Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Inorg Chem ; 25(7): 995-1007, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32926231

RESUMEN

Ammonia monooxygenase is a copper-dependent membrane-bound enzyme that catalyzes the first step of nitrification in ammonia-oxidizing bacteria to convert ammonia to hydroxylamine, through the reductive insertion of a dioxygen-derived O atom in an N-H bond. This reaction is analogous to that carried out by particulate methane monooxygenase, which catalyzes the conversion of methane to methanol. The enzymatic activity of ammonia monooxygenase must be modulated to reduce the release of nitrogen-based soil nutrients for crop production into the atmosphere or underground waters, a phenomenon known to significantly decrease the efficiency of primary production as well as increase air and water pollution. The structure of ammonia monooxygenase is not available, rendering the rational design of enzyme inhibitors impossible. This study describes a successful attempt to build a structural model of ammonia monooxygenase, and its accessory proteins AmoD and AmoE, from Nitrosomonas europaea, taking advantage of the high sequence similarity with particulate methane monooxygenase and the homologous PmoD protein, for which crystal structures are instead available. The results obtained not only provide the structural details of the proteins ternary and quaternary structures, but also suggest a location for the copper-containing active site for both ammonia and methane monooxygenases, as well as support a proposed structure of a CuA-analogue dinuclear copper site in AmoD and PmoD.


Asunto(s)
Cobre/metabolismo , Oxidorreductasas/metabolismo , Biocatálisis , Dominio Catalítico , Nitrógeno/metabolismo , Oxidorreductasas/química
2.
Biochim Biophys Acta ; 1858(2): 386-92, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26656159

RESUMEN

It is well established that cytotoxic Aß oligomers are the key factor that triggers the initial tissue and cell modifications eventually culminating in the development of Alzheimer's disease. Aß1-42 oligomers display a high degree of polymorphism, and several structurally different oligomers have been described. Amongst them, two types, recently classified as A+ and A-, have been shown to possess similar size but distinct toxic properties, as a consequence of their biophysical and structural differences. Here, we have investigated by means of single molecule tracking the oligomer mobility on the plasma membrane of living neuroblastoma cells and the interaction with the ganglioside GM1, a component of membrane rafts. We have found that A+ and A- oligomers display a similar lateral diffusion on the plasma membrane of living cells. However, only the toxic A+ oligomers appear to interact and alter the mobility of GM1. We have also studied the lateral diffusion of each kind of oligomers in cells depleted or enriched in GM1. We found that the content of GM1 influences the diffusion of both types of oligomer, although the effect of the increased levels of GM1 is higher for the A+ type. Interestingly, the content of GM1 also affects significantly the mobility of GM1 molecules themselves.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Gangliósido G(M1)/metabolismo , Microdominios de Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Multimerización de Proteína , Péptidos beta-Amiloides/química , Línea Celular Tumoral , Gangliósido G(M1)/química , Humanos , Microdominios de Membrana/química , Fragmentos de Péptidos/química
4.
Biochim Biophys Acta ; 1832(8): 1217-26, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23602994

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline, formation of the extracellular amyloid ß (Aß42) plaques, neuronal and synapse loss, and activated microglia and astrocytes. Extracellular chaperones, which are known to inhibit amyloid fibril formation and promote clearance of misfolded aggregates, have recently been shown to reduce efficiently the toxicity of HypF-N misfolded oligomers to immortalised cell lines, by binding and clustering them into large species. However, the role of extracellular chaperones on Aß oligomer toxicity remains unclear, with reports often appearing contradictory. In this study we microinjected into the hippocampus of rat brains Aß42 oligomers pre-incubated for 1h with two extracellular chaperones, namely clusterin and α2-macroglobulin. The chaperones were found to prevent Aß42-induced learning and memory impairments, as assessed by the Morris Water Maze test, and reduce Aß42-induced glia inflammation and neuronal degeneration in rat brains, as probed by fluorescent immunohistochemical analyses. Moreover, the chaperones were able to prevent Aß42 colocalisation with PSD-95 at post-synaptic terminals of rat primary neurons, suppressing oligomer cytotoxicity. All such effects were not effective by adding pre-formed oligomers and chaperones without preincubation. Molecular chaperones have therefore the potential to prevent the early symptoms of AD, not just by inhibiting Aß42 aggregation, as previously demonstrated, but also by suppressing the toxicity of Aß42 oligomers after they are formed. These findings elect them as novel neuroprotectors against amyloid-induced injury and excellent candidates for the design of therapeutic strategies against AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Chaperonas Moleculares/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Células Cultivadas , Inflamación/metabolismo , Discapacidades para el Aprendizaje/metabolismo , Masculino , Trastornos de la Memoria/metabolismo , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , alfa-Macroglobulinas/metabolismo
5.
J Cell Sci ; 125(Pt 10): 2416-27, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22344258

RESUMEN

Increasing evidence suggests that the interaction of misfolded protein oligomers with cell membranes is a primary event resulting in the cytotoxicity associated with many protein-misfolding diseases, including neurodegenerative disorders. We describe here the results of a study on the relative contributions to toxicity of the physicochemical properties of protein oligomers and the cell membrane with which they interact. We altered the amount of cholesterol and the ganglioside GM1 in membranes of SH-SY5Y cells. We then exposed the cells to two types of oligomers of the prokaryotic protein HypF-N with different ultrastructural and cytotoxicity properties, and to oligomers formed by the amyloid-ß peptide associated with Alzheimer's disease. We identified that the degree of toxicity of the oligomeric species is the result of a complex interplay between the structural and physicochemical features of both the oligomers and the cell membrane.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Membrana Celular/metabolismo , Lípidos de la Membrana/química , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/toxicidad , Línea Celular Tumoral , Membrana Celular/química , Fenómenos Químicos , Colesterol/química , Colesterol/metabolismo , Gangliósido G(M1)/química , Gangliósido G(M1)/metabolismo , Humanos , Lípidos de la Membrana/metabolismo
6.
Nat Chem Biol ; 6(2): 140-7, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20081829

RESUMEN

The aberrant assembly of peptides and proteins into fibrillar aggregates proceeds through oligomeric intermediates that are thought to be the primary pathogenic species in many protein deposition diseases. We describe two types of oligomers formed by the HypF-N protein that are morphologically and tinctorially similar, as detected with atomic force microscopy and thioflavin T assays, though one is benign when added to cell cultures whereas the other is toxic. Structural investigation at a residue-specific level using site-directed labeling with pyrene indicated differences in the packing of the hydrophobic interactions between adjacent protein molecules in the oligomers. The lower degree of hydrophobic packing was found to correlate with a higher ability to penetrate the cell membrane and cause an influx of Ca(2+) ions. Our findings suggest that structural flexibility and hydrophobic exposure are primary determinants of the ability of oligomeric assemblies to cause cellular dysfunction and its consequences, such as neurodegeneration.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Multimerización de Proteína , Transferasas de Carboxilo y Carbamoilo/metabolismo , Transferasas de Carboxilo y Carbamoilo/ultraestructura , Línea Celular Tumoral , Membrana Celular/metabolismo , Supervivencia Celular , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Unión Proteica , Conformación Proteica
7.
J Cell Mol Med ; 15(10): 2106-16, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21155974

RESUMEN

Peptides and proteins can convert from their soluble forms into highly ordered fibrillar aggregates, giving rise to pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. It is increasingly recognized that protein oligomers forming early in the process of fibril aggregation represent the pathogenic species in protein deposition diseases. The N-terminal domain of the HypF protein from Escherichia coli (HypF-N) has previously been shown to form, under distinct conditions, two types of HypF-N oligomers with indistinguishable morphologies but distinct structural features at the molecular level. Only the oligomer type exposing hydrophobic surfaces and possessing sufficient structural plasticity is toxic (type A), whereas the other type is benign to cultured cells (type B). Here we show that only type A oligomers are able to induce a Ca(2+) influx from the cell medium to the cytosol, to penetrate the plasma membrane, to increase intracellular reactive oxygen species production, lipid peroxidation and release of intracellular calcein, resulting in the activation of the apoptotic pathway. Remarkably, these oligomers can also induce a loss of cholinergic neurons when injected into rat brains. By contrast, markers of cellular stress and viability were unaffected in cultured and rat neuronal cells exposed to type B oligomers. The analysis of the time scales of such effects indicates that the difference of toxicity between the two oligomer types involve the early events of the toxicity cascade, shedding new light on the mechanism of action of protein oligomers and on the molecular targets for the therapeutic intervention against protein deposition diseases.


Asunto(s)
Calcio/metabolismo , Transferasas de Carboxilo y Carbamoilo/química , Transferasas de Carboxilo y Carbamoilo/farmacología , Neuronas Colinérgicas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacología , Péptidos/química , Péptidos/farmacología , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Cultivadas , Neuronas Colinérgicas/química , Modelos Animales de Enfermedad , Humanos , Peroxidación de Lípido/efectos de los fármacos , Terapia Molecular Dirigida , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
8.
Biochim Biophys Acta ; 1788(10): 2204-16, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19651105

RESUMEN

Increasing evidence supports the idea that the initial events of Abeta oligomerization and cytotoxicity in Alzheimer's disease involve the interaction of amyloid Abeta-derived diffusible ligands (ADDLs) with the cell membrane. This also indicates lipid rafts, ordered membrane microdomains enriched in cholesterol, sphingolipids and gangliosides, as likely primary interaction sites of ADDLs. To shed further light on the relation between ADDL-cell membrane interaction and oligomer cytotoxicity, we investigated the dependence of ADDLs binding to lipid rafts on membrane cholesterol content in human SH-SY5Y neuroblastoma cells. Confocal laser microscopy showed that Abeta1-42 oligomers markedly interact with membrane rafts and that a moderate enrichment of membrane cholesterol prevents their association with the monosialoganglioside GM1. Moreover, anisotropy fluorescence measurements of flotillin-1-positive rafts purified by sucrose density gradient suggested that the content of membrane cholesterol and membrane perturbation by ADDLs are inversely correlated. Finally, contact mode atomic force microscope images of lipid rafts in liquid showed that ADDLs induce changes in raft morphology with the appearance of large cavities whose size and depth were significantly reduced in similarly treated cholesterol-enriched rafts. Our data suggest that cholesterol reduces amyloid-induced membrane modifications at the lipid raft level by altering raft physicochemical features.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Colesterol/fisiología , Microdominios de Membrana/fisiología , Neuroblastoma/metabolismo , Supervivencia Celular/efectos de los fármacos , Humanos , Microscopía de Fuerza Atómica , Células Tumorales Cultivadas
9.
J Alzheimers Dis ; 60(3): 923-938, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28922156

RESUMEN

An altered distribution of membrane gangliosides (GM), including GM1, has recently been reported in the brains of Alzheimer's disease (AD) patients. Moreover, amyloid-positive synaptosomes obtained from AD brains were found to contain high-density GM1 clusters, suggesting a pathological significance of GM1 increase at presynaptic neuritic terminals in AD. Here, we show that membrane GM1 specifically recruits small soluble oligomers of the 42-residue form of amyloid-ß peptide (Aß42), with intracellular flux of Ca2+ ions in primary rat hippocampal neurons and in human neuroblastoma cells. Specific membrane proteins appear to be involved in the early and transient influx of Ca2+ ions induced by Aß42 oligomers with high solvent-exposed hydrophobicity (A+), but not in the sustained late influx of the same oligomers and in that induced by Aß42 oligomers with low solvent-exposed hydrophobicity (A-) in GM1-enriched cells. In addition, A+ oligomers accumulate in proximity of membrane NMDA and AMPA receptors, inducing the early and transient Ca2+ influx, although FRET shows that the interaction is not direct. These results suggest that age-dependent clustering of GM1 within neuronal membranes could induce neurodegeneration in elderly people as a consequence of an increased ability of the lipid bilayers to recruit membrane-permeabilizing oligomers. We also show that both lipid and protein components of the plasma membrane can contribute to neuronal dysfunction, thus expanding the molecular targets for therapeutic intervention in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Gangliósidos/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Canales de Calcio/metabolismo , Cationes Bivalentes/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Células Cultivadas , Citosol/metabolismo , Hipocampo/metabolismo , Homeostasis/fisiología , Humanos , Fragmentos de Péptidos/toxicidad , Pliegue de Proteína , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Sci Rep ; 6: 32721, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27619987

RESUMEN

The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aß42 peptide associated with Alzheimer's disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca(2+) across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane.


Asunto(s)
Amiloide/metabolismo , Membrana Celular/metabolismo , Multimerización de Proteína , Deficiencias en la Proteostasis/metabolismo , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Transferasas de Carboxilo y Carbamoilo/metabolismo , Línea Celular Tumoral , Colesterol/metabolismo , Citosol/metabolismo , Proteínas de Escherichia coli/metabolismo , Gangliósido G(M1)/metabolismo , Humanos , Modelos Biológicos , Unión Proteica , Receptores de Glutamato/metabolismo , Resonancia por Plasmón de Superficie
11.
J Alzheimers Dis ; 41(1): 289-300, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24614900

RESUMEN

Increasing evidence indicates that interaction of amyloid-ß peptide (Aß) with the cell membrane is a primary step in Alzheimer's disease (AD) neurotoxicity. In particular, it has been demonstrated that lipid rafts are key sites of Aß production, aggregation, and interaction with the cell membrane. In this study we show that Aß42 oligomers are recruited to lipid rafts, leading to plasma membrane perturbation and Ca2+ dyshomeostasis in primary fibroblasts from familial AD patients bearing APPVal717Ile, PS-1Leu392Val, or PS-1Met146Leu gene mutations. In contrast, a moderate increase in membrane cholesterol content precluded the interaction of Aß42 oligomers with the plasma membrane and resulting cell damage. Moreover, the recruitment of amyloid assemblies to lipid raft domains of cholesterol-depleted fibroblasts was significantly increased, thus triggering an earlier and sharper increase in intracellular Ca2+ levels and plasma membrane permeabilization. Our findings suggest a protective role for raft cholesterol against amyloid toxicity in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Membrana Celular/fisiología , Colesterol/metabolismo , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/genética , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Células Cultivadas , Corteza Cerebral/fisiopatología , Citosol/metabolismo , Fibroblastos/fisiología , Microdominios de Membrana/fisiología , Neuronas/fisiología , Proteínas PrPC/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Ratas Sprague-Dawley
12.
Free Radic Biol Med ; 73: 127-35, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24835770

RESUMEN

Oxidative stress has a prominent role in life-span regulation of living organisms. One of the endogenous free radical scavenger systems is associated with glutathione (GSH), the most abundant nonprotein thiol in mammalian cells, acting as a major reducing agent and in antioxidant defense by maintaining a tight control over redox status. We have recently designed a series of novel S-acyl-GSH derivatives capable of preventing amyloid oxidative stress and cholinergic dysfunction in Alzheimer disease models, upon an increase in GSH intake. In this study we show that the longevity of the wild-type N2 Caenorhabditis elegans strain was significantly enhanced by dietary supplementation with linolenoyl-SG (lin-SG) thioester with respect to the ethyl ester of GSH, linolenic acid, or vitamin E. RNA interference analysis and activity inhibition assay indicate that life-span extension was mediated by the upregulation of Sir-2.1, a NAD-dependent histone deacetylase ortholog of mammalian SIRT1. In particular, lin-SG-mediated overexpression of Sir-2.1 appears to be related to the Daf-16 (FoxO) pathway. Moreover, the lin-SG derivative protects N2 worms from the paralysis and oxidative stress induced by Aß/H2O2 exposure. Overall, our findings put forward lin-SG thioester as an antioxidant supplement triggering sirtuin upregulation, thus opening new future perspectives for healthy aging or delayed onset of oxidative-related diseases.


Asunto(s)
Envejecimiento/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Glutatión/metabolismo , Longevidad/efectos de los fármacos , Sirtuinas/metabolismo , Factores de Transcripción/metabolismo , Envejecimiento/metabolismo , Enfermedad de Alzheimer/patología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Suplementos Dietéticos , Factores de Transcripción Forkhead , Peróxido de Hidrógeno/toxicidad , Ácidos Linolénicos/metabolismo , Estrés Oxidativo , Interferencia de ARN , ARN Interferente Pequeño , Sirtuinas/biosíntesis , Sirtuinas/genética , Estrés Fisiológico , Activación Transcripcional , Vitamina E
13.
Photochem Photobiol ; 89(2): 442-52, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22934650

RESUMEN

UV-induced toxicity is characterized by marked oxidative stress, accompanied by the depletion of key cellular antioxidants, particularly glutathione (GSH). Replenishing cellular GSH may represent a means of counteracting UV-induced toxicity: however, treatment with free GSH is not therapeutically effective due to its unfavorable pharmacokinetic properties. In this study, we show that S-acyl-glutathione (acyl-SG) derivatives, which consist of an acyl chain (of variable length and saturation) linked via a thioester bond to GSH, increase intracellular levels of reduced GSH in primary skin fibroblasts, adenocarcinoma HeLa and neuroblastoma SH-SY5Y cells. Consistent with this, acyl-SG derivatives protect against UV-induced reactive oxygen species (ROS) production and UV-B/C-mediated lipid peroxidation and caspase-3 activation in the analyzed cell lines, with unsaturated thioesters displaying a significantly greater protective effect. Taken together, our findings suggest that acyl-SG thioesters may be therapeutically effective in the treatment of UV-related skin disorders and oxidative stress-mediated conditions in general.


Asunto(s)
Antioxidantes/farmacología , Fibroblastos/efectos de los fármacos , Glutatión/análogos & derivados , Glutatión/farmacología , Piel/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Activación Enzimática/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/enzimología , Fibroblastos/efectos de la radiación , Glutatión/síntesis química , Humanos , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/efectos de la radiación , Estrés Oxidativo , Cultivo Primario de Células , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Piel/citología , Piel/enzimología , Piel/efectos de la radiación , Rayos Ultravioleta
14.
Curr Alzheimer Res ; 10(2): 143-53, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22950913

RESUMEN

Several lines of evidence suggest that the initial events of amyloid-ß peptide (Aß) oligomerization and deposition in Alzheimer's disease (AD) involve the interaction of soluble oligomers with neuronal membranes. In this study, we show that Aß42 oligomers are recruited to lipid rafts, which are ordered membrane microdomains rich in cholesterol and gangliosides, resulting in lipid peroxidation, Ca(2+) dyshomeostasis and membrane permeabilization in primary fibroblasts from familial AD patients (FAD) bearing APPVal717Ile, PS-1Leu392Val or PS-1Met146Leu gene mutations. Moreover, the presence of significantly higher levels of lipid peroxidation correlated with greater structural modification in detergent resistant domains (DRMs) isolated from APP and PS-1 fibroblasts, compared to WT fibroblasts from healthy subjects. Modulation of raft GM1, including modest depletion of GM1 content and interference with GM1 exposure or negative charge, precluded the interaction of amyloid aggregates with the plasma membrane and the resulting cell damage in FAD fibroblasts and rat brains cortical neurons. These findings suggest a specific role for raft domains as primary mediators of amyloid toxicity in AD neurons.


Asunto(s)
Enfermedad de Alzheimer/patología , Calcio/metabolismo , Fibroblastos/patología , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Estrés Oxidativo/genética , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/genética , Análisis de Varianza , Animales , Células Cultivadas , Corteza Cerebral/citología , Toxina del Cólera/farmacología , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Ensayo de Inmunoadsorción Enzimática , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Gangliosidosis GM1/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Microdominios de Membrana/genética , Morfolinas/farmacología , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Presenilina-1/genética , Ratas , Ratas Sprague-Dawley
15.
J Mol Biol ; 421(4-5): 616-30, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22326346

RESUMEN

A group of diverse human pathologies is associated with proteins unable to retain their native state and convert into prefibrillar and fibrillar amyloid aggregates that are then deposited in the extracellular space. Glycosaminoglycans (GAGs) have been found to physically associate with these deposits and also to promote their formation in vitro. However, the effect of GAGs on the toxicity of these aggregates has been investigated in only one protein system, the amyloid ß peptide associated with Alzheimer's disease. In this study, we investigate whether GAGs affect the toxicity of the N-terminal domain of Escherichia coli HypF (HypF-N) oligomers on Chinese hamster ovarian cells and the mechanism by which such suppression is mediated. The results show that heparin and other GAGs inhibit the toxicity observed by HypF-N oligomers in a dose-dependent manner. GAGs were not found to bind preformed HypF-N oligomers, change their morphological and structural characteristics or disaggregate them. Nevertheless, they were found to bind to the cells' surface and prevent the interaction of the oligomers with the cells. Overall, the results indicate that GAGs have a generic ability to inhibit the toxicity of aberrant protein oligomers and that such toxicity suppression can occur through different mechanisms, such as through binding to the oligomers with consequent loss of interaction of the oligomers to the GAGs present on the cell surface, as proposed previously for amyloid ß aggregates, or through mechanisms independent of direct GAG-oligomer binding, as shown here for HypF-N aggregates.


Asunto(s)
Amiloide/metabolismo , Transferasas de Carboxilo y Carbamoilo/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicosaminoglicanos/metabolismo , Multimerización de Proteína , Amiloide/toxicidad , Animales , Células CHO , Transferasas de Carboxilo y Carbamoilo/toxicidad , Cricetinae , Cricetulus , Escherichia coli/química , Proteínas de Escherichia coli/toxicidad , Desnaturalización Proteica
16.
Free Radic Biol Med ; 52(8): 1362-71, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22326489

RESUMEN

Oxidative stress-mediated neuronal death may be initiated by a decrease in glutathione (GSH), whose levels are reduced in mitochondrial and synaptosomal fractions of specific CNS regions in Alzheimer disease (AD) patients. Currently, the use of GSH as a therapeutic agent is limited by its unfavorable pharmacokinetic properties. In this study, we designed the synthesis of new S-acyl glutathione (acyl-SG) thioesters of fatty acids via N-acyl benzotriazole-intermediate production and investigated their potential for targeted delivery of the parent GSH and free fatty acid to amyloid-exposed fibroblasts from familial AD patients and human SH-SY5Y neuroblastoma cells. Cell culture supplementation with acyl-SG derivatives triggers a significant decrease in lipid peroxidation and mitochondrial dysfunction in a fatty acid unsaturation degree-dependent fashion. Acyl-SG thioesters also protect cholinergic neurons against Aß-induced damage and reduce glial reaction in rat brains. Collectively, these findings suggest that acyl-SG thioesters could prove useful as a tool for controlling AD-induced cerebral deterioration.


Asunto(s)
Amiloide/metabolismo , Glutatión/farmacología , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Receptores Colinérgicos/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Caspasa 3/metabolismo , Línea Celular Tumoral , Células Cultivadas , Activación Enzimática , Técnica del Anticuerpo Fluorescente , Humanos , Ratas
17.
J Alzheimers Dis ; 27(3): 651-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21876252

RESUMEN

Cell therapy is a promising approach for the treatment of neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. However, the presence of toxic aggregates in tissue raises the question of whether grafted stem cells are susceptible to amyloid toxicity before they differentiate into mature neurons. To address this question, we investigated the relative vulnerability of human mesenchymal stromal cells and their neuronally differentiated counterparts to Aß(42) oligomers and whether susceptibility correlates with membrane GM1 content, a key player in oligomer toxicity. We found that our cell model was highly susceptible to aggregate toxicity, whereas neuronal differentiation induced resistance to amyloid species. This data correlated well with the content of membrane GM1, levels of which decreased considerably in differentiated cells. These findings extend our knowledge of stem cell vulnerability to amyloid species, which remains a controversial issue, and confirm that amyloid-GM1 interactions play an important role in cell impairment.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Fragmentos de Péptidos/toxicidad , Péptidos beta-Amiloides/antagonistas & inhibidores , Diferenciación Celular/fisiología , Células Cultivadas , Gangliósido G(M1)/toxicidad , Humanos , Lípidos de la Membrana/toxicidad , Células Madre Mesenquimatosas/metabolismo , Fragmentos de Péptidos/antagonistas & inhibidores
18.
Neurobiol Aging ; 32(2): 210-22, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19297055

RESUMEN

A growing body of evidence implicates low membrane cholesterol in the pathogenesis of Alzheimer's disease (AD). Here we show that Aß42 soluble oligomers accumulate more slowly and in reduced amount at the plasma membranes of PS-1L392V and APPV717I fibroblasts from familial AD (FAD) patients enriched in cholesterol content than at the counterpart membranes. The Aß42-induced production of reactive oxygen species (ROS) and the increase in membrane lipoperoxidation were also prevented by high membrane cholesterol, thus resulting in a higher resistance to amyloid toxicity with respect to control fibroblasts. On the other hand, the recruitment of amyloid assemblies to the plasma membrane of cholesterol-depleted fibroblasts was significantly increased, thus triggering an earlier and sharper production of ROS and a higher membrane oxidative injury. These results identify membrane cholesterol as being key to Aß42 oligomer accumulation at the cell surfaces and to the following Aß42-induced cell death in AD neurons.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Fibroblastos/patología , Estrés Oxidativo/efectos de los fármacos , Adulto , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/genética , Membrana Celular/efectos de los fármacos , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Humanos , Peróxidos Lipídicos/metabolismo , Masculino , Persona de Mediana Edad , Mutación/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
19.
J Mol Med (Berl) ; 88(6): 597-608, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20217034

RESUMEN

Increasing evidence indicates that cell surfaces are early interaction sites for Abeta-derived diffusible ligands (ADDLs) and neurons in Alzheimer's disease (AD) pathogenesis. Our previous data showed significant oxidative damage at the plasma membrane in fibroblasts from familial AD patients with enhanced Abeta production. Here, we report that lipid rafts, ordered membrane microdomains, are chronic mediators of Abeta-induced lipid peroxidation in SH-SY5Y human neuroblastoma cells overexpressing amyloid precursor protein (APPwt) and APPV717G genes and in fibroblasts bearing the APPV717I gene mutation. Confocal microscope analysis showed that Abeta-oxidised rafts recruit more ADDLs than corresponding domains in control cells, triggering a further increase in membrane lipid peroxidation and loss of membrane integrity. Moreover, amyloid pickup at the oxidative-damaged domains was prevented by enhanced cholesterol levels, anti-ganglioside (GM1) antibodies, the B subunit of cholera toxin and lipid raft structure alteration. An enhanced structural rigidity of the detergent-resistant domains, isolated from APPwt and APPV717G cells and exposed to ADDLs, indicates a specific perturbation of raft physicochemical features in cells facing increased amyloid assembly at the membrane surface. These data identify lipid rafts as key mediators of oxidative damage as a result of their ability to recruit aggregates to the cell surface.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Peroxidación de Lípido , Microdominios de Membrana/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Línea Celular Tumoral , Colesterol/química , Colesterol/metabolismo , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Microdominios de Membrana/química , Mutación , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA