Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 614(7946): 125-135, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36653448

RESUMEN

The human microbiome is an integral component of the human body and a co-determinant of several health conditions1,2. However, the extent to which interpersonal relations shape the individual genetic makeup of the microbiome and its transmission within and across populations remains largely unknown3,4. Here, capitalizing on more than 9,700 human metagenomes and computational strain-level profiling, we detected extensive bacterial strain sharing across individuals (more than 10 million instances) with distinct mother-to-infant, intra-household and intra-population transmission patterns. Mother-to-infant gut microbiome transmission was considerable and stable during infancy (around 50% of the same strains among shared species (strain-sharing rate)) and remained detectable at older ages. By contrast, the transmission of the oral microbiome occurred largely horizontally and was enhanced by the duration of cohabitation. There was substantial strain sharing among cohabiting individuals, with 12% and 32% median strain-sharing rates for the gut and oral microbiomes, and time since cohabitation affected strain sharing more than age or genetics did. Bacterial strain sharing additionally recapitulated host population structures better than species-level profiles did. Finally, distinct taxa appeared as efficient spreaders across transmission modes and were associated with different predicted bacterial phenotypes linked with out-of-host survival capabilities. The extent of microorganism transmission that we describe underscores its relevance in human microbiome studies5, especially those on non-infectious, microbiome-associated diseases.


Asunto(s)
Bacterias , Transmisión de Enfermedad Infecciosa , Microbioma Gastrointestinal , Ambiente en el Hogar , Microbiota , Boca , Femenino , Humanos , Lactante , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/genética , Metagenoma , Microbiota/genética , Madres , Boca/microbiología , Transmisión Vertical de Enfermedad Infecciosa , Composición Familiar , Envejecimiento , Factores de Tiempo , Viabilidad Microbiana
2.
Hum Mol Genet ; 33(10): 919-929, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339995

RESUMEN

The clinical severity of sickle cell disease (SCD) is strongly influenced by the level of fetal haemoglobin (HbF) persistent in each patient. Three major HbF loci (BCL11A, HBS1L-MYB, and Xmn1-HBG2) have been reported, but a considerable hidden heritability remains. We conducted a genome-wide association study for HbF levels in 1006 Nigerian patients with SCD (HbSS/HbSß0), followed by a replication and meta-analysis exercise in four independent SCD cohorts (3,582 patients). To dissect association signals at the major loci, we performed stepwise conditional and haplotype association analyses and included public functional annotation datasets. Association signals were detected for BCL11A (lead SNP rs6706648, ß = -0.39, P = 4.96 × 10-34) and HBS1L-MYB (lead SNP rs61028892, ß = 0.73, P = 1.18 × 10-9), whereas the variant allele for Xmn1-HBG2 was found to be very rare. In addition, we detected three putative new trait-associated regions. Genetically, dissecting the two major loci BCL11A and HBS1L-MYB, we defined trait-increasing haplotypes (P < 0.0001) containing so far unidentified causal variants. At BCL11A, in addition to a haplotype harbouring the putative functional variant rs1427407-'T', we identified a second haplotype, tagged by the rs7565301-'A' allele, where a yet-to-be-discovered causal DNA variant may reside. Similarly, at HBS1L-MYB, one HbF-increasing haplotype contains the likely functional small indel rs66650371, and a second tagged by rs61028892-'C' is likely to harbour a presently unknown functional allele. Together, variants at BCL11A and HBS1L-MYB SNPs explained 24.1% of the trait variance. Our findings provide a path for further investigation of the causes of variable fetal haemoglobin persistence in sickle cell disease.


Asunto(s)
Anemia de Células Falciformes , Proteínas de Unión al GTP , Estudio de Asociación del Genoma Completo , Haplotipos , Femenino , Humanos , Masculino , Alelos , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/sangre , Predisposición Genética a la Enfermedad , Nigeria , Proteínas Nucleares/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Represoras/genética
3.
Nature ; 588(7836): 135-140, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177712

RESUMEN

The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites-in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites.


Asunto(s)
Dieta , Microbioma Gastrointestinal/fisiología , Metaboloma/genética , Suero/metabolismo , Adulto , Pan , Estudios de Cohortes , Femenino , Voluntarios Sanos , Humanos , Estilo de Vida , Aprendizaje Automático , Masculino , Metabolómica , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Oxigenasas/genética , Estándares de Referencia , Reproducibilidad de los Resultados , Estaciones del Año
4.
PLoS Genet ; 19(2): e1010556, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802379

RESUMEN

X-chromosome inactivation (XCI) silences one X in female cells to balance sex-differences in X-dosage. A subset of X-linked genes escape XCI, but the extent to which this phenomenon occurs and how it varies across tissues and in a population is as yet unclear. To characterize incidence and variability of escape across individuals and tissues, we conducted a transcriptomic study of escape in adipose, skin, lymphoblastoid cell lines and immune cells in 248 healthy individuals exhibiting skewed XCI. We quantify XCI escape from a linear model of genes' allelic fold-change and XIST-based degree of XCI skewing. We identify 62 genes, including 19 lncRNAs, with previously unknown patterns of escape. We find a range of tissue-specificity, with 11% of genes escaping XCI constitutively across tissues and 23% demonstrating tissue-restricted escape, including cell type-specific escape across immune cells of the same individual. We also detect substantial inter-individual variability in escape. Monozygotic twins share more similar escape than dizygotic twins, indicating that genetic factors may underlie inter-individual differences in escape. However, discordant escape also occurs within monozygotic co-twins, suggesting environmental factors also influence escape. Altogether, these data indicate that XCI escape is an under-appreciated source of transcriptional differences, and an intricate phenotype impacting variable trait expressivity in females.


Asunto(s)
Cromosomas Humanos X , Inactivación del Cromosoma X , Humanos , Femenino , Inactivación del Cromosoma X/genética , Cromosomas Humanos X/genética , Genes Ligados a X/genética , Gemelos Monocigóticos/genética , Fenotipo
5.
Traffic ; 24(2): 76-94, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36519961

RESUMEN

Caveolin-1 (Cav-1) is a fundamental constituent of caveolae, whose functionality and structure are strictly dependent on cholesterol. In this work the U18666A inhibitor was used to study the role of cholesterol transport in the endosomal degradative-secretory system in a metastatic human melanoma cell line (WM266-4). We found that U18666A induces a shift of Cav-1 from the plasma membrane to the endolysosomal compartment, which is involved, through Multi Vesicular Bodies (MVBs), in the formation and release of small extracellular vesicles (sEVs). Moreover, this inhibitor induces an increase in the production of sEVs with chemical-physical characteristics similar to control sEVs but with a different protein composition (lower expression of Cav-1 and increase of LC3II) and reduced transfer capacity on target cells. Furthermore, we determined that U18666A affects mitochondrial function and also cancer cell aggressive features, such as migration and invasion. Taken together, these results indicate that the blockage of cholesterol transport, determining the internalization of Cav-1, may modify sEVs secretory pathways through an increased fusion between autophagosomes and MVBs to form amphisome, which in turn fuses with the plasma membrane releasing a heterogeneous population of sEVs to maintain homeostasis and ensure correct cellular functionality.


Asunto(s)
Vesículas Extracelulares , Melanoma , Humanos , Caveolina 1/metabolismo , Autofagosomas/metabolismo , Vesículas Extracelulares/metabolismo , Colesterol/metabolismo
6.
Hum Mol Genet ; 31(17): 3012-3019, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35220419

RESUMEN

Refractive errors, particularly myopia, are the most common eye conditions, often leading to serious visual impairment. The age of onset is correlated with the severity of refractive error in adulthood observed in epidemiological and genetic studies and can be used as a proxy in refractive error genetic studies. To further elucidate genetic factors that influence refractive error, we analysed self-reported age of refractive error correction data from the UK Biobank European and perform genome-wide time-to-event analyses on the age of first spectacle wear (AFSW). Genome-wide proportional hazards ratio analyses were conducted in 340 318 European subjects. We subsequently assessed the similarities and differences in the genetic architectures of refractive error correction from different causes. All-cause AFSW was genetically strongly correlated (rg = -0.68) with spherical equivalent (the measured strength of spectacle lens required to correct the refractive error) and was used as a proxy for refractive error. Time-to-event analyses found genome-wide significant associations at 44 independent genomic loci, many of which (GJD2, LAMA2, etc.) were previously associated with refractive error. We also identified six novel regions associated with AFSW, the most significant of which was on chromosome 17q (P = 3.06 × 10-09 for rs55882072), replicating in an independent dataset. We found that genes associated with AFSW were significantly enriched for expression in central nervous system tissues and were involved in neurogenesis. This work demonstrates the merits of time-to-event study design in the genetic investigation of refractive error and contributes additional knowledge on its genetic risk factors in the general population.


Asunto(s)
Miopía , Errores de Refracción , Adulto , Anteojos , Estudio de Asociación del Genoma Completo , Humanos , Miopía/genética , Errores de Refracción/genética
7.
BMC Cancer ; 23(1): 166, 2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36805683

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of melanoma and other cancers. However, no reliable biomarker of survival or response has entered the clinic to identify those patients with melanoma who are most likely to benefit from ICIs. Glycosylation affects proteins and lipids' structure and functions. Tumours are characterized by aberrant glycosylation which may contribute to their progression and hinder an effective antitumour immune response. METHODS: We aim at identifying novel glyco-markers of response and survival by leveraging the N-glycome of total serum proteins collected in 88 ICI-naive patients with advanced melanoma from two European countries. Samples were collected before and during ICI treatment. RESULTS: We observe that responders to ICIs present with a pre-treatment N-glycome profile significantly shifted towards higher abundancy of low-branched structures containing lower abundances of antennary fucose, and that this profile is positively associated with survival and a better predictor of response than clinical variables alone. CONCLUSION: While changes in serum protein glycosylation have been previously implicated in a pro-metastatic melanoma behaviour, we show here that they are also associated with response to ICI, opening new avenues for the stratification of patients and the design of adjunct therapies aiming at improving immune response.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Humanos , Melanoma/tratamiento farmacológico , Instituciones de Atención Ambulatoria , Europa (Continente) , Polisacáridos
8.
Inflamm Res ; 72(5): 947-953, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36995412

RESUMEN

OBJECTIVE AND DESIGN: Fatigue is a prominent symptom in the general population and may follow viral infection, including SARS-CoV2 infection which causes COVID-19. Chronic fatigue lasting more than three months is the major symptom of the post-COVID syndrome (known colloquially as long-COVID). The mechanisms underlying long-COVID fatigue are unknown. We hypothesized that the development of long-COVID chronic fatigue is driven by the pro-inflammatory immune status of an individual prior to COVID-19. SUBJECTS AND METHODS: We analyzed pre-pandemic plasma levels of IL-6, which plays a key role in persistent fatigue, in N = 1274 community dwelling adults from TwinsUK. Subsequent COVID-19-positive and -negative participants were categorized based on SARS-CoV-2 antigen and antibody testing. Chronic fatigue was assessed using the Chalder Fatigue Scale. RESULTS: COVID-19-positive participants exhibited mild disease. Chronic fatigue was a prevalent symptom among this population and significantly higher in positive vs. negative participants (17% vs 11%, respectively; p = 0.001). The qualitative nature of chronic fatigue as determined by individual questionnaire responses was similar in positive and negative participants. Pre-pandemic plasma IL-6 levels were positively associated with chronic fatigue in negative, but not positive individuals. Raised BMI was associated with chronic fatigue in positive participants. CONCLUSIONS: Pre-existing increased IL-6 levels may contribute to chronic fatigue symptoms, but there was no increased risk in individuals with mild COVID-19 compared with uninfected individuals. Elevated BMI also increased the risk of chronic fatigue in mild COVID-19, consistent with previous reports.


Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , Adulto , Humanos , Síndrome Post Agudo de COVID-19 , Interleucina-6 , Síndrome de Fatiga Crónica/epidemiología , Pandemias , ARN Viral , SARS-CoV-2
9.
Int J Obes (Lond) ; 46(8): 1478-1486, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35589964

RESUMEN

BACKGROUND: COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. SUBJECTS/METHODS: In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. RESULTS: Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 × 10-6), obesity status (P = 4.81 × 10-5), higher serum fasting insulin (P = 5.32 × 10-4), BMI (P = 3.94 × 10-4), and lower serum HDL levels (P = 1.92 × 10-7). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 × 10-4) and higher proportion of macrophages (P = 2.74 × 10-5). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. CONCLUSIONS: Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.


Asunto(s)
Tejido Adiposo , Enzima Convertidora de Angiotensina 2 , COVID-19 , Tejido Adiposo/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/complicaciones , COVID-19/genética , Factores de Riesgo Cardiometabólico , Diabetes Mellitus Tipo 2/genética , Células Endoteliales/metabolismo , Humanos , Obesidad , SARS-CoV-2
10.
BMC Microbiol ; 22(1): 39, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35114943

RESUMEN

BACKGROUND: Yoghurt contains live bacteria that could contribute via modulation of the gut microbiota to its reported beneficial effects such as reduced body weight gain and lower incidence of type 2 diabetes. To date, the association between yoghurt consumption and the composition of the gut microbiota is underexplored. Here we used clinical variables, metabolomics, 16S rRNA and shotgun metagenomic sequencing data collected on over 1000 predominantly female UK twins to define the link between the gut microbiota and yoghurt-associated health benefits. RESULTS: According to food frequency questionnaires (FFQ), 73% of subjects consumed yoghurt. Consumers presented a healthier diet pattern (healthy eating index: beta = 2.17 ± 0.34; P = 2.72x10-10) and improved metabolic health characterised by reduced visceral fat (beta = -28.18 ± 11.71 g; P = 0.01). According to 16S rRNA gene analyses and whole shotgun metagenomic sequencing approach consistent taxonomic variations were observed with yoghurt consumption. More specifically, we identified higher abundance of species used as yoghurt starters Streptococcus thermophilus (beta = 0.41 ± 0.051; P = 6.14x10-12) and sometimes added Bifidobacterium animalis subsp. lactis (beta = 0.30 ± 0.052; P = 1.49x10-8) in the gut of yoghurt consumers. Replication in 1103 volunteers from the LifeLines-DEEP cohort confirmed the increase of S. thermophilus among yoghurt consumers. Using food records collected the day prior to faecal sampling we showed than an increase in these two yoghurt bacteria could be transient. Metabolomics analysis revealed that B. animalis subsp. lactis was associated with 13 faecal metabolites including a 3-hydroxyoctanoic acid, known to be involved in the regulation of gut inflammation. CONCLUSIONS: Yoghurt consumption is associated with reduced visceral fat mass and changes in gut microbiome including transient increase of yoghurt-contained species (i.e. S. thermophilus and B. lactis).


Asunto(s)
Bacterias/genética , Microbioma Gastrointestinal/genética , Metaboloma , Metagenoma , Probióticos/administración & dosificación , Yogur/microbiología , Anciano , Anciano de 80 o más Años , Bacterias/clasificación , Bacterias/aislamiento & purificación , Estudios de Cohortes , Heces/microbiología , Femenino , Humanos , Masculino , Metabolómica/métodos , Metagenómica/métodos , Microbiota/genética , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Encuestas y Cuestionarios , Reino Unido
11.
Br J Dermatol ; 187(6): 900-908, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35869671

RESUMEN

BACKGROUND: Symptoms of SARS-CoV-2 infection have differed during the different waves of the pandemic but little is known about how cutaneous manifestations have changed. OBJECTIVES: To investigate the diagnostic value, frequency and duration of cutaneous manifestations of SARS-CoV-2 infection and to explore their variations between the Delta and Omicron waves of the pandemic. METHODS: In this retrospective study, we used self-reported data from 348 691 UK users of the ZOE COVID Study app, matched 1 : 1 for age, sex, vaccination status and self-reported eczema diagnosis between the Delta and Omicron waves, to assess the diagnostic value, frequency and duration of five cutaneous manifestations of SARS-CoV-2 infection (acral, burning, erythematopapular and urticarial rash, and unusual hair loss), and how these changed between waves. We also investigated whether vaccination had any effect on symptom frequency. RESULTS: We show a significant association between any cutaneous manifestations and a positive SARS-CoV-2 test result, with a diagnostic value higher in the Delta compared with the Omicron wave (odds ratio 2·29, 95% confidence interval 2·22-2·36, P < 0·001; and odds ratio 1·29, 95% confidence interval 1·26-1·33, P < 0·001, respectively). Cutaneous manifestations were also more common with Delta vs. Omicron (17·6% vs. 11·4%, respectively) and had a longer duration. During both waves, cutaneous symptoms clustered with other frequent symptoms and rarely (in < 2% of the users) as first or only clinical sign of SARS-CoV-2 infection. Finally, we observed that vaccinated and unvaccinated users showed similar odds of presenting with a cutaneous manifestation, apart from burning rash, where the odds were lower in vaccinated users. CONCLUSIONS: Cutaneous manifestations are predictive of SARS-CoV-2 infection, and their frequency and duration have changed with different variants. Therefore, we advocate for their inclusion in the list of clinically relevant COVID-19 symptoms and suggest that their monitoring could help identify new variants. What is already known about this topic? Several studies during the wildtype COVID-19 wave reported that patients presented with common skin-related symptoms. It has been observed that COVID-19 symptoms differ among variants. No study has focused on how skin-related symptoms have changed across different variants. What does this study add? We showed, in a community-based retrospective study including over 348 000 individuals, that the presence of cutaneous symptoms is predictive of SARS-CoV-2 infection during the Delta and Omicron waves and that this diagnostic value, along with symptom frequency and duration, differs between variants. We showed that infected vaccinated and unvaccinated individuals reported similar skin-related symptoms during the Delta and Omicron waves, with only burning rashes being less common after vaccination.


Asunto(s)
COVID-19 , Exantema , Aplicaciones Móviles , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2 , Estudios Retrospectivos , Exantema/diagnóstico , Exantema/epidemiología , Exantema/etiología , Reino Unido/epidemiología
12.
J Am Soc Nephrol ; 32(10): 2455-2465, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34127537

RESUMEN

BACKGROUND: IgA nephropathy (IgAN) is the most common primary glomerular disease worldwide and is a leading cause of renal failure. The disease mechanisms are not completely understood, but a higher abundance of galactose-deficient IgA is recognized to play a crucial role in IgAN pathogenesis. Although both types of human IgA (IgA1 and IgA2) have several N-glycans as post-translational modification, only IgA1 features extensive hinge-region O-glycosylation. IgA1 galactose deficiency on the O-glycans is commonly detected by a lectin-based method. To date, limited detail is known about IgA O- and N-glycosylation in IgAN. METHODS: To gain insights into the complex O- and N-glycosylation of serum IgA1 and IgA2 in IgAN, we used liquid chromatography-mass spectrometry (LC-MS) for the analysis of tryptic glycopeptides of serum IgA from 83 patients with IgAN and 244 age- and sex-matched healthy controls. RESULTS: Multiple structural features of N-glycosylation of IgA1 and IgA2 were associated with IgAN and glomerular function in our cross-sectional study. These features included differences in galactosylation, sialylation, bisection, fucosylation, and N-glycan complexity. Moreover, IgA1 O-glycan sialylation was associated with both the disease and glomerular function. Finally, glycopeptides were a better predictor of IgAN and glomerular function than galactose-deficient IgA1 levels measured by lectin-based ELISA. CONCLUSIONS: Our high-resolution data suggest that IgA O- and N-glycopeptides are promising targets for future investigations on the pathophysiology of IgAN and as potential noninvasive biomarkers for disease prediction and deteriorating kidney function.


Asunto(s)
Galactosa/metabolismo , Glomerulonefritis por IGA/sangre , Inmunoglobulina A/metabolismo , Adulto , Estudios de Casos y Controles , Cromatografía Liquida , Estudios Transversales , Femenino , Galactosa/química , Tasa de Filtración Glomerular , Glomerulonefritis por IGA/fisiopatología , Glicopéptidos/análisis , Glicosilación , Humanos , Inmunoglobulina A/química , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/química
13.
Thorax ; 76(7): 714-722, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33402392

RESUMEN

BACKGROUND: The association between current tobacco smoking, the risk of developing symptomatic COVID-19 and the severity of illness is an important information gap. METHODS: UK users of the Zoe COVID-19 Symptom Study app provided baseline data including demographics, anthropometrics, smoking status and medical conditions, and were asked to log their condition daily. Participants who reported that they did not feel physically normal were then asked by the app to complete a series of questions, including 14 potential COVID-19 symptoms and about hospital attendance. The main study outcome was the development of 'classic' symptoms of COVID-19 during the pandemic defined as fever, new persistent cough and breathlessness and their association with current smoking. The number of concurrent COVID-19 symptoms was used as a proxy for severity and the pattern of association between symptoms was also compared between smokers and non-smokers. RESULTS: Between 24 March 2020 and 23 April 2020, data were available on 2 401 982 participants, mean (SD) age 43.6 (15.1) years, 63.3% female, overall smoking prevalence 11.0%. 834 437 (35%) participants reported being unwell and entered one or more symptoms. Current smokers were more likely to report symptoms suggesting a diagnosis of COVID-19; classic symptoms adjusted OR (95% CI) 1.14 (1.10 to 1.18); >5 symptoms 1.29 (1.26 to 1.31); >10 symptoms 1.50 (1.42 to 1.58). The pattern of association between reported symptoms did not vary between smokers and non-smokers. INTERPRETATION: These data are consistent with people who smoke being at an increased risk of developing symptomatic COVID-19.


Asunto(s)
COVID-19/epidemiología , Aplicaciones Móviles , Neumonía Viral/epidemiología , Fumar/epidemiología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/virología , Prevalencia , Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Reino Unido/epidemiología
14.
Eur Respir J ; 58(6)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34413153

RESUMEN

QUESTION: Cystic fibrosis (CF) is due to pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Recent improvements have enabled pharmacological therapy aiming at restoring mutated CFTR expression and function. CFTR "modulators" have revolutionised the CF therapeutic landscape, particularly the last approved, Trikafta. This drug combination is indicated by the United States Food and Drug Administration and very recently by the European Medicines Agency for genotypes carrying at least one copy of CFTR with the F508del pathogenic variant. However, several genotypes are not yet eligible for Trikafta treatment. MATERIALS/PATIENTS AND METHODS: We exploited an innovative cellular approach allowing highly efficient in vitro expansion of airway epithelial stem cells (AESCs) through conditional reprogramming from nasal brushing of CF patients. This approach, coupled to the development of AESC-derived personalised disease models, as organoids and air-liquid interface (ALI) cultures, revealed highly suitable for CFTR pharmacological testing. RESULTS AND ANSWER TO THE QUESTION: We fully validated the experimental models and implemented the CFTR functional assays and biochemical CFTR protein characterisation, which allowed the evaluation of the efficacy of clinically available modulators in restoring CFTR maturation and function of each patient-derived "avatar" (theratyping). F508del homozygous genotypes, used as controls, confirmed the higher clinical activity of Trikafta in comparison with older modulators. In addition, Trikafta showed its efficacy on three rare genotypes previously not eligible for treatment with modulators, opening the way to clinical translation. Finally, encouraging results for innovative drug combinations were obtained.


Asunto(s)
Fibrosis Quística , Aminofenoles/farmacología , Benzodioxoles , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales , Humanos , Mutación , Organoides , Células Madre
15.
Int J Obes (Lond) ; 45(7): 1521-1531, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33941843

RESUMEN

BACKGROUND: Obesity, a major global health problem, is associated with increased cardiometabolic morbidity and mortality. Protein glycosylation is a frequent posttranslational modification, highly responsive to inflammation and ageing. The prospect of biological age reduction, by changing glycosylation patterns through metabolic intervention, opens many possibilities. We have investigated whether weight loss interventions affect inflammation- and ageing-associated IgG glycosylation changes, in a longitudinal cohort of bariatric surgery patients. To support potential findings, BMI-related glycosylation changes were monitored in a longitudinal twins cohort. METHODS: IgG N-glycans were chromatographically profiled in 37 obese patients, subjected to low-calorie diet, followed by bariatric surgery, across multiple timepoints. Similarly, plasma-derived IgG N-glycan traits were longitudinally monitored in 1680 participants from the TwinsUK cohort. RESULTS: Low-calorie diet induced a marked decrease in the levels of IgG N-glycans with bisecting GlcNAc, whose higher levels are usually associated with ageing and inflammatory conditions. Bariatric surgery resulted in extensive alterations of the IgG N-glycome that accompanied progressive weight loss during 1-year follow-up. We observed a significant increase in digalactosylated and sialylated glycans, and a substantial decrease in agalactosylated and core fucosylated IgG N-glycans (adjusted p value range 7.38 × 10-04-3.94 × 10-02). This IgG N-glycan profile is known to be associated with a younger biological age and reflects an enhanced anti-inflammatory IgG potential. Loss of BMI over a 20 year period in the TwinsUK cohort validated a weight loss-associated agalactosylation decrease (adjusted p value 1.79 × 10-02) and an increase in digalactosylation (adjusted p value 5.85 × 10-06). CONCLUSIONS: Altogether, these findings highlight that weight loss substantially affects IgG N-glycosylation, resulting in reduced glycan and biological age.


Asunto(s)
Inmunoglobulina G , Obesidad , Pérdida de Peso/fisiología , Adulto , Envejecimiento/fisiología , Cirugía Bariátrica , Índice de Masa Corporal , Femenino , Glicosilación , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/química , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/metabolismo , Gemelos
16.
Malar J ; 20(1): 81, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568138

RESUMEN

BACKGROUND: The innate immune response against various life cycle stages of the malaria parasite plays an important role in protection against the disease and regulation of its severity. Phagocytosis of asexual erythrocytic stages is well documented, but little and contrasting results are available about phagocytic clearance of sexual stages, the gametocytes, which are responsible for the transmission of the parasites from humans to mosquitoes. Similarly, activation of host macrophages by gametocytes has not yet been carefully addressed. METHODS: Phagocytosis of early or late Plasmodium falciparum gametocytes was evaluated through methanol fixed cytospin preparations of immortalized mouse C57Bl/6 bone marrow-derived macrophages treated for 2 h with P. falciparum and stained with Giemsa, and it was confirmed through a standardized bioluminescent method using the transgenic P. falciparum 3D7elo1-pfs16-CBG99 strain. Activation was evaluated by measuring nitric oxide or cytokine levels in the supernatants of immortalized mouse C57Bl/6 bone marrow-derived macrophages treated with early or late gametocytes. RESULTS: The results showed that murine bone marrow-derived macrophages can phagocytose both early and late gametocytes, but only the latter were able to induce the production of inflammatory mediators, specifically nitric oxide and the cytokines tumour necrosis factor and macrophage inflammatory protein 2. CONCLUSIONS: These results support the hypothesis that developing gametocytes interact in different ways with innate immune cells of the host. Moreover, the present study proposes that early and late gametocytes act differently as targets for innate immune responses.


Asunto(s)
Activación de Macrófagos/inmunología , Macrófagos/inmunología , Fagocitosis/inmunología , Plasmodium falciparum/fisiología , Animales , Ratones , Ratones Endogámicos C57BL
17.
J Enzyme Inhib Med Chem ; 36(1): 175-182, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33404266

RESUMEN

Recent findings have shown that nanovesicles preparations from either primary immune cells culture supernatants or plasma contain immunoglobulins, suggesting that a natural way of antibody production may be through exosome release. To verify this hypothesis, we used the OKT3 hybridoma clone, which produces a murine IgG2a monoclonal antibody used to reduce rejection in patients undergoing organ transplantation. We showed exosome-associated immunoglobulins in hybridoma supernatants, by Western blot, nanoscale flow cytometry and immunocapture-based ELISA. The OKT3-exo was also being able to trigger cytokines production in both CD4 and CD8 T cells. These results show that nanovesicles contain immunoglobulin and could be used for immunotherapy. These data could lead to a new approach to improve the effectiveness of therapeutic antibodies by exploiting their natural property to be expressed on nanovesicle membrane, that probably render them more stable and as a consequence more capable to interact with their specific ligand in the best way.


Asunto(s)
Linfocitos B/inmunología , Exosomas/inmunología , Hibridomas/inmunología , Inmunoglobulina G/biosíntesis , Muromonab-CD3/inmunología , Linfocitos T/inmunología , Animales , Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Linfocitos B/citología , Complejo CD3/genética , Complejo CD3/inmunología , Línea Celular Tumoral , Citocinas/biosíntesis , Citocinas/inmunología , Exosomas/química , Exosomas/genética , Expresión Génica , Humanos , Hibridomas/química , Inmunoglobulina G/inmunología , Activación de Linfocitos , Macrófagos/citología , Macrófagos/inmunología , Ratones , Mieloma Múltiple/inmunología , Muromonab-CD3/genética , Neoplasias Experimentales/inmunología , Cultivo Primario de Células , Bazo/citología , Bazo/inmunología , Linfocitos T/citología
18.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562078

RESUMEN

LL37 acts as T-cell/B-cell autoantigen in Systemic lupus erythematosus (SLE) and psoriatic disease. Moreover, when bound to "self" nucleic acids, LL37 acts as "danger signal," leading to type I interferon (IFN-I)/pro-inflammatory factors production. T-cell epitopes derived from citrullinated-LL37 act as better antigens than unmodified LL37 epitopes in SLE, at least in selected HLA-backgrounds, included the SLE-associated HLA-DRB1*1501/HLA-DRB5*0101 backgrounds. Remarkably, while "fully-citrullinated" LL37 acts as better T-cell-stimulator, it loses DNA-binding ability and the associated "adjuvant-like" properties. Since LL37 undergoes a further irreversible post-translational modification, carbamylation and antibodies to carbamylated self-proteins other than LL37 are present in SLE, here we addressed the involvement of carbamylated-LL37 in autoimmunity and inflammation in SLE. We detected carbamylated-LL37 in SLE-affected tissues. Most importantly, carbamylated-LL37-specific antibodies and CD4 T-cells circulate in SLE and both correlate with disease activity. In contrast to "fully citrullinated-LL37," "fully carbamylated-LL37" maintains both innate and adaptive immune-cells' stimulatory abilities: in complex with DNA, carbamylated-LL37 stimulates plasmacytoid dendritic cell IFN-α production and B-cell maturation into plasma cells. Thus, we report a further example of how different post-translational modifications of a self-antigen exert complementary effects that sustain autoimmunity and inflammation, respectively. These data also show that T/B-cell responses to carbamylated-LL37 represent novel SLE disease biomarkers.


Asunto(s)
Adyuvantes Inmunológicos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Autoantígenos/química , Lupus Eritematoso Sistémico/inmunología , Procesamiento Proteico-Postraduccional/genética , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Autoinmunidad/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Citrulinación/inmunología , Células Dendríticas/inmunología , Epítopos de Linfocito T/inmunología , Cadenas HLA-DRB1/inmunología , Cadenas HLA-DRB5/inmunología , Humanos , Interferón Tipo I/inmunología , Activación de Linfocitos/inmunología , Carbamilación de Proteína/inmunología , Catelicidinas
19.
Hum Mol Genet ; 27(6): 1106-1121, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29325019

RESUMEN

Epigenetic regulation of cellular function provides a mechanism for rapid organismal adaptation to changes in health, lifestyle and environment. Associations of cytosine-guanine di-nucleotide (CpG) methylation with clinical endpoints that overlap with metabolic phenotypes suggest a regulatory role for these CpG sites in the body's response to disease or environmental stress. We previously identified 20 CpG sites in an epigenome-wide association study (EWAS) with metabolomics that were also associated in recent EWASs with diabetes-, obesity-, and smoking-related endpoints. To elucidate the molecular pathways that connect these potentially regulatory CpG sites to the associated disease or lifestyle factors, we conducted a multi-omics association study including 2474 mass-spectrometry-based metabolites in plasma, urine and saliva, 225 NMR-based lipid and metabolite measures in blood, 1124 blood-circulating proteins using aptamer technology, 113 plasma protein N-glycans and 60 IgG-glyans, using 359 samples from the multi-ethnic Qatar Metabolomics Study on Diabetes (QMDiab). We report 138 multi-omics associations at these CpG sites, including diabetes biomarkers at the diabetes-associated TXNIP locus, and smoking-specific metabolites and proteins at multiple smoking-associated loci, including AHRR. Mendelian randomization suggests a causal effect of metabolite levels on methylation of obesity-associated CpG sites, i.e. of glycerophospholipid PC(O-36: 5), glycine and a very low-density lipoprotein (VLDL-A) on the methylation of the obesity-associated CpG loci DHCR24, MYO5C and CPT1A, respectively. Taken together, our study suggests that multi-omics-associated CpG methylation can provide functional read-outs for the underlying regulatory response mechanisms to disease or environmental insults.


Asunto(s)
Islas de CpG , Metilación de ADN , Trastornos del Metabolismo de la Glucosa/genética , Obesidad/genética , Fumar Tabaco/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Portadoras/genética , Biología Computacional/métodos , Epigénesis Genética , Femenino , Estudios de Asociación Genética/métodos , Genoma Humano , Estudio de Asociación del Genoma Completo/métodos , Humanos , Lípidos/sangre , Masculino , Metaboloma , Proteínas Represoras/genética
20.
Am J Hum Genet ; 100(2): 238-256, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28132686

RESUMEN

Genetic variants near ARAP1 (CENTD2) and STARD10 influence type 2 diabetes (T2D) risk. The risk alleles impair glucose-induced insulin secretion and, paradoxically but characteristically, are associated with decreased proinsulin:insulin ratios, indicating improved proinsulin conversion. Neither the identity of the causal variants nor the gene(s) through which risk is conferred have been firmly established. Whereas ARAP1 encodes a GTPase activating protein, STARD10 is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer protein family. By integrating genetic fine-mapping and epigenomic annotation data and performing promoter-reporter and chromatin conformational capture (3C) studies in ß cell lines, we localize the causal variant(s) at this locus to a 5 kb region that overlaps a stretch-enhancer active in islets. This region contains several highly correlated T2D-risk variants, including the rs140130268 indel. Expression QTL analysis of islet transcriptomes from three independent subject groups demonstrated that T2D-risk allele carriers displayed reduced levels of STARD10 mRNA, with no concomitant change in ARAP1 mRNA levels. Correspondingly, ß-cell-selective deletion of StarD10 in mice led to impaired glucose-stimulated Ca2+ dynamics and insulin secretion and recapitulated the pattern of improved proinsulin processing observed at the human GWAS signal. Conversely, overexpression of StarD10 in the adult ß cell improved glucose tolerance in high fat-fed animals. In contrast, manipulation of Arap1 in ß cells had no impact on insulin secretion or proinsulin conversion in mice. This convergence of human and murine data provides compelling evidence that the T2D risk associated with variation at this locus is mediated through reduction in STARD10 expression in the ß cell.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Insulina/metabolismo , Fosfoproteínas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alelos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Diabetes Mellitus Tipo 2/sangre , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica , Variación Genética , Homeostasis , Humanos , Insulina/sangre , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Hígado/metabolismo , Ratones , Proinsulina/sangre , Proinsulina/metabolismo , Sitios de Carácter Cuantitativo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA