Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(2010): 20230957, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37909073

RESUMEN

Recent studies have suggested the presence of moonlight mediated behaviour in avian aerial insectivores, such as swifts. Here, we use the combined analysis of state-of-the-art activity logger data across three swift species, the common, pallid and alpine swifts, to quantify flight height and activity in responses to moonlight-driven crepuscular and nocturnal light conditions. Our results show a significant response in flight heights to moonlight illuminance for common and pallid swifts, i.e. when moon illuminance increased flight height also increased, while a moonlight-driven response is absent in alpine swifts. We show a weak relationship between night-time illuminance-driven responses and twilight ascending behaviour, suggesting a decoupling of both crepuscular and night-time behaviour. We suggest that swifts optimize their flight behaviour to adapt to favourable night-time light conditions, driven by light-responsive and size-dependent vertical insect stratification and weather conditions.


Asunto(s)
Aves , Vuelo Animal , Animales , Vuelo Animal/fisiología , Aves/fisiología , Insectos
2.
J Anim Ecol ; 89(2): 635-646, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31581321

RESUMEN

It is essential to gain knowledge about the causes and extent of migratory connectivity between stationary periods of migrants to further the understanding of processes affecting populations, and to allow efficient implementation of conservation efforts throughout the annual cycle. Avian migrants likely use optimal routes with respect to mode of locomotion, orientation and migration strategy, influenced by external factors such as wind and topography. In self-powered flapping flying birds, any increases in fuel loads are associated with added flight costs. Energy-minimizing migrants are therefore predicted to trade-off extended detours against reduced travel across ecological barriers with no or limited foraging opportunities. Here, we quantify the extent of detours taken by different populations of European nightjars Caprimulgus europaeus, to test our predictions that they used routes beneficial according to energetic principles and evaluate the effect of route shape on seasonal migratory connectivity. We combined data on birds tracked from breeding sites along a longitudinal gradient from England to Sweden. We analysed the migratory connectivity between breeding and main non-breeding sites, and en route stopover sites just south of the Sahara desert. We quantified each track's route extension relative to the direct route between breeding and wintering sites, respectively, and contrasted it to the potential detour derived from the barrier reduction along the track while accounting for potential wind effects. Nightjars extended their tracks from the direct route between breeding and main non-breeding sites as they crossed the Mediterranean Sea-Sahara desert, the major ecological barrier in the Palaearctic-African migration system. These clockwise detours were small for birds from eastern sites but increased from east to west breeding longitude. Routes of the tracked birds were associated with partial reduction in the barrier crossing resulting in a trade-off between route extension and barrier reduction, as expected in an energy-minimizing migrant. This study demonstrates how the costs of barrier crossings in prevailing winds can disrupt migratory routes towards slightly different goals, and thereby promote migratory connectivity. This is an important link between individual migration strategies in association with an ecological barrier, and both spatially and demographic population patterns.


Asunto(s)
Migración Animal , Viento , África del Norte , Animales , Aves , Inglaterra , Mar Mediterráneo , Estaciones del Año , Suecia
3.
Sci Total Environ ; 900: 165760, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37506901

RESUMEN

Artificial light at night significantly alters the predictability of the natural light cycles that most animals use as an essential Zeitgeber for daily activity. Direct light has well-documented local impacts on activity patterns of diurnal and nocturnal organisms. However, artificial light at night also contributes to an indirect illumination of the night sky, called skyglow, which is rapidly increasing. The consequences of this wide-spread form of artificial night light on the behaviour of animals remain poorly understood, with only a few studies performed under controlled (laboratory) conditions. Using animal-borne activity loggers, we investigated daily and seasonal flight activity of a free-living crepuscular bird species in response to nocturnal light conditions at sites differing dramatically in exposure to skyglow. We find that flight activity of European Nightjars (Caprimulgus europaeus) during moonless periods of the night is four times higher in Belgium (high skyglow exposure) than in sub-tropical Africa and two times higher than in Mongolia (near-pristine skies). Moreover, clouds darken the sky under natural conditions, but skyglow can strongly increase local sky brightness on overcast nights. As a result, we find that nightjars' response to cloud cover is reversed between Belgium and sub-tropical Africa and between Belgium and Mongolia. This supports the hypothesis that cloudy nights reduce individual flight activity in a pristine environment, but increase it when the sky is artificially lit. Our study shows that in the absence of direct light pollution, anthropogenic changes in sky brightness relieve nightjars from visual constraints on being active. Individuals adapt daily activities to artificial night-sky brightness, allowing them more time to fly than conspecifics living under natural light cycles. This modification of the nocturnal timescape likely affects behavioural processes of most crepuscular and nocturnal species, but its implications for population dynamics and interspecific interactions remain to be investigated.


Asunto(s)
Contaminación Lumínica , Estrigiformes , Animales , Iluminación , Fotoperiodo , Bélgica , Luz
4.
Ecol Evol ; 12(1): e8446, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127007

RESUMEN

To acquire a fundamental understanding of animal communication, continuous observations in a natural setting and at an individual level are required. Whereas the use of animal-borne acoustic recorders in vocal studies remains challenging, light-weight accelerometers can potentially register individuals' vocal output when this coincides with body vibrations. We collected one-dimensional accelerometer data using light-weight tags on a free-living, crepuscular bird species, the European Nightjar (Caprimulgus europaeus). We developed a classification model to identify four behaviors (rest, sing, fly, and leap) from accelerometer data and, for the purpose of this study, validated the classification of song behavior. Male nightjars produce a distinctive "churring" song while they rest on a stationary song post. We expected churring to be associated with body vibrations (i.e., medium-amplitude body acceleration), which we assumed would be easy to distinguish from resting (i.e., low-amplitude body acceleration). We validated the classification of song behavior using simultaneous GPS tracking data (i.e., information on individuals' movement and proximity to audio recorders) and vocal recordings from stationary audio recorders at known song posts of one tracked individual. Song activity was detected by the classification model with an accuracy of 92%. Beyond a threshold of 20 m from the audio recorders, only 8% of the classified song bouts were recorded. The duration of the detected song activity (i.e., acceleration data) was highly correlated with the duration of the simultaneously recorded song bouts (correlation coefficient = 0.87, N = 10, S = 21.7, p = .001). We show that accelerometer-based identification of vocalizations could serve as a promising tool to study communication in free-living, small-sized birds and demonstrate possible limitations of audio recorders to investigate individual-based variation in song behavior.

5.
Sci Rep ; 12(1): 4964, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322145

RESUMEN

During their annual migration, avian migrants alternate stopover periods, for refuelling, with migratory flight bouts. We hypothesise that European Nightjars (Caprimulgus europaeus) adapt their daily migration tactics in association with biomes. We tracked the autumn migration of 24 European Nightjars, from breeding populations in Mongolia, Belgium and UK, using GPS-loggers and multi-sensor data loggers. We quantified crepuscular and nocturnal migration and foraging probabilities, as well as daily travel speed and flight altitude during active migration in response to biomes. Nightjars adopt a rush tactic, reflected in high daily travel speed, flight altitude and high migration probabilities at dusk and at night, when travelling through ecological barriers. Migration is slower in semi-open, hospitable biomes. This is reflected in high foraging probabilities at dusk, lower daily travel speed and lower migration probabilities at dusk. Our study shows how nightjars switch migration tactics during autumn migration, and suggest nightjars alternate between feeding and short migratory flight bouts within the same night when travelling through suitable habitats. How this may affect individuals' fuel stores and whether different biomes provide refuelling opportunities en route remains to be investigated, to understand how future land-use change may affect migration patterns and survival probabilities.


Asunto(s)
Migración Animal , Estrigiformes , Altitud , Migración Animal/fisiología , Animales , Ecosistema , Eulipotyphla , Humanos , Estaciones del Año
6.
Ecol Evol ; 10(23): 13044-13056, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304515

RESUMEN

Given the global decline of many invertebrate food resources, it is fundamental to understand the dietary requirements of insectivores. We give new insights into the functional relationship between the spatial habitat use, food availability, and diet of a crepuscular aerial insectivore, the European Nightjar (Caprimulgus europaeus) by relating spatial use data with high-throughput sequencing (HTS) combined with DNA metabarcoding. Our study supports the predictions that nightjars collect a substantial part of their daily nourishment from foraging locations, sometimes at considerable distance from nesting sites. Lepidopterans comprise 65% of nightjars' food source. Nightjars tend to select larger species of Lepidoptera (>19 mm) which suggests that nightjars optimize the efficiency of foraging trips by selecting the most energetically favorable-larger-prey items. We anticipate that our findings may shed additional light on the interactions between invertebrate communities and higher trophic levels, which is required to understand the repercussions of changing food resources on individual- and population-level processes.

7.
Ecol Evol ; 10(14): 7106-7116, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32760515

RESUMEN

Biological rhythms of nearly all animals on earth are synchronized with natural light and are aligned to day-and-night transitions. Here, we test the hypothesis that the lunar cycle affects the nocturnal flight activity of European Nightjars (Caprimulgus europaeus). We describe daily activity patterns of individuals from three different countries across a wide geographic area, during two discrete periods in the annual cycle. Although the sample size for two of our study sites is small, the results are clear in that on average individual flight activity was strongly correlated with both local variation in day length and with the lunar cycle. We highlight the species' sensitivity to changes in ambient light and its flexibility to respond to such changes in different parts of the world.

8.
Sci Rep ; 8(1): 3008, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445120

RESUMEN

When complementary resources are required for an optimal life cycle, most animals need to move between different habitats. However, the level of connectivity between resources can vary and, hence, influence individuals' behaviour. We show that landscape composition and configuration affect the connectivity between breeding (heathlands) and foraging habitats (extensively-grazed grasslands) of the European Nightjar (Caprimulgus europaeus), a crepuscular insectivorous bird. On a daily basis, nightjars connect breeding and foraging sites by rapidly crossing unsuitable habitats in order to exploit a higher prey biomass in foraging sites. However, low availability of foraging habitat near breeding sites and clustered landscapes greatly increase foraging distance. Birds occupying these sub-optimal breeding areas compensate for longer travels by increasing foraging duration, and their physiology shows increased stress levels. All findings suggest that landscape heterogeneity can affect population dynamics of nightjars. Therefore, we recommend an integrated management approach for this EU-protected bird species.


Asunto(s)
Aves/fisiología , Conducta Alimentaria/fisiología , Reproducción/fisiología , Animales , Relojes Biológicos , Biomasa , Ecosistema , Bosques , Insectos , Estadios del Ciclo de Vida , Dinámica Poblacional , Estrés Fisiológico , Urbanización
9.
Sci Rep ; 8(1): 9671, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29921913

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA