Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 618(7963): 57-62, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36972685

RESUMEN

Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the semiconductor industry1,2. However, most studies in this field have been limited to the fabrication and characterization of isolated large (more than 1 µm2) devices on unfunctional SiO2-Si substrates. Some studies have integrated monolayer graphene on silicon microchips as a large-area (more than 500 µm2) interconnection3 and as a channel of large transistors (roughly 16.5 µm2) (refs. 4,5), but in all cases the integration density was low, no computation was demonstrated and manipulating monolayer 2D materials was challenging because native pinholes and cracks during transfer increase variability and reduce yield. Here, we present the fabrication of high-integration-density 2D-CMOS hybrid microchips for memristive applications-CMOS stands for complementary metal-oxide-semiconductor. We transfer a sheet of multilayer hexagonal boron nitride onto the back-end-of-line interconnections of silicon microchips containing CMOS transistors of the 180 nm node, and finalize the circuits by patterning the top electrodes and interconnections. The CMOS transistors provide outstanding control over the currents across the hexagonal boron nitride memristors, which allows us to achieve endurances of roughly 5 million cycles in memristors as small as 0.053 µm2. We demonstrate in-memory computation by constructing logic gates, and measure spike-timing dependent plasticity signals that are suitable for the implementation of spiking neural networks. The high performance and the relatively-high technology readiness level achieved represent a notable advance towards the integration of 2D materials in microelectronic products and memristive applications.

2.
Microsyst Nanoeng ; 10: 43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523655

RESUMEN

Pre-shaped microbeams, curved or inclined, are widely used in MEMS for their interesting stiffness properties. These mechanisms allow a wide range of positive and negative stiffness tuning in their direction of motion. A mechanism of pre-shaped beams with opposite curvature, connected in a parallel configuration, can be electrothermally tuned to reach a near-zero or negative stiffness behavior at the as-fabricated position. The simple structure helps incorporate the tunable spring mechanism in different designs for accelerometers, even with different transduction technologies. The sensitivity of the accelerometer can be considerably increased or tuned for different applications by electrothermally changing the stiffness of the spring mechanism. Opposite inclined beams are implemented in a capacitive micromachined accelerometer. The measurements on fabricated prototypes showed more than 55 times gain in sensitivity compared to their initial sensitivity. The experiments showed promising results in enhancing the resolution of acceleration sensing and the potential to reach unprecedent performance in micromachined accelerometers.

3.
Nanoscale ; 16(26): 12431-12444, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38904318

RESUMEN

Based on ferromagnetic thin film systems, spintronic devices show substantial prospects for energy-efficient memory, logic, and unconventional computing paradigms. This paper presents a multilayer ferromagnetic spintronic device's experimental and micromagnetic simulation-based realization for neuromorphic computing applications. The device exhibits a temperature-dependent magnetic field and current-controlled multilevel resistance state switching. To study the scalability of the multilayer spintronic devices for neuromorphic applications, we further simulated the scaled version of the multilayer system read using the magnetic tunnel junction (MTJ) configuration down to 64 nm width. We show the device applications in hardware neural networks using the multiple resistance states as the synaptic weights. A varying pulse amplitude scheme is also proposed to improve the device's weight linearity. The simulated device shows an energy dissipation of 1.23 fJ for a complete potentiation/depression. The neural network based on these devices was trained and tested on the MNIST dataset using a supervised learning algorithm. When integrated as a weight into a 3-layer, fully connected neural network, these devices achieve recognition accuracy above 90% on the MNIST dataset. Thus, the proposed device demonstrates significant potential for neuromorphic computing applications.

4.
ACS Appl Mater Interfaces ; 15(1): 2319-2328, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36573579

RESUMEN

Superconducting coplanar waveguide (CPW) microwave resonators in quantum circuits are the best components for reading and changing the state of artificial atoms because of their excellent coupling to quantum systems. This coupling forms the basis of the developing circuit quantum electrodynamic architecture. In quantum processors, oscillators are used to store and transmit quantum information using microwave-frequency wave packets. However, the presence of amorphous thin-film defects is deleterious and can result in an irrevocable loss of coherent information with uncontrolled degrees of freedom. Although there has been extensive research into techniques to reduce the coherent loss of such devices, the precise structure of amorphous dielectric layers on surfaces and interfaces and their associated loss mechanism are being actively studied. In particular, planar superconducting resonators are very sensitive to defects on their surfaces, such as two-level systems in oxidized metals and nonequilibrium quasiparticles, making these devices suitable probes for the different loss mechanisms. In this work, we present the design, fabrication, and characterization of Nb CPW resonators with different surface treatments with self-assembled monolayers (SAMs), which mitigate the growth of oxides in superconducting circuits. We demonstrate SAM-passivated resonators having internal quality factors of greater than 106 at a single-photon excitation power (measured at 100 mK), which were probed using scanning electron microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy to demonstrate the efficiency of our surface treatment. Finally, we compared the improvements in the experimental quality factors to those obtained by numerical simulation.

5.
Microsyst Nanoeng ; 9: 42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025566

RESUMEN

Computational power density and interconnection between transistors have grown to be the dominant challenges for the continued scaling of complementary metal-oxide-semiconductor (CMOS) technology due to limited integration density and computing power. Herein, we designed a novel, hardware-efficient, interconnect-free microelectromechanical 7:3 compressor using three microbeam resonators. Each resonator is configured with seven equal-weighted inputs and multiple driven frequencies, thus defining the transformation rules for transmitting resonance frequency to binary outputs, performing summation operations, and displaying outputs in compact binary format. The device achieves low power consumption and excellent switching reliability even after 3 × 103 repeated cycles. These performance improvements, including enhanced computational power capacity and hardware efficiency, are paramount for moderately downscaling devices. Finally, our proposed paradigm shift for circuit design provides an attractive alternative to traditional electronic digital computing and paves the way for multioperand programmable computing based on electromechanical systems.

6.
Micromachines (Basel) ; 12(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34832758

RESUMEN

Field-free switching in perpendicular magnetic tunnel junctions (P-MTJs) can be achieved by combined injection of spin-transfer torque (STT) and spin-orbit torque (SOT) currents. In this paper, we derived the relationship between the STT and SOT critical current densities under combined injection. We included the damping-like torque (DLT) and field-like torque (FLT) components of both the STT and SOT. The results were derived when the ratio of the FLT to the DLT component of the SOT was positive. We observed that the relationship between the critical SOT and STT current densities depended on the damping constant and the magnitude of the FLT component of the STT and the SOT current. We also noted that, unlike the FLT component of SOT, the magnitude and sign of the FLT component of STT did not have a significant effect on the STT and SOT current densities required for switching. The derived results agreed well with micromagnetic simulations. The results of this work can serve as a guideline to model and develop spintronic devices using a combined injection of STT and SOT currents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA