RESUMEN
BACKGROUND: Deregulation of transcription in the pathogenesis of sporadic Amyotrophic Lateral Sclerosis (sALS) is taking central stage with RNA-sequencing analyses from sALS patients tissues highlighting numerous deregulated long non-coding RNAs (lncRNAs). The oncogenic lncRNA ZEB1-AS1 is strongly downregulated in peripheral blood mononuclear cells of sALS patients. In addition, in cancer-derived cell lines, ZEB1-AS1 belongs to a negative feedback loop regulation with hsa-miR-200c, acting as a molecular sponge for this miRNA. The role of the lncRNA ZEB1-AS1 in sALS pathogenesis has not been characterized yet, and its study could help identifying a possible disease-modifying target. METHODS: the implication of the ZEB1-AS1/ZEB1/hsa-miR-200c/BMI1 pathway was investigated in multiple patients-derived cellular models (patients-derived peripheral blood mononuclear cells and induced pluripotent stem cells-derived neural stem cells) and in the neuroblastoma cell line SH-SY5Y, where its function was inhibited via RNA interference. Molecular techniques such as Real Time PCR, Western Blot and Immunofluorescence were used to assess the pathway dysregulation. RESULTS: Our results show a dysregulation of a signaling pathway involving ZEB1-AS1/hsa-miR-200c/ß-Catenin in peripheral blood mononuclear cells and in induced pluripotent stem cells-derived neural stem cells from sALS patients. These results were validated in vitro on the cell line SH-SY5Y with silenced expression of ZEB1-AS1. Moreover, we found an increase for ZEB1-AS1 during neural differentiation with an aberrant expression of ß-Catenin, highlighting also its aggregation and possible impact on neurite length. CONCLUSIONS: Our results support and describe the role of ZEB1-AS1 pathway in sALS and specifically in neuronal differentiation, suggesting that an impairment of ß-Catenin signaling and an alteration of the neuronal phenotype are taking place.
Asunto(s)
Esclerosis Amiotrófica Lateral , MicroARNs , Neuroblastoma , ARN Largo no Codificante , Humanos , Esclerosis Amiotrófica Lateral/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Leucocitos Mononucleares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismoRESUMEN
The role of extracellular vesicles (EVs) as mediators of cell-to-cell communication in cancer progression is widely recognized. In vitro studies are routinely performed on 2D culture models, but recent studies suggest that 3D cultures could represent a more valid model. Human ovarian cancer cells CABA I were cultured by the hanging drop method to form tumor spheroids, that were moved to low adhesion supports to observe their morphology by Scanning Electron Microscopy (SEM) and to isolate the EVs. EVs release was verified by SEM and their identity confirmed by morphology (Transmission Electron Microscopy, TEM), size distribution (Nanoparticles Tracking Analysis), and markers (CD63, CD9, TSG-101, Calnexin). CABA I form spheroids with a clinically relevant size, above 400 µm; they release EVs on their external surface and also trap "inner" EVs. They also produce vasculogenic mimicry-like tubules, that bulge from the spheroid and are composed of a hollow lumen delimited by tumor cells. CABA I can be grown as multicellular spheroids to easily isolate EVs. The presence of features typical of in vivo tumors (inner entrapped EVs and vasculogenic mimicry) suggests their use as faithful experimental models to screen therapeutic drugs targeting these pro-tumorigenic processes.
Asunto(s)
Vesículas Extracelulares , Neoplasias Ováricas , Calnexina , Diferenciación Celular , Femenino , Humanos , Esferoides CelularesRESUMEN
Leukodystrophies are a class of rare heterogeneous disorders which affect the white matter of the brain, ultimately leading to a disruption in brain development and a damaging effect on cognitive, motor and social-communicative development. These disorders present a great clinical heterogeneity, along with a phenotypic overlap and this could be partially due to contributions from environmental stimuli. It is in this context that there is a great need to investigate what other factors may contribute to both disease insurgence and phenotypical heterogeneity, and novel evidence are raising the attention toward the study of epigenetics and transcription mechanisms that can influence the disease phenotype beyond genetics. Modulation in the epigenetics machinery including histone modifications, DNA methylation and non-coding RNAs dysregulation, could be crucial players in the development of these disorders, and moreover an aberrant RNA maturation process has been linked to leukodystrophies. Here, we provide an overview of these mechanisms hoping to supply a closer step toward the analysis of leukodystrophies not only as genetically determined but also with an added level of complexity where epigenetic dysregulation is of key relevance. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNA RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Asunto(s)
Epigénesis Genética , Humanos , ARN/metabolismo , ARN/genética , AnimalesRESUMEN
Alpha-synuclein, encoded by the SNCA gene, is a pivotal protein implicated in the pathogenesis of synucleinopathies, including Parkinson's disease. Current approaches for modulating alpha-synuclein levels involve antisense nucleotides, siRNAs, and small molecules targeting SNCA's 5'-UTR mRNA. Here, we propose a groundbreaking strategy targeting G-quadruplex structures to effectively modulate SNCA gene expression and lowering alpha-synuclein amount. Novel G-quadruplex sequences, identified on the SNCA gene's transcription starting site and 5'-UTR of SNCA mRNAs, were experimentally confirmed for their stability through biophysical assays and in vitro experiments on human genomic DNA. Biological validation in differentiated SH-SY5Y cells revealed that well-known G-quadruplex ligands remarkably stabilized these structures, inducing the modulation of SNCA mRNAs expression, and the effective decrease in alpha-synuclein amount. Besides, a novel peptide nucleic acid conjugate, designed to selectively disrupt of G-quadruplex within the SNCA gene promoter, caused a promising lowering of both SNCA mRNA and alpha-synuclein protein. Altogether our findings highlight G-quadruplexes' key role as intriguing biological targets in achieving a notable and successful reduction in alpha-synuclein expression, pointing to a novel approach against synucleinopathies.
Asunto(s)
G-Cuádruplex , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Línea Celular Tumoral , Regiones Promotoras Genéticas , Regulación de la Expresión Génica/efectos de los fármacos , Regiones no Traducidas 5'/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Ácidos Nucleicos de Péptidos/farmacología , Ácidos Nucleicos de Péptidos/químicaRESUMEN
Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies.
RESUMEN
Fibroblasts in the tumor microenvironment have been proven to actively participate in tumor progression; they can be "educated" by cancer cells acquiring an activated state and, as such, are identified as cancer-associated fibroblasts (CAFs); CAFs, in turn, remodel tumor stroma to be more advantageous for cancer progression by modulating several processes, including angiogenesis, immunosuppression, and drug access, presumably driving the chemoresistance. That is why they are believed to hamper the response to clinical therapeutic options. The communication between cancer cells and fibroblasts can be mediated by extracellular vesicles (EVs), composed of both exosomes (EXOs) and microvesicles (MVs). To verify the role of different subpopulations of EVs in this cross-talk, a nearly pure subpopulation of EXO-like EVs and the second one of mixed EXO- and MV-like EVs were isolated from ovarian cancer cells and administered to fibroblasts. It turned out that EVs can activate fibroblasts to a CAF-like state, supporting their proliferation, motility, invasiveness, and enzyme expression; EXO-like EV subpopulation seems to be more efficient in some of those processes, suggesting different roles for different EV subpopulations. Moreover, the secretome of these "activated" fibroblasts, composed of both soluble and EV-associated molecules, was, in turn, able to modulate the response of bystander cells (fibroblasts, tumor, and endothelial cells), supporting the idea that EVs sustain the mutual cross-talk between tumor cells and CAFs.