabling spatial colocalization of TFP and Chp system components to coordinate signaling leading to cAMP-dependent upregulation of virulence genes on surface contact.


Asunto(s)
Fimbrias Bacterianas/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , AMP Cíclico/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Peptidoglicano/metabolismo , Filogenia , Pseudomonas aeruginosa/genética , Transducción de Señal , Virulencia
12.
J Antimicrob Chemother ; 72(12): 3357-3365, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28961810

RESUMEN

OBJECTIVES: The selection and dose of antibiotic therapy for biofilm-related infections are based on traditional pharmacokinetic studies using planktonic bacteria. The objective of this study was to characterize the time course and spatial activity of human exposure levels of meropenem and tobramycin against Pseudomonas aeruginosa biofilms grown in an in vitro flow-chamber model. METHODS: Pharmacokinetic profiles of meropenem and tobramycin used in human therapy were administered to GFP-labelled P. aeruginosa PAO1 grown in flow chambers for 24 or 72 h. Images were acquired using confocal laser scanning microscopy throughout antibiotic treatment. Bacterial biomass was measured using COMSTAT and pharmacokinetic/pharmacodynamic models were fitted using NONMEM7. RESULTS: Meropenem treatment resulted in more rapid and sustained killing of both the 24 and 72 h PAO1 biofilm compared with tobramycin. Biofilm regrowth after antibiotic treatment occurred fastest with tobramycin. Meropenem preferentially killed subpopulations within the mushroom cap of the biofilms, regardless of biofilm maturity. The spatial killing by tobramycin varied with biofilm maturity. A tobramycin-treated 24 h biofilm resulted in live and dead cells detaching from the biofilm, while treatment of a 72 h biofilm preferentially killed subpopulations on the periphery of the mushroom stalk. Regrowth occurred primarily on the mushroom caps. Combination meropenem and tobramycin therapy resulted in rapid and efficient killing of biofilm cells, with a spatial pattern similar to meropenem alone. CONCLUSIONS: Simulated human concentrations of meropenem and tobramycin in young and mature PAO1 biofilms exhibited differences in temporal and spatial patterns of killing and antibiotic tolerance development.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Tienamicinas/farmacología , Tobramicina/farmacología , Biomasa , Tolerancia a Medicamentos , Proteínas Fluorescentes Verdes/análisis , Meropenem , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Confocal , Pseudomonas aeruginosa/crecimiento & desarrollo , Análisis Espacio-Temporal , Coloración y Etiquetado
13.
PLoS Pathog ; 10(11): e1004479, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25375398

RESUMEN

Clinical infections by Pseudomonas aeruginosa, a deadly Gram-negative, opportunistic pathogen of immunocompromised hosts, often involve the formation of antibiotic-resistant biofilms. Although biofilm formation has been extensively studied in vitro on glass or plastic surfaces, much less is known about biofilm formation at the epithelial barrier. We have previously shown that when added to the apical surface of polarized epithelial cells, P. aeruginosa rapidly forms cell-associated aggregates within 60 minutes of infection. By confocal microscopy we now show that cell-associated aggregates exhibit key characteristics of biofilms, including the presence of extracellular matrix and increased resistance to antibiotics compared to planktonic bacteria. Using isogenic mutants in the type III secretion system, we found that the translocon, but not the effectors themselves, were required for cell-associated aggregation on the surface of polarized epithelial cells and at early time points in a murine model of acute pneumonia. In contrast, the translocon was not required for aggregation on abiotic surfaces, suggesting a novel function for the type III secretion system during cell-associated aggregation. Supernatants from epithelial cells infected with wild-type bacteria or from cells treated with the pore-forming toxin streptolysin O could rescue aggregate formation in a type III secretion mutant, indicating that cell-associated aggregation requires one or more host cell factors. Our results suggest a previously unappreciated function for the type III translocon in the formation of P. aeruginosa biofilms at the epithelial barrier and demonstrate that biofilms may form at early time points of infection.


Asunto(s)
Sistemas de Secreción Bacterianos/inmunología , Biopelículas , Células Epiteliales/inmunología , Neumonía Bacteriana/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/fisiología , Animales , Sistemas de Secreción Bacterianos/genética , Modelos Animales de Enfermedad , Perros , Células Epiteliales/microbiología , Células Epiteliales/patología , Células de Riñón Canino Madin Darby , Ratones , Mutación , Neumonía Bacteriana/genética , Neumonía Bacteriana/patología , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/patología
14.
PLoS Pathog ; 8(4): e1002616, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496644

RESUMEN

Pseudomonas aeruginosa, an important opportunistic pathogen of man, exploits numerous factors for initial attachment to the host, an event required to establish bacterial infection. In this paper, we rigorously explore the role of two major bacterial adhesins, type IV pili (Tfp) and flagella, in bacterial adherence to distinct host receptors at the apical (AP) and basolateral (BL) surfaces of polarized lung epithelial cells and induction of subsequent host signaling and pathogenic events. Using an isogenic mutant of P. aeruginosa that lacks flagella or utilizing beads coated with purified Tfp, we establish that Tfp are necessary and sufficient for maximal binding to host N-glycans at the AP surface of polarized epithelium. In contrast, experiments utilizing a P. aeruginosa isogenic mutant that lacks Tfp or using beads coated with purified flagella demonstrate that flagella are necessary and sufficient for maximal binding to heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPGs) at the BL surface of polarized epithelium. Using two different cell-free systems, we demonstrate that Tfp-coated beads show highest binding affinity to complex N-glycan chains coated onto plastic plates and preferentially aggregate with beads coated with N-glycans, but not with single sugars or HS. In contrast, flagella-coated beads bind to or aggregate preferentially with HS or HSPGs, but demonstrate little binding to N-glycans. We further show that Tfp-mediated binding to host N-glycans results in activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway and bacterial entry at the AP surface. At the BL surface, flagella-mediated binding to HS activates the epidermal growth factor receptor (EGFR), adaptor protein Shc, and PI3K/Akt, and induces bacterial entry. Remarkably, flagella-coated beads alone can activate EGFR and Shc. Together, this work provides new insights into the intricate interactions between P. aeruginosa and lung epithelium that may be potentially useful in the development of novel treatments for P. aeruginosa infections.


Asunto(s)
Adhesinas Bacterianas/inmunología , Adhesión Bacteriana/inmunología , Fimbrias Bacterianas/inmunología , Flagelos/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Mucosa Respiratoria/inmunología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/genética , Línea Celular , Activación Enzimática/genética , Activación Enzimática/inmunología , Receptores ErbB/genética , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteoglicanos de Heparán Sulfato/genética , Proteoglicanos de Heparán Sulfato/inmunología , Proteoglicanos de Heparán Sulfato/metabolismo , Heparina/genética , Heparina/inmunología , Heparina/metabolismo , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología
15.
bioRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38712241

RESUMEN

Chlamydia trachomatis, a leading cause of bacteria sexually transmitted infections, creates a specialized intracellular replicative niche by translocation and insertion of a diverse array of effectors (Incs) into the inclusion membrane. Here, we characterize IncE, a multi-functional Inc that encodes two non-overlapping short linear motifs (SLiMs) within its short cytosolic C-terminus. The proximal SLiM mimics an R-SNARE motif to recruit syntaxin (STX) 7 and 12-containing vesicles to the inclusion. The distal SLiM mimics the Sorting Nexin (SNX) 5 and 6 cargo binding site to recruit SNX6-containing vesicles to the inclusion. By simultaneously binding to two distinct vesicle classes, IncE reprograms host cell trafficking to promote the formation of a class of hybrid vesicles at the inclusion that are required for C. trachomatis intracellular development. Our work suggests that Incs may have evolved SLiMs to facilitate rapid evolution in a limited protein space to disrupt host cell processes.

16.
Microbiol Spectr ; 12(7): e0045324, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38814079

RESUMEN

Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the USA and of preventable blindness worldwide. This obligate intracellular pathogen replicates within a membrane-bound inclusion, but how it acquires nutrients from the host while avoiding detection by the innate immune system is incompletely understood. C. trachomatis accomplishes this in part through the translocation of a unique set of effectors into the inclusion membrane, the inclusion membrane proteins (Incs). Incs are ideally positioned at the host-pathogen interface to reprogram host signaling by redirecting proteins or organelles to the inclusion. Using a combination of co-affinity purification, immunofluorescence confocal imaging, and proteomics, we characterize the interaction between an early-expressed Inc of unknown function, Tri1, and tumor necrosis factor receptor-associated factor 7 (TRAF7). TRAF7 is a multi-domain protein with a RING finger ubiquitin ligase domain and a C-terminal WD40 domain. TRAF7 regulates several innate immune signaling pathways associated with C. trachomatis infection and is mutated in a subset of tumors. We demonstrate that Tri1 and TRAF7 specifically interact during infection and that TRAF7 is recruited to the inclusion. We further show that the predicted coiled-coil domain of Tri1 is necessary to interact with the TRAF7 WD40 domain. Finally, we demonstrate that Tri1 displaces the native TRAF7 binding partners, mitogen-activated protein kinase kinase kinase 2 (MEKK2), and MEKK3. Together, our results suggest that by displacing TRAF7 native binding partners, Tri1 has the capacity to alter TRAF7 signaling during C. trachomatis infection.IMPORTANCEChlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the USA and preventable blindness worldwide. Although easily treated with antibiotics, the vast majority of infections are asymptomatic and therefore go untreated, leading to infertility and blindness. This obligate intracellular pathogen evades the immune response, which contributes to these outcomes. Here, we characterize the interaction between a C. trachomatis-secreted effector, Tri1, and a host protein involved in innate immune signaling, TRAF7. We identified host proteins that bind to TRAF7 and demonstrated that Tri1 can displace these proteins upon binding to TRAF7. Remarkably, the region of TRAF7 to which these host proteins bind is often mutated in a subset of human tumors. Our work suggests a mechanism by which Tri1 may alter TRAF7 signaling and has implications not only in the pathogenesis of C. trachomatis infections but also in understanding the role of TRAF7 in cancer.


Asunto(s)
Proteínas Bacterianas , Infecciones por Chlamydia , Chlamydia trachomatis , Interacciones Huésped-Patógeno , Humanos , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/genética , Chlamydia trachomatis/inmunología , Células HeLa , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/metabolismo , Infecciones por Chlamydia/inmunología , Transducción de Señal , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Inmunidad Innata , Unión Proteica , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células HEK293
17.
bioRxiv ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38464023

RESUMEN

Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the US and of preventable blindness worldwide. This obligate intracellular pathogen replicates within a membrane-bound inclusion, but how it acquires nutrients from the host while avoiding detection by the innate immune system is incompletely understood. C. trachomatis accomplishes this in part through the translocation of a unique set of effectors into the inclusion membrane, the inc lusion membrane proteins (Incs). Incs are ideally positioned at the host-pathogen interface to reprogram host signaling by redirecting proteins or organelles to the inclusion. Using a combination of co-affinity purification, immunofluorescence confocal imaging, and proteomics, we characterize the interaction between an early-expressed Inc of unknown function, Tri1, and tumor necrosis factor receptor associated factor 7 (TRAF7). TRAF7 is a multi-domain protein with a RING finger ubiquitin ligase domain and a C-terminal WD40 domain. TRAF7 regulates several innate immune signaling pathways associated with C. trachomatis infection and is mutated in a subset of tumors. We demonstrate that Tri1 and TRAF7 specifically interact during infection and that TRAF7 is recruited to the inclusion. We further show that the predicted coiled-coil domain of Tri1 is necessary to interact with the TRAF7 WD40 domain. Finally, we demonstrate that Tri1 displaces the native TRAF7 binding partners, mitogen activated protein kinase kinase kinase 2 (MEKK2) and MEKK3. Together, our results suggest that by displacing TRAF7 native binding partners, Tri1 has the capacity to alter TRAF7 signaling during C. trachomatis infection. Importance: Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the US and preventable blindness worldwide. Although easily treated with antibiotics, the vast majority of infections are asymptomatic and therefore go untreated, leading to infertility and blindness. This obligate intracellular pathogen evades the immune response, which contributes to these outcomes. Here, we characterize the interaction between a C. trachomatis secreted effector, Tri1, and a host protein involved in innate immune signaling, TRAF7. We identified host proteins that bind to TRAF7 and demonstrate that Tri1 can displace these proteins upon binding to TRAF7. Remarkably, the region of TRAF7 to which these host proteins bind is often mutated in a subset of human tumors. Our work suggests a mechanism by which Tri1 may alter TRAF7 signaling and has implications not only in the pathogenesis of C. trachomatis infections, but also in understanding the role of TRAF7 in cancer.

18.
bioRxiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38464290

RESUMEN

Sensory signaling pathways use adaptation to dynamically respond to changes in their environment. Here, we report the mechanism of sensory adaptation in the Pil-Chp mechanosensory system, which the important human pathogen Pseudomonas aeruginosa uses to sense mechanical stimuli during surface exploration. Using biochemistry, genetics, and cell biology, we discovered that the enzymes responsible for adaptation, a methyltransferase and a methylesterase, are segregated to opposing cell poles as P. aeruginosa explore surfaces. By coordinating the localization of both enzymes, we found that the Pil-Chp response regulators influence local receptor methylation, the molecular basis of bacterial sensory adaptation. We propose a model in which adaptation during mechanosensing spatially resets local receptor methylation, and thus Pil-Chp signaling, to modulate the pathway outputs, which are involved in P. aeruginosa virulence. Despite decades of bacterial sensory adaptation studies, our work has uncovered an unrecognized mechanism that bacteria use to achieve adaptation to sensory stimuli.

19.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712050

RESUMEN

Chlamydia trachomatis (C.t.), the leading cause of bacterial sexually transmitted infections, employs a type III secretion system (T3SS) to translocate two classes of effectors, inclusion membrane proteins and conventional T3SS (cT3SS) effectors, into the host cell to counter host defense mechanisms. Here we employed three assays to directly evaluate secretion during infection, validating secretion for 23 cT3SS effectors. As bioinformatic analyses have been largely unrevealing, we conducted affinity purification-mass spectrometry to identify host targets and gain insights into the functions of these effectors, identifying high confidence interacting partners for 21 cT3SS effectors. We demonstrate that CebN localizes to the nuclear envelope in infected and bystander cells where it interacts with multiple nucleoporins and Rae1, blocking STAT1 nuclear import following IFN-γ stimulation. By building a cT3SS effector-host interactome, we have identified novel pathways that are targeted during bacterial infection and have begun to address how C.t. effectors combat cell autonomous immunity.

20.
JACS Au ; 4(3): 1039-1047, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38559735

RESUMEN

Imaging is increasingly used to detect and monitor bacterial infection. Both anatomic (X-rays, computed tomography, ultrasound, and MRI) and nuclear medicine ([111In]-WBC SPECT, [18F]FDG PET) techniques are used in clinical practice but lack specificity for the causative microorganisms themselves. To meet this challenge, many groups have developed imaging methods that target pathogen-specific metabolism, including PET tracers integrated into the bacterial cell wall. We have previously reported the d-amino acid derived PET radiotracers d-methyl-[11C]-methionine, d-[3-11C]-alanine, and d-[3-11C]-alanine-d-alanine, which showed robust bacterial accumulation in vitro and in vivo. Given the clinical importance of radionuclide half-life, in the current study, we developed [18F]3,3,3-trifluoro-d-alanine (d-[18F]-CF3-ala), a fluorine-18 labeled tracer. We tested the hypothesis that d-[18F]-CF3-ala would be incorporated into bacterial peptidoglycan given its structural similarity to d-alanine itself. NMR analysis showed that the fluorine-19 parent amino acid d-[19F]-CF3-ala was stable in human and mouse serum. d-[19F]-CF3-ala was also a poor substrate for d-amino acid oxidase, the enzyme largely responsible for mammalian d-amino acid metabolism and a likely contributor to background signals using d-amino acid derived PET tracers. In addition, d-[19F]-CF3-ala showed robust incorporation into Escherichia coli peptidoglycan, as detected by HPLC/mass spectrometry. Based on these promising results, we developed a radiosynthesis of d-[18F]-CF3-ala via displacement of a bromo-precursor with [18F]fluoride followed by chiral stationary phase HPLC. Unexpectedly, the accumulation of d-[18F]-CF3-ala by bacteria in vitro was highest for Gram-negative pathogens in particular E. coli. In a murine model of acute bacterial infection, d-[18F]-CF3-ala could distinguish live from heat-killed E. coli, with low background signals. These results indicate the viability of [18F]-modified d-amino acids for infection imaging and indicate that improved specificity for bacterial metabolism can improve tracer performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA