Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34233164

RESUMEN

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Germinación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Priones/metabolismo , Semillas/crecimiento & desarrollo , Agua/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestructura , Deshidratación , Imagenología Tridimensional , Péptidos y Proteínas de Señalización Intercelular/química , Mutación/genética , Latencia en las Plantas , Plantas Modificadas Genéticamente , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Semillas/ultraestructura
2.
Mol Cell ; 83(23): 4386-4397.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37995686

RESUMEN

The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ancirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Canales Iónicos/genética , Canales Iónicos/metabolismo , Inmunidad de la Planta/genética
3.
Nature ; 602(7895): 101-105, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35022609

RESUMEN

Since the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences1. Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome-mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.


Asunto(s)
Arabidopsis/genética , Evolución Molecular , Modelos Genéticos , Mutagénesis , Mutación , Selección Genética/genética , Epigenoma/genética , Epigenómica , Frecuencia de los Genes , Genes Esenciales/genética , Genes de Plantas/genética , Genoma de Planta/genética , Tasa de Mutación , Polimorfismo Genético/genética
4.
Trends Genet ; 40(3): 213-227, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38320882

RESUMEN

Mass coral bleaching is one of the clearest threats of climate change to the persistence of marine biodiversity. Despite the negative impacts of bleaching on coral health and survival, some corals may be able to rapidly adapt to warming ocean temperatures. Thus, a significant focus in coral research is identifying the genes and pathways underlying coral heat adaptation. Here, we review state-of-the-art methods that may enable the discovery of heat-adaptive loci in corals and identify four main knowledge gaps. To fill these gaps, we describe an experimental approach combining seascape genomics with CRISPR/Cas9 gene editing to discover and validate heat-adaptive loci. Finally, we discuss how information on adaptive genotypes could be used in coral reef conservation and management strategies.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Arrecifes de Coral , Temperatura , Genotipo , Cambio Climático
5.
Nature ; 573(7772): 126-129, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31462776

RESUMEN

Through the lens of evolution, climate change is an agent of natural selection that forces populations to change and adapt, or face extinction. However, current assessments of the risk of biodiversity associated with climate change1 do not typically take into account how natural selection influences populations differently depending on their genetic makeup2. Here we make use of the extensive genome information that is available for Arabidopsis thaliana and measure how manipulation of the amount of rainfall affected the fitness of 517 natural Arabidopsis lines that were grown in Spain and Germany. This allowed us to directly infer selection along the genome3. Natural selection was particularly strong in the hot-dry location in Spain, where 63% of lines were killed and where natural selection substantially changed the frequency of approximately 5% of all genome-wide variants. A significant portion of this climate-driven natural selection of variants was predictable from signatures of local adaptation (R2 = 29-52%), as genetic variants that were found in geographical areas with climates more similar to the experimental sites were positively selected. Field-validated predictions across the species range indicated that Mediterranean and western Siberian populations-at the edges of the environmental limits of this species-currently experience the strongest climate-driven selection. With more frequent droughts and rising temperatures in Europe4, we forecast an increase in directional natural selection moving northwards from the southern end of Europe, putting many native A. thaliana populations at evolutionary risk.


Asunto(s)
Aclimatación/genética , Arabidopsis/genética , Cambio Climático/estadística & datos numéricos , Genoma de Planta/genética , Selección Genética , Arabidopsis/crecimiento & desarrollo , Sequías/estadística & datos numéricos , Aptitud Genética , Mapeo Geográfico , Alemania , Calentamiento Global/estadística & datos numéricos , Polimorfismo de Nucleótido Simple/genética , Lluvia , Reproducibilidad de los Resultados , Siberia , España
6.
Nature ; 574(7778): E16, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31570884

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Bioinformatics ; 38(20): 4809-4811, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36053180

RESUMEN

SUMMARY: We developed grenepipe, an all-in-one Snakemake workflow to streamline the data processing from raw high-throughput sequencing data of individuals or populations to genotype variant calls. Our pipeline offers a range of popular software tools within a single configuration file, automatically installs software dependencies, is highly optimized for scalability in cluster environments and runs with a single command. AVAILABILITY AND IMPLEMENTATION: grenepipe is published under the GPLv3 and freely available at github.com/moiexpositoalonsolab/grenepipe.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Genotipo , Humanos , Flujo de Trabajo
10.
New Phytol ; 238(6): 2313-2328, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36856334

RESUMEN

Spatiotemporal patterns of phenology may be affected by mosaics of environmental and genetic variation. Environmental drivers may have temporally lagged impacts, but patterns and mechanisms remain poorly known. We combine multiple genomic, remotely sensed, and physically modeled datasets to determine the spatiotemporal patterns and drivers of canopy phenology in quaking aspen, a widespread clonal dioecious tree species with diploid and triploid cytotypes. We show that over 391 km2 of southwestern Colorado: greenup date, greendown date, and growing season length vary by weeks and differ across sexes, cytotypes, and genotypes; phenology has high phenotypic plasticity and heritabilities of 31-61% (interquartile range); and snowmelt date, soil moisture, and air temperature predict phenology, at temporal lags of up to 3 yr. Our study shows that lagged environmental effects are needed to explain phenological variation and that the effect of cytotype on phenology is obscured by its correlation with topography. Phenological patterns are consistent with responses to multiyear accumulation of carbon deficit or hydraulic damage.


Asunto(s)
Populus , Populus/genética , Clima , Estaciones del Año , Árboles/genética , Carbono , Temperatura , Cambio Climático
11.
Ann Bot ; 129(3): 343-356, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-34918027

RESUMEN

BACKGROUND AND AIMS: Determining within-species large-scale variation in phenotypic traits is central to elucidate the drivers of species' ranges. Intraspecific comparisons offer the opportunity to understand how trade-offs and biogeographical history constrain adaptation to contrasted environmental conditions. Here we test whether functional traits, ecological strategies from the CSR scheme and phenotypic plasticity in response to abiotic stress vary along a latitudinal or a center- margins gradient within the native range of Arabidopsis thaliana. METHODS: We experimentally examined the phenotypic outcomes of plant adaptation at the center and margins of its geographic range using 30 accessions from southern, central and northern Europe. We characterized the variation of traits related to stress tolerance, resource use, colonization ability, CSR strategy scores, survival and fecundity in response to high temperature (34 °C) or frost (- 6 °C), combined with a water deficit treatment. KEY RESULTS: We found evidence for both a latitudinal and a center-margins differentiation for the traits under scrutiny. Age at maturity, leaf dry matter content, specific leaf area and leaf nitrogen content varied along a latitudinal gradient. Northern accessions presented a greater survival to stress than central and southern accessions. Leaf area, C-scores, R-scores and fruit number followed a center-margins differentiation. Central accessions displayed a higher phenotypic plasticity than northern and southern accessions for most studied traits. CONCLUSIONS: Traits related to an acquisitive/conservative resource-use trade-off followed a latitudinal gradient. Traits associated with a competition/colonization trade-off differentiated along the historic colonization of the distribution range and then followed a center-margins differentiation. Our findings pinpoint the need to consider the joint effect of evolutionary history and environmental factors when examining phenotypic variation across the distribution range of a species.


Asunto(s)
Arabidopsis , Aclimatación , Adaptación Fisiológica , Arabidopsis/genética , Nitrógeno , Fenotipo
12.
Plant J ; 102(2): 222-229, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31788877

RESUMEN

Sequencing them all. That is the ambitious goal of the recently launched Earth BioGenome project (Proceedings of the National Academy of Sciences of the United States of America, 115, 4325-4333), which aims to produce reference genomes for all eukaryotic species within the next decade. In this perspective, we discuss the opportunities of this project with a plant focus, but highlight also potential limitations. This includes the question of how to best capture all plant diversity, as the green taxon is one of the most complex clades in the tree of life, with over 300 000 species. For this, we highlight four key points: (i) the unique biological insights that could be gained from studying plants, (ii) their apparent underrepresentation in sequencing efforts given the number of threatened species, (iii) the necessity of phylogenomic methods that are aware of differences in genome complexity and quality, and (iv) the accounting for within-species genetic diversity and the historical aspect of conservation genetics.


Asunto(s)
Conservación de los Recursos Naturales , Variación Genética , Genoma de Planta/genética , Genómica , Plantas/genética , Planeta Tierra , Filogenia
13.
Proc Natl Acad Sci U S A ; 115(13): 3416-3421, 2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29540570

RESUMEN

Seed plants vary tremendously in size and morphology; however, variation and covariation in plant traits may be governed, at least in part, by universal biophysical laws and biological constants. Metabolic scaling theory (MST) posits that whole-organismal metabolism and growth rate are under stabilizing selection that minimizes the scaling of hydrodynamic resistance and maximizes the scaling of resource uptake. This constrains variation in physiological traits and in the rate of biomass accumulation, so that they can be expressed as mathematical functions of plant size with near-constant allometric scaling exponents across species. However, the observed variation in scaling exponents calls into question the evolutionary drivers and the universality of allometric equations. We have measured growth scaling and fitness traits of 451 Arabidopsis thaliana accessions with sequenced genomes. Variation among accessions around the scaling exponent predicted by MST was correlated with relative growth rate, seed production, and stress resistance. Genomic analyses indicate that growth allometry is affected by many genes associated with local climate and abiotic stress response. The gene with the strongest effect, PUB4, has molecular signatures of balancing selection, suggesting that intraspecific variation in growth scaling is maintained by opposing selection on the trade-off between seed production and abiotic stress resistance. Our findings suggest that variation in allometry contributes to local adaptation to contrasting environments. Our results help reconcile past debates on the origin of allometric scaling in biology and begin to link adaptive variation in allometric scaling to specific genes.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Evolución Biológica , Cambio Climático , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Modelos Teóricos
14.
PLoS Genet ; 14(2): e1007155, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29432421

RESUMEN

By following the evolution of populations that are initially genetically homogeneous, much can be learned about core biological principles. For example, it allows for detailed studies of the rate of emergence of de novo mutations and their change in frequency due to drift and selection. Unfortunately, in multicellular organisms with generation times of months or years, it is difficult to set up and carry out such experiments over many generations. An alternative is provided by "natural evolution experiments" that started from colonizations or invasions of new habitats by selfing lineages. With limited or missing gene flow from other lineages, new mutations and their effects can be easily detected. North America has been colonized in historic times by the plant Arabidopsis thaliana, and although multiple intercrossing lineages are found today, many of the individuals belong to a single lineage, HPG1. To determine in this lineage the rate of substitutions-the subset of mutations that survived natural selection and drift-, we have sequenced genomes from plants collected between 1863 and 2006. We identified 73 modern and 27 herbarium specimens that belonged to HPG1. Using the estimated substitution rate, we infer that the last common HPG1 ancestor lived in the early 17th century, when it was most likely introduced by chance from Europe. Mutations in coding regions are depleted in frequency compared to those in other portions of the genome, consistent with purifying selection. Nevertheless, a handful of mutations is found at high frequency in present-day populations. We link these to detectable phenotypic variance in traits of known ecological importance, life history and growth, which could reflect their adaptive value. Our work showcases how, by applying genomics methods to a combination of modern and historic samples from colonizing lineages, we can directly study new mutations and their potential evolutionary relevance.


Asunto(s)
Genoma de Planta , Tasa de Mutación , Mutación/fisiología , Desarrollo de la Planta/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Cruzamientos Genéticos , Evolución Molecular Dirigida , Evolución Molecular , Flujo Génico/fisiología , Especies Introducidas , Fenotipo , Filogenia , Malezas/genética , Malezas/crecimiento & desarrollo , Selección Genética , Análisis de Secuencia de ADN
16.
Nat Commun ; 15(1): 5185, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890286

RESUMEN

Plant diversity is shaped by trade-offs between traits related to competitive ability, propagule dispersal, and stress resistance. However, we still lack a clear understanding of how these trade-offs influence species distribution and population dynamics. In Arabidopsis thaliana, recent genetic analyses revealed a group of cosmopolitan genotypes that successfully recolonized Europe from its center after the last glaciation, excluding older (relict) lineages from the distribution except for their north and south margins. Here, we tested the hypothesis that cosmopolitans expanded due to higher colonization ability, while relicts persisted at the margins due to higher tolerance to competition and/or stress. We compared the phenotypic and genetic differentiation between 71 European genotypes originating from the center, and the south and north margins. We showed that a trade-off between plant fecundity and seed mass shapes the differentiation of A. thaliana in Europe, suggesting that the success of the cosmopolitan groups could be explained by their high dispersal ability. However, at both north and south margins, we found evidence of selection for alleles conferring low dispersal but highly competitive and stress-resistance abilities. This study sheds light on the role of ecological trade-offs as evolutionary drivers of the distribution and dynamics of plant populations.


Asunto(s)
Arabidopsis , Fenotipo , Arabidopsis/genética , Europa (Continente) , Genotipo , Variación Genética , Dinámica Poblacional , Semillas/genética , Fertilidad/genética , Alelos
17.
Elife ; 112022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36047575

RESUMEN

The plant kingdom contains a stunning array of complex morphologies easily observed above-ground, but more challenging to visualize below-ground. Understanding the magnitude of diversity in root distribution within the soil, termed root system architecture (RSA), is fundamental in determining how this trait contributes to species adaptation in local environments. Roots are the interface between the soil environment and the shoot system and therefore play a key role in anchorage, resource uptake, and stress resilience. Previously, we presented the GLO-Roots (Growth and Luminescence Observatory for Roots) system to study the RSA of soil-grown Arabidopsis thaliana plants from germination to maturity (Rellán-Álvarez et al., 2015). In this study, we present the automation of GLO-Roots using robotics and the development of image analysis pipelines in order to examine the temporal dynamic regulation of RSA and the broader natural variation of RSA in Arabidopsis, over time. These datasets describe the developmental dynamics of two independent panels of accessions and reveal highly complex and polygenic RSA traits that show significant correlation with climate variables of the accessions' respective origins.


Asunto(s)
Arabidopsis , Raíces de Plantas , Arabidopsis/fisiología , Fenómica , Fenotipo , Suelo
18.
Science ; 377(6613): 1431-1435, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36137047

RESUMEN

Anthropogenic habitat loss and climate change are reducing species' geographic ranges, increasing extinction risk and losses of species' genetic diversity. Although preserving genetic diversity is key to maintaining species' adaptability, we lack predictive tools and global estimates of genetic diversity loss across ecosystems. We introduce a mathematical framework that bridges biodiversity theory and population genetics to understand the loss of naturally occurring DNA mutations with decreasing habitat. By analyzing genomic variation of 10,095 georeferenced individuals from 20 plant and animal species, we show that genome-wide diversity follows a mutations-area relationship power law with geographic area, which can predict genetic diversity loss from local population extinctions. We estimate that more than 10% of genetic diversity may already be lost for many threatened and nonthreatened species, surpassing the United Nations' post-2020 targets for genetic preservation.


Asunto(s)
Efectos Antropogénicos , Cambio Climático , Extinción Biológica , Variación Genética , Animales , Biodiversidad
19.
Evol Appl ; 14(5): 1202-1212, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025760

RESUMEN

In nature conservation, there is keen interest in predicting how populations will respond to environmental changes such as climate change. These predictions can help determine whether a population can be self-sustaining under future alterations of its habitat or whether it may require human intervention such as protection, restoration, or assisted migration. An increasingly popular approach in this respect is the concept of genomic offset, which combines genomic and environmental data from different time points and/or locations to assess the degree of possible maladaptation to new environmental conditions. Here, we argue that the concept of genomic offset holds great potential, but an exploration of its risks and limitations is needed to use it for recommendations in conservation or assisted migration. After briefly describing the concept, we list important issues to consider (e.g., statistical frameworks, population genetic structure, migration, independent evidence) when using genomic offset or developing these methods further. We conclude that genomic offset is an area of development that still lacks some important features and should be used in combination with other approaches to inform conservation measures.

20.
Elife ; 102021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34402424

RESUMEN

The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.


Asunto(s)
Adaptación Fisiológica , Aedes/fisiología , Cambio Climático , Mosquitos Vectores/fisiología , Temperatura , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Aedes/crecimiento & desarrollo , Aedes/virología , Animales , Dengue/transmisión , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA