Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Planta ; 258(1): 10, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37269337

RESUMEN

MAIN CONCLUSION: A multi-year study of perennial Z. dumosum shows a consistent seasonal pattern in the changes of petiole metabolism, involving mainly organic acids, polyols, phenylpropanoids, sulfate conjugates, and piperazines. GC-MS and UPLC-QTOF-MS-based metabolite profiling was performed on the petioles of the perennial desert shrub Zygophyllum dumosum Boiss (Zygophyllaceae). The petioles, which are physiologically functional throughout the year and, thus, exposed to seasonal rhythms, were collected every month for 3 years from their natural ecosystem on a southeast-facing slope. Results showed a clear multi-year pattern following seasonal successions, despite different climate conditions, i.e., rainy and drought years, throughout the research period. The metabolic pattern of change encompassed an increase in the central metabolites, including most polyols, e.g., stress-related D-pinitol, organic and sugar acids, and in the dominant specialized metabolites, which were tentatively identified as sulfate, flavonoid, and piperazine conjugates during the summer-autumn period, while significantly high levels of free amino acids were detected during the winter-spring period. In parallel, the levels of most sugars (including glucose and fructose) increased in the petioles at the flowering stage at the beginning of the spring, while most of the di- and tri-saccharides accumulated at the beginning of seed development (May-June). Analysis of the conserved seasonal metabolite pattern of change shows that metabolic events are mostly related to the stage of plant development and its interaction with the environment and less to environmental conditions per se.


Asunto(s)
Ecosistema , Zygophyllum , Estaciones del Año , Metaboloma , Cromatografía de Gases y Espectrometría de Masas , Metabolómica/métodos
2.
Plant J ; 94(1): 169-191, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29385635

RESUMEN

Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and in vitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of > 12 000 eQTL mapped for > 8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs.


Asunto(s)
Mapeo Cromosómico , Cucurbitaceae/genética , Frutas/genética , Sitios de Carácter Cuantitativo/genética , Cucurbitaceae/metabolismo , Calidad de los Alimentos , Frutas/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiología , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ARN
3.
BMC Plant Biol ; 19(1): 69, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30744556

RESUMEN

BACKGROUND: Grape leaves provide the biochemical substrates for berry development. Thus, understanding the regulation of grapevine leaf metabolism can aid in discerning processes fundamental to fruit development and berry quality. Here, the temporal alterations in leaf metabolism in Merlot grapevine grown under sufficient irrigation and water deficit were monitored from veraison until harvest. RESULTS: The vines mediated water stress gradually and involving multiple strategies: osmotic adjustment, transcript-metabolite alteration and leaf shedding. Initially stomatal conductance and leaf water potential showed a steep decrease together with the induction of stress related metabolism, e.g. up-regulation of proline and GABA metabolism and stress related sugars, and the down-regulation of developmental processes. Later, progressive soil drying was associated with an incremental contribution of Ca2+ and sucrose to the osmotic adjustment concomitant with the initiation of leaf shedding. Last, towards harvest under progressive stress conditions following leaf shedding, incremental changes in leaf water potential were measured, while the magnitude of perturbation in leaf metabolism lessened. CONCLUSIONS: The data present evidence that over time grapevine acclimation to water stress diversifies in temporal responses encompassing the alteration of central metabolism and gene expression, osmotic adjustments and reduction in leaf area. Together these processes mitigate leaf water stress and aid in maintaining the berry-ripening program.


Asunto(s)
Hojas de la Planta/metabolismo , Vitis/metabolismo , Frutas/metabolismo , Ósmosis , Prolina/metabolismo , Agua/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
Plant Cell Environ ; 42(6): 1897-1912, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30673142

RESUMEN

Solar irradiance and air temperature are characterized by dramatic circadian fluctuations and are known to significantly modulate fruit composition. To date, it remains unclear whether the abrupt, yet predictive, diurnal changes in radiation and temperature prompt direct metabolic turn-over in the fruit. We assessed the role of fruit insolation, air temperature, and source-tissue CO2 assimilation in the diurnal compositional changes in ripening grape berries. This was performed by comparing the diurnal changes in metabolite profiles of berries positioned such that they experienced (a) contrasting diurnal solar irradiance patterns, and (b) similar irradiance but contrasting diurnal CO2 assimilation patterns of adjacent leaves. Grape carbon levels increased during the morning and decreased thereafter. Sucrose levels decreased throughout the day and were correlated with air temperature, but not with the diurnal pattern of leaf CO2 assimilation. Tight correlation between sucrose and glucose-6-phosphate indicated the involvement of photorespiration/glycolysis in sucrose depletion. Amino acids, polyamines, and phenylpropanoids fluctuated diurnally, and were highly responsive to the diurnal insolation pattern of the fruit. Our results fill the knowledge gap regarding the circadian pattern of source-sink assimilate-translocation in grapevine. In addition, they suggest that short-term direct solar exposure of the fruit impacts both its diurnal and nocturnal metabolism.


Asunto(s)
Frutas/anatomía & histología , Frutas/metabolismo , Metaboloma , Vitis/metabolismo , Aminoácidos/metabolismo , Carbono/metabolismo , Dióxido de Carbono , Israel , Hojas de la Planta/metabolismo , Sacarosa/metabolismo , Temperatura
5.
Plant Physiol ; 173(1): 872-886, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27872244

RESUMEN

Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly impact a seed's nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways (approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants.


Asunto(s)
Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Aminoácidos/genética , Aminoácidos de Cadena Ramificada/genética , Aminoácidos de Cadena Ramificada/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Haplotipos , Redes y Vías Metabólicas/genética , Polimorfismo de Nucleótido Simple , Semillas/genética , Semillas/metabolismo
6.
BMC Plant Biol ; 17(1): 94, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28558655

RESUMEN

BACKGROUND: Wine grapes are important economically in many countries around the world. Defining the optimum time for grape harvest is a major challenge to the grower and winemaker. Berry skins are an important source of flavor, color and other quality traits in the ripening stage. Senescent-like processes such as chloroplast disorganization and cell death characterize the late ripening stage. RESULTS: To better understand the molecular and physiological processes involved in the late stages of berry ripening, RNA-seq analysis of the skins of seven wine grape cultivars (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay, Sauvignon Blanc and Semillon) was performed. RNA-seq analysis identified approximately 2000 common differentially expressed genes for all seven cultivars across four different berry sugar levels (20 to 26 °Brix). Network analyses, both a posteriori (standard) and a priori (gene co-expression network analysis), were used to elucidate transcriptional subnetworks and hub genes associated with traits in the berry skins of the late stages of berry ripening. These independent approaches revealed genes involved in photosynthesis, catabolism, and nucleotide metabolism. The transcript abundance of most photosynthetic genes declined with increasing sugar levels in the berries. The transcript abundance of other processes increased such as nucleic acid metabolism, chromosome organization and lipid catabolism. Weighted gene co-expression network analysis (WGCNA) identified 64 gene modules that were organized into 12 subnetworks of three modules or more and six higher order gene subnetworks. Some gene subnetworks were highly correlated with sugar levels and some subnetworks were highly enriched in the chloroplast and nucleus. The petal R package was utilized independently to construct a true small-world and scale-free complex gene co-expression network model. A subnetwork of 216 genes with the highest connectivity was elucidated, consistent with the module results from WGCNA. Hub genes in these subnetworks were identified including numerous members of the core circadian clock, RNA splicing, proteolysis and chromosome organization. An integrated model was constructed linking light sensing with alternative splicing, chromosome remodeling and the circadian clock. CONCLUSIONS: A common set of differentially expressed genes and gene subnetworks from seven different cultivars were examined in the skin of the late stages of grapevine berry ripening. A densely connected gene subnetwork was elucidated involving a complex interaction of berry senescent processes (autophagy), catabolism, the circadian clock, RNA splicing, proteolysis and epigenetic regulation. Hypotheses were induced from these data sets involving sugar accumulation, light, autophagy, epigenetic regulation, and fruit development. This work provides a better understanding of berry development and the transcriptional processes involved in the late stages of ripening.


Asunto(s)
Frutas/metabolismo , Redes Reguladoras de Genes , Vitis/metabolismo , Relojes Circadianos , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Genes de Plantas , Vitis/crecimiento & desarrollo
7.
Planta ; 245(6): 1091-1104, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28214919

RESUMEN

MAIN CONCLUSION: Drought-acclimated vines maintained higher gas exchange compared to irrigated controls under water deficit; this effect is associated with modified leaf turgor but not with improved petiole vulnerability to cavitation. A key feature for the prosperity of plants under changing environments is the plasticity of their hydraulic system. In the present research we studied the hydraulic regulation in grapevines (Vitis vinifera L.) that were first acclimated for 39 days to well-watered (WW), sustained water deficit (SD), or transient-cycles of dehydration-rehydration-water deficit (TD) conditions, and then subjected to varying degrees of drought. Vine development under SD led to the smallest leaves and petioles, but the TD vines had the smallest mean xylem vessel and calculated specific conductivity (k ts). Unexpectedly, both the water deficit acclimation treatments resulted in vines more vulnerable to cavitation in comparison to WW, possibly as a result of developmental differences or cavitation fatigue. When exposed to drought, the SD vines maintained the highest stomatal (g s) and leaf conductance (k leaf) under low stem water potential (Ψs), despite their high xylem vulnerability and in agreement with their lower turgor loss point (ΨTLP). These findings suggest that the down-regulation of k leaf and g s is not associated with embolism, and the ability of drought-acclimated vines to maintain hydraulic conductance and gas exchange under stressed conditions is more likely associated with the leaf turgor and membrane permeability.


Asunto(s)
Vitis/metabolismo , Agua/metabolismo , Sequías , Ósmosis/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Transpiración de Plantas/genética , Transpiración de Plantas/fisiología , Vitis/genética , Xilema/genética , Xilema/metabolismo
8.
Physiol Plant ; 161(2): 196-210, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28444904

RESUMEN

Two bell pepper (Capsicum annuum) cultivars, differing in their response to chilling, were exposed to three levels of root-zone temperatures. Gas exchange, shoot and root phenology, and the pattern of change of the central metabolites and secondary metabolites caffeate and benzoate in the leaves and roots were profiled. Low root-zone temperature significantly inhibited gaseous exchange, with a greater effect on the sensitive commercial pepper hybrid (Canon) than on the new hybrid bred to enhance abiotic stress tolerance (S103). The latter was less affected by the treatment with respect to plant height, shoot dry mass, root maximum length, root projected area, number of root tips and root dry mass. More carbon was allocated to the leaves of S103 than nitrogen at 17°C, while in the roots at 17°C, more nitrogen was allocated and the ratio between C/N decreased. Metabolite profiling showed greater increase in the root than in the leaves. Leaf response between the two cultivars differed significantly. The roots accumulated stress-related metabolites including γ-aminobutyric acid (GABA), proline, galactinol and raffinose and at chilling (7°C) resulted in an increase of sugars in both cultivars. Our results suggest that the enhanced tolerance of S103 to root cold stress, reflected in the relative maintenance of shoot and root growth, is likely linked to a more effective regulation of photosynthesis facilitated by the induction of stress-related metabolism.


Asunto(s)
Aclimatación , Capsicum/metabolismo , Frío , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Capsicum/crecimiento & desarrollo , Carbono/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Estrés Fisiológico
9.
Plant J ; 81(1): 121-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25359542

RESUMEN

Correlation-based network analysis (CNA) of the metabolic profiles of seeds of a tomato introgression line mapping population revealed a clique of proteinogenic amino acids: Gly, Ile, Pro, Ser, Thr, and Val. Correlations between profiles of these amino acids exhibited a statistically significant average correlation coefficient of 0.84 as compared with an average correlation coefficient of 0.39 over the 16 119 other metabolite cliques containing six metabolites. In silico removal of cliques was used to quantify their importance in determining seminal network properties, highlighting the strong effects of the amino acid clique. Quantitative trait locus analysis revealed co-localization for the six amino acids on chromosome 2, 4 and 10. Sequence analysis identified a unique set of 10 genes on chromosome 2 only, which were associated with amino acid metabolism and specifically the metabolism of Ser-Gly and their conversion into branched-chain amino acids. Metabolite profiling of a set of sublines, with introgressions on chromosome 2, identified a significant change in the abundance of the six amino acids in comparison with M82. Expression analysis of candidate genes affecting Ser metabolism matched the observation from the metabolite data, suggesting a coordinated behavior of the level of these amino acids at the genetic level. Analysis of transcription factor binding sites in the promoter regions of the identified genes suggested combinatorial response to light and the circadian clock.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Prolina/metabolismo , Serina/metabolismo , Solanum lycopersicum/metabolismo , Treonina/metabolismo , Cromosomas de las Plantas , Relojes Circadianos , Simulación por Computador , ADN de Plantas/química , Regulación de la Expresión Génica de las Plantas , Luz , Solanum lycopersicum/genética , Redes y Vías Metabólicas , Metabolómica , Prolina Oxidasa/química , Prolina Oxidasa/genética , Prolina Oxidasa/metabolismo , Sitios de Carácter Cuantitativo , Semillas/genética , Semillas/metabolismo , Análisis de Secuencia de ADN
10.
BMC Genomics ; 17(1): 1047, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27993127

RESUMEN

BACKGROUND: The metabolite content of a seed and its ability to germinate are determined by genetic makeup and environmental effects during development. The interaction between genetics, environment and seed metabolism and germination was studied in 72 tomato homozygous introgression lines (IL) derived from Solanum pennelli and S. esculentum M82 cultivar. Plants were grown in the field under saline and fresh water irrigation during two consecutive seasons, and collected seeds were subjected to morphological analysis, gas chromatograph-mass spectrometry (GC-MS) metabolic profiling and germination tests. RESULTS: Seed weight was under tight genetic regulation, but it was not related to germination vigor. Salinity significantly reduced seed number but had little influence on seed metabolites, affecting only 1% of the statistical comparisons. The metabolites negatively correlated to germination were simple sugars and most amino acids, while positive correlations were found for several organic acids and the N metabolites urea and dopamine. Germination tests identified putative loci for improved germination as compared to M82 and in response to salinity, which were also characterized by defined metabolic changes in the seed. CONCLUSIONS: An integrative analysis of the metabolite and germination data revealed metabolite levels unambiguously associated with germination percentage and rate, mostly conserved in the different tested seed development environments. Such consistent relations suggest the potential for developing a method of germination vigor prediction by metabolic profiling, as well as add to our understanding of the importance of primary metabolic processes in germination.


Asunto(s)
Metabolismo Energético , Ambiente , Interacción Gen-Ambiente , Germinación/genética , Semillas/genética , Semillas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Estudios de Asociación Genética , Genética de Población , Fenotipo , Carácter Cuantitativo Heredable , Salinidad
11.
Plant Cell Physiol ; 57(3): 473-87, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26738545

RESUMEN

Seed performance is affected by the seed maturation environment, and previously we have shown that temperature, nitrate and light intensity were the most influential environmental factors affecting seed performance. Seeds developed in these environments were selected to assess the underlying metabolic pathways, using a combination of transcriptomics and metabolomics. These analyses revealed that the effects of the parental temperature and nitrate environments were reflected by partly overlapping genetic and metabolic networks, as indicated by similar changes in the expression levels of metabolites and transcripts. Nitrogen metabolism-related metabolites (asparagine, γ-aminobutyric acid and allantoin) were significantly decreased in both low temperature (15 °C) and low nitrate (N0) maturation environments. Correspondingly, nitrogen metabolism genes (ALLANTOINASE, NITRATE REDUCTASE 1, NITRITE REDUCTASE 1 and NITRILASE 4) were differentially regulated in the low temperature and nitrate maturation environments, as compared with control conditions. High light intensity during seed maturation increased galactinol content, and displayed a high correlation with seed longevity. Low light had a genotype-specific effect on cell surface-encoding genes in the DELAY OF GERMINATION 6-near isogenic line (NILDOG6). Overall, the integration of phenotypes, metabolites and transcripts led to new insights into the regulation of seed performance.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Nitratos/farmacología , Semillas/genética , Semillas/fisiología , Temperatura , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Desecación , Ambiente , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Luz , Redes y Vías Metabólicas/efectos de la radiación , Metaboloma/efectos de los fármacos , Metabolómica , Fenotipo , Latencia en las Plantas/efectos de los fármacos , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/efectos de los fármacos , Semillas/efectos de la radiación , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
12.
BMC Plant Biol ; 16: 67, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27001212

RESUMEN

BACKGROUND: Secondary metabolism contributes to the adaptation of a plant to its environment. In wine grapes, fruit secondary metabolism largely determines wine quality. Climate change is predicted to exacerbate drought events in several viticultural areas, potentially affecting the wine quality. In red grapes, water deficit modulates flavonoid accumulation, leading to major quantitative and compositional changes in the profile of the anthocyanin pigments; in white grapes, the effect of water deficit on secondary metabolism is still largely unknown. RESULTS: In this study we investigated the impact of water deficit on the secondary metabolism of white grapes using a large scale metabolite and transcript profiling approach in a season characterized by prolonged drought. Irrigated grapevines were compared to non-irrigated grapevines that suffered from water deficit from early stages of berry development to harvest. A large effect of water deficit on fruit secondary metabolism was observed. Increased concentrations of phenylpropanoids, monoterpenes, and tocopherols were detected, while carotenoid and flavonoid accumulations were differentially modulated by water deficit according to the berry developmental stage. The RNA-sequencing analysis carried out on berries collected at three developmental stages-before, at the onset, and at late ripening-indicated that water deficit affected the expression of 4,889 genes. The Gene Ontology category secondary metabolic process was overrepresented within up-regulated genes at all the stages of fruit development considered, and within down-regulated genes before ripening. Eighteen phenylpropanoid, 16 flavonoid, 9 carotenoid, and 16 terpenoid structural genes were modulated by water deficit, indicating the transcriptional regulation of these metabolic pathways in fruit exposed to water deficit. An integrated network and promoter analyses identified a transcriptional regulatory module that encompasses terpenoid genes, transcription factors, and enriched drought-responsive elements in the promoter regions of those genes as part of the grapes response to drought. CONCLUSION: Our study reveals that grapevine berries respond to drought by modulating several secondary metabolic pathways, and particularly, by stimulating the production of phenylpropanoids, the carotenoid zeaxanthin, and of volatile organic compounds such as monoterpenes, with potential effects on grape and wine antioxidant potential, composition, and sensory features.


Asunto(s)
Sequías , Proteínas de Plantas/metabolismo , Terpenos/metabolismo , Vitis/metabolismo , Frutas/metabolismo , Perfilación de la Expresión Génica , Metabolómica , Fenilpropionatos/metabolismo , Metabolismo Secundario
13.
J Biol Chem ; 289(44): 30387-30403, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25183014

RESUMEN

The green alga Hematococcus pluvialis accumulates large amounts of the antioxidant astaxanthin under inductive stress conditions, such as nitrogen starvation. The response to nitrogen starvation and high light leads to the accumulation of carbohydrates and fatty acids as well as increased activity of the tricarboxylic acid cycle. Although the behavior of individual pathways has been well investigated, little is known about the systemic effects of the stress response mechanism. Here we present time-resolved metabolite, enzyme activity, and physiological data that capture the metabolic response of H. pluvialis under nitrogen starvation and high light. The data were integrated into a putative genome-scale model of the green alga to in silico test hypotheses of underlying carbon partitioning. The model-based hypothesis testing reinforces the involvement of starch degradation to support fatty acid synthesis in the later stages of the stress response. In addition, our findings support a possible mechanism for the involvement of the increased activity of the tricarboxylic acid cycle in carbon repartitioning. Finally, the in vitro experiments and the in silico modeling presented here emphasize the predictive power of large scale integrative approaches to pinpoint metabolic adjustment to changing environments.


Asunto(s)
Chlorophyta/metabolismo , Nitrógeno/metabolismo , Estrés Fisiológico , Metabolismo de los Hidratos de Carbono , Carotenoides/metabolismo , Chlorophyta/efectos de la radiación , Ciclo del Ácido Cítrico , Análisis por Conglomerados , Simulación por Computador , Ácidos Grasos/biosíntesis , Luz , Análisis de Flujos Metabólicos , Metaboloma , Almidón/metabolismo
14.
BMC Genomics ; 16: 946, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26573226

RESUMEN

BACKGROUND: Grape cultivars and wines are distinguishable by their color, flavor and aroma profiles. Omic analyses (transcripts, proteins and metabolites) are powerful tools for assessing biochemical differences in biological systems. RESULTS: Berry skins of red- (Cabernet Sauvignon, Merlot, Pinot Noir) and white-skinned (Chardonnay, Semillon) wine grapes were harvested near optimum maturity (°Brix-to-titratable acidity ratio) from the same experimental vineyard. The cultivars were exposed to a mild, seasonal water-deficit treatment from fruit set until harvest in 2011. Identical sample aliquots were analyzed for transcripts by grapevine whole-genome oligonucleotide microarray and RNAseq technologies, proteins by nano-liquid chromatography-mass spectroscopy, and metabolites by gas chromatography-mass spectroscopy and liquid chromatography-mass spectroscopy. Principal components analysis of each of five Omic technologies showed similar results across cultivars in all Omic datasets. Comparison of the processed data of genes mapped in RNAseq and microarray data revealed a strong Pearson's correlation (0.80). The exclusion of probesets associated with genes with potential for cross-hybridization on the microarray improved the correlation to 0.93. The overall concordance of protein with transcript data was low with a Pearson's correlation of 0.27 and 0.24 for the RNAseq and microarray data, respectively. Integration of metabolite with protein and transcript data produced an expected model of phenylpropanoid biosynthesis, which distinguished red from white grapes, yet provided detail of individual cultivar differences. The mild water deficit treatment did not significantly alter the abundance of proteins or metabolites measured in the five cultivars, but did have a small effect on gene expression. CONCLUSIONS: The five Omic technologies were consistent in distinguishing cultivar variation. There was high concordance between transcriptomic technologies, but generally protein abundance did not correlate well with transcript abundance. The integration of multiple high-throughput Omic datasets revealed complex biochemical variation amongst five cultivars of an ancient and economically important crop species.


Asunto(s)
Biología Computacional , Frutas/genética , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Aminoácidos/metabolismo , Antocianinas/biosíntesis , Perfilación de la Expresión Génica , Metabolómica , Propanoles/metabolismo , Proteómica
15.
BMC Plant Biol ; 15: 37, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25652352

RESUMEN

BACKGROUND: Seed of Shismus arabicus, a desert annual, display a seasonal tolerance to dehydration. The occurrence of a metabolic seasonal rhythm and its relation with the fluctuations in seed dehydration tolerance was investigated. RESULTS: Dry seeds metabolism was the least affected by the season, while the metabolism of germinated and dehydrated seeds exhibit distinct seasonal patterns. Negative associations exist between amino acids, sugars and TCA cycle intermediates and seed survival, while positive relations exist with seed germination. In contrast, associations between the level of secondary metabolites identified in the dehydrated seeds and survival percentage were evenly distributed in positive and negative values, suggesting a functional role of these metabolites in the establishment of seed dehydration tolerance. CONCLUSION: Our results indicate the occurrence of metabolic biorhythms in germinating and dehydrating seeds associated with seasonal changes in germination and, more pronouncedly, in seed dehydration tolerance. Increased biosynthesis of protective compounds (polyphenols) in dehydrating seeds during the winter season at the expenses of central metabolites likely contributes to the respective enhanced dehydration tolerance monitored.


Asunto(s)
Desecación , Germinación , Poaceae/fisiología , Semillas/fisiología , Israel , Poaceae/crecimiento & desarrollo , Poaceae/metabolismo , Estaciones del Año
16.
Plant Physiol ; 164(1): 55-68, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24243932

RESUMEN

Computational analyses of molecular phenotypes traditionally aim at identifying biochemical components that exhibit differential expression under various scenarios (e.g. environmental and internal perturbations) in a single species. High-throughput metabolomics technologies allow the quantification of (relative) metabolite levels across developmental stages in different tissues, organs, and species. Novel methods for analyzing the resulting multiple data tables could reveal preserved dynamics of metabolic processes across species. The problem we address in this study is 2-fold. (1) We derive a single data table, referred to as a compromise, which captures information common to the investigated set of multiple tables containing data on different fruit development and ripening stages in three climacteric (i.e. peach [Prunus persica] and two tomato [Solanum lycopersicum] cultivars, Ailsa Craig and M82) and two nonclimacteric (i.e. strawberry [Fragaria × ananassa] and pepper [Capsicum chilense]) fruits; in addition, we demonstrate the power of the method to discern similarities and differences between multiple tables by analyzing publicly available metabolomics data from three tomato ripening mutants together with two tomato cultivars. (2) We identify the conserved dynamics of metabolic processes, reflected in the data profiles of the corresponding metabolites that contribute most to the determined compromise. Our analysis is based on an extension to principal component analysis, called STATIS, in combination with pathway overenrichment analysis. Based on publicly available metabolic profiles for the investigated species, we demonstrate that STATIS can be used to identify the metabolic processes whose behavior is similarly affected during fruit development and ripening. These findings ultimately provide insights into the pathways that are essential during fruit development and ripening across species.


Asunto(s)
Capsicum/metabolismo , Fragaria/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Metabolómica/métodos , Prunus/metabolismo , Solanum lycopersicum/metabolismo , Capsicum/crecimiento & desarrollo , Fragaria/crecimiento & desarrollo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Mutación , Análisis de Componente Principal , Prunus/crecimiento & desarrollo
17.
PLoS Genet ; 8(3): e1002612, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479206

RESUMEN

To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping.


Asunto(s)
Frutas , Metaboloma/genética , Sitios de Carácter Cuantitativo , Semillas/metabolismo , Solanum lycopersicum , Aminoácidos/genética , Aminoácidos/metabolismo , Mapeo Cromosómico , Ambiente , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genética de Población , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Redes y Vías Metabólicas , Sitios de Carácter Cuantitativo/genética , Semillas/genética
18.
Int J Mol Sci ; 16(10): 24276-94, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26473851

RESUMEN

Shiraz and Cabernet Sauvignon (Cs) grapevines were grown at near optimal temperatures (25 or 35 °C). Gas exchange, fluorescence, metabolic profiling and correlation based network analysis were used to characterize leaf physiology. When grown at 25 °C, the growth rate and photosynthesis of both cultivars were similar. At 35 °C Shiraz showed increased respiration, non-photochemical quenching and reductions of photosynthesis and growth. In contrast, Cs maintained relatively stable photosynthetic activity and growth regardless of the condition. In both cultivars, growth at 35 °C resulted in accumulations of secondary sugars (raffinose, fucose and ribulose) and reduction of primary sugars concentration (glucose, fructose and sucrose), more noticeably in Shiraz than Cs. In spite of similar patterns of metabolic changes in response to growth at 35 °C, significant differences in important leaf antioxidants and antioxidant precursors (DHA/ascorbate, quinates, cathechins) characterized the cultivar response. Correlation analysis reinforced Shiraz sensitivity to the 35 °C, showing higher number of newly formed edges at 35 °C and higher modularity in Shiraz as compared to Cs. The results suggest that the optimal growth temperatures of grapevines are cultivar dependent, and allow a first insight into the variability of the metabolic responses of grapevines under varied temperatures.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Producción de Cultivos/métodos , Hojas de la Planta/fisiología , Vitis/metabolismo , Vitis/fisiología , Antioxidantes/metabolismo , Frutas/metabolismo , Respuesta al Choque Térmico/fisiología , Fotosíntesis/fisiología , Temperatura
19.
Plant J ; 74(3): 458-72, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23402686

RESUMEN

Sulfur-containing aroma volatiles are important contributors to the distinctive aroma of melon and other fruits. Melon cultivars and accessions differ in the content of sulfur-containing and other volatiles. L-methionine has been postulated to serve as a precursor of these volatiles. Incubation of melon fruit cubes with ¹³C- and ²H-labeled L-methionine revealed two distinct catabolic routes into volatiles. One route apparently involves the action of an L-methionine aminotransferase and preserves the main carbon skeleton of L-methionine. The second route apparently involves the action of an L-methionine-γ-lyase activity, releasing methanethiol, a backbone for formation of thiol-derived aroma volatiles. Exogenous L-methionine also generated non-sulfur volatiles by further metabolism of α-ketobutyrate, a product of L-methionine-γ-lyase activity. α-Ketobutyrate was further metabolized into L-isoleucine and other important melon volatiles, including non-sulfur branched and straight-chain esters. Cell-free extracts derived from ripe melon fruit exhibited L-methionine-γ-lyase enzymatic activity. A melon gene (CmMGL) ectopically expressed in Escherichia coli, was shown to encode a protein possessing L-methionine-γ-lyase enzymatic activity. Expression of CmMGL was relatively low in early stages of melon fruit development, but increased in the flesh of ripe fruits, depending on the cultivar tested. Moreover, the levels of expression of CmMGL in recombinant inbred lines co-segregated with the levels of sulfur-containing aroma volatiles enriched with +1 m/z unit and postulated to be produced via this route. Our results indicate that L-methionine is a precursor of both sulfur and non-sulfur aroma volatiles in melon fruit.


Asunto(s)
Cucumis melo/enzimología , Frutas/metabolismo , Metionina/metabolismo , Azufre/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Liasas de Carbono-Azufre/metabolismo , Cucumis melo/genética , Cucumis melo/crecimiento & desarrollo , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Genes de Plantas , Isoleucina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solubilidad , Especificidad de la Especie , Transaminasas/metabolismo
20.
BMC Plant Biol ; 14: 188, 2014 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-25064275

RESUMEN

BACKGROUND: Grapevine berries undergo complex biochemical changes during fruit maturation, many of which are dependent upon the variety and its environment. In order to elucidate the varietal dependent developmental regulation of primary and specialized metabolism, berry skins of Cabernet Sauvignon and Shiraz were subjected to gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) based metabolite profiling from pre-veraison to harvest. The generated dataset was augmented with transcript profiling using RNAseq. RESULTS: The analysis of the metabolite data revealed similar developmental patterns of change in primary metabolites between the two cultivars. Nevertheless, towards maturity the extent of change in the major organic acid and sugars (i.e. sucrose, trehalose, malate) and precursors of aromatic and phenolic compounds such as quinate and shikimate was greater in Shiraz compared to Cabernet Sauvignon. In contrast, distinct directional projections on the PCA plot of the two cultivars samples towards maturation when using the specialized metabolite profiles were apparent, suggesting a cultivar-dependent regulation of the specialized metabolism. Generally, Shiraz displayed greater upregulation of the entire polyphenol pathway and specifically higher accumulation of piceid and coumaroyl anthocyanin forms than Cabernet Sauvignon from veraison onwards. Transcript profiling revealed coordinated increased transcript abundance for genes encoding enzymes of committing steps in the phenylpropanoid pathway. The anthocyanin metabolite profile showed F3'5'H-mediated delphinidin-type anthocyanin enrichment in both varieties towards maturation, consistent with the transcript data, indicating that the F3'5'H-governed branching step dominates the anthocyanin profile at late berry development. Correlation analysis confirmed the tightly coordinated metabolic changes during development, and suggested a source-sink relation between the central and specialized metabolism, stronger in Shiraz than Cabernet Sauvignon. RNAseq analysis also revealed that the two cultivars exhibited distinct pattern of changes in genes related to abscisic acid (ABA) biosynthesis enzymes. CONCLUSIONS: Compared with CS, Shiraz showed higher number of significant correlations between metabolites, which together with the relatively higher expression of flavonoid genes supports the evidence of increased accumulation of coumaroyl anthocyanins in that cultivar. Enhanced stress related metabolism, e.g. trehalose, stilbene and ABA in Shiraz berry-skin are consistent with its relatively higher susceptibility to environmental cues.


Asunto(s)
Frutas/metabolismo , Metaboloma , Transcriptoma , Vitis/genética , Antocianinas/química , Cromatografía Liquida , Flavonoides/química , Frutas/genética , Cromatografía de Gases y Espectrometría de Masas , Polifenoles/química , Vitis/clasificación , Vitis/metabolismo , Vino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA