Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 26(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34641313

RESUMEN

Aldehyde dehydrogenase 1A3 (ALDH1A3) has recently gained attention from researchers in the cancer field. Several studies have reported ALDH1A3 overexpression in different cancer types, which has been found to correlate with poor treatment recovery. Therefore, finding selective inhibitors against ALDH1A3 could result in new treatment options for cancer treatment. In this study, ALDH1A3-selective candidates were designed based on the physiological substrate resemblance, synthesized and investigated for ALDH1A1, ALDH1A3 and ALDH3A1 selectivity and cytotoxicity using ALDH-positive A549 and ALDH-negative H1299 cells. Two compounds (ABMM-15 and ABMM-16), with a benzyloxybenzaldehyde scaffold, were found to be the most potent and selective inhibitors for ALDH1A3, with IC50 values of 0.23 and 1.29 µM, respectively. The results also show no significant cytotoxicity for ABMM-15 and ABMM-16 on either cell line. However, a few other candidates (ABMM-6, ABMM-24, ABMM-32) showed considerable cytotoxicity on H1299 cells, when compared to A549 cells, with IC50 values of 14.0, 13.7 and 13.0 µM, respectively. The computational study supported the experimental results and suggested a good binding for ABMM-15 and ABMM-16 to the ALDH1A3 isoform. From the obtained results, it can be concluded that benzyloxybenzaldehyde might be considered a promising scaffold for further drug discovery aimed at exploiting ALDH1A3 for therapeutic intervention.


Asunto(s)
Aldehído Oxidorreductasas/antagonistas & inhibidores , Benzaldehídos/síntesis química , Inhibidores Enzimáticos/síntesis química , Neoplasias/enzimología , Células A549 , Benzaldehídos/química , Benzaldehídos/farmacología , Línea Celular Tumoral , Simulación por Computador , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Estructura Molecular , Neoplasias/tratamiento farmacológico
2.
Arch Biochem Biophys ; 681: 108256, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31923393

RESUMEN

Aldehyde dehydrogenases catalyze the NAD(P)+-dependent oxidation of aldehydes to their corresponding carboxylic acids. The three-dimensional structures of the human ALDH1A enzymes were recently obtained, while a complete kinetic characterization of them, under the same experimental conditions, is lacking. We show that the three enzymes, ALDH1A1, ALDH1A2 and ALDH1A3, have similar topologies, although with decreasing volumes in their substrate-binding pockets. The activity with aliphatic and retinoid aldehydes was characterized side-by-side, using an improved HPLC-based method for retinaldehyde. Hexanal was the most efficient substrate. ALDH1A1 displayed lower Km values with hexanal, trans-2-hexenal and citral, compared to ALDH1A2 and ALDH1A3. ALDH1A2 was the best enzyme for the lipid peroxidation product, 4-hydroxy-2-nonenal, in terms of kcat/Km. The catalytic efficiency towards all-trans and 9-cis-retinaldehyde was in general lower than for alkanals and alkenals. ALDH1A2 and ALDH1A3 showed higher catalytic efficiency for all-trans-retinaldehyde. The lower specificity of ALDH1A3 for 9-cis-retinaldehyde against the all-trans- isomer might be related to the smaller volume of its substrate-binding pocket. Magnesium inhibited ALDH1A1 and ALDH1A2, while it activated ALDH1A3, which is consistent with cofactor dissociation being the rate-limiting step for ALDH1A1 and ALDH1A2, and deacylation for ALDH1A3, with hexanal as a substrate. We mutated both ALDH1A1 (L114P) and ALDH1A2 (N475G, A476V, L477V, N478S) to mimic their counterpart substrate-binding pockets. ALDH1A1 specificity for citral was traced to residue 114 and to residues 458 to 461. Regarding retinaldehyde, the mutants did not show significant differences with their respective wild-type forms, suggesting that the mutated residues are not critical for retinoid specificity.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/metabolismo , Aldehído Oxidorreductasas/metabolismo , Células Madre Neoplásicas/metabolismo , Retinal-Deshidrogenasa/metabolismo , Tretinoina/metabolismo , Humanos , Magnesio/metabolismo , Modelos Moleculares , Células Madre Neoplásicas/patología , Retinaldehído/metabolismo , Especificidad por Sustrato
3.
Org Biomol Chem ; 18(25): 4788-4801, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32530010

RESUMEN

Human aldo-keto reductases (AKRs) are enzymes involved in the reduction, among other substrates, of all-trans-retinal to all-trans-retinol (vitamin A), thus contributing to the control of the levels of retinoids in organisms. Structure-activity relationship studies of a series of C11-to-C14 methyl-shifted (relative to natural C13-methyl) all-trans-retinal analogues as putative substrates of AKRs have been reported. The synthesis of these retinoids was based on the formation of a C10-C11 single bond of the pentaene skeleton starting from a trienyl iodide and the corresponding dienylstannanes and dienylsilanes, using the Stille-Kosugi-Migita and Hiyama-Denmark cross-coupling reactions, respectively. Since these reagents differ by the location and presence of methyl groups at the dienylorganometallic fragment, the study also provided insights into the ability of the different positional isomers to undergo cross-coupling and the sensitivity of these processes to steric hindrance. The resulting C11-to-C14 methyl-shifted all-trans-retinal analogues were found to be active substrates when tested with AKR1B1 and AKR1B10 enzymes, although relevant differences in substrate specificities were noted. For AKR1B1, all analogues exhibited higher catalytic efficiency (kcat/Km) than parent all-trans-retinal. In addition, only all-trans-11-methylretinal, the most hydrophobic derivative, showed a higher value of kcat/Km = 106 000 ± 23 200 mM-1 min-1 for AKR1B10, which is in fact the highest value from all known retinoid substrates of this enzyme. The novel structures, identified as efficient AKR substrates, may serve in the design of selective inhibitors with potential pharmacological interest.


Asunto(s)
Aldo-Ceto Reductasas/antagonistas & inhibidores , Tretinoina/farmacología , Aldo-Ceto Reductasas/metabolismo , Humanos , Estructura Molecular , Tretinoina/síntesis química , Tretinoina/química
4.
BMC Genomics ; 15: 216, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24649825

RESUMEN

BACKGROUND: The alcohol dehydrogenase (ADH) gene family uniquely illustrates the concept of enzymogenesis. In vertebrates, tandem duplications gave rise to a multiplicity of forms that have been classified in eight enzyme classes, according to primary structure and function. Some of these classes appear to be exclusive of particular organisms, such as the frog ADH8, a unique NADP+-dependent ADH enzyme. This work describes the ADH system of Xenopus, as a model organism, and explores the first amphibian and reptilian genomes released in order to contribute towards a better knowledge of the vertebrate ADH gene family. RESULTS: Xenopus cDNA and genomic sequences along with expressed sequence tags (ESTs) were used in phylogenetic analyses and structure-function correlations of amphibian ADHs. Novel ADH sequences identified in the genomes of Anolis carolinensis (anole lizard) and Pelodiscus sinensis (turtle) were also included in these studies. Tissue and stage-specific libraries provided expression data, which has been supported by mRNA detection in Xenopus laevis tissues and regulatory elements in promoter regions. Exon-intron boundaries, position and orientation of ADH genes were deduced from the amphibian and reptilian genome assemblies, thus revealing syntenic regions and gene rearrangements with respect to the human genome. Our results reveal the high complexity of the ADH system in amphibians, with eleven genes, coding for seven enzyme classes in Xenopus tropicalis. Frogs possess the amphibian-specific ADH8 and the novel ADH1-derived forms ADH9 and ADH10. In addition, they exhibit ADH1, ADH2, ADH3 and ADH7, also present in reptiles and birds. Class-specific signatures have been assigned to ADH7, and ancestral ADH2 is predicted to be a mixed-class as the ostrich enzyme, structurally close to mammalian ADH2 but with class-I kinetic properties. Remarkably, many ADH1 and ADH7 forms are observed in the lizard, probably due to lineage-specific duplications. ADH4 is not present in amphibians and reptiles. CONCLUSIONS: The study of the ancient forms of ADH2 and ADH7 sheds new light on the evolution of the vertebrate ADH system, whereas the special features showed by the novel forms point to the acquisition of new functions following the ADH gene family expansion which occurred in amphibians.


Asunto(s)
Alcohol Deshidrogenasa/genética , Anfibios/genética , Genoma , Reptiles/genética , Xenopus/metabolismo , Alcohol Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Animales , Evolución Molecular , Etiquetas de Secuencia Expresada , Femenino , Biblioteca de Genes , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas , Alineación de Secuencia , Xenopus/genética
5.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 889-903, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24598757

RESUMEN

Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved (α/ß)8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-NADP(+)-JF0064 complex has been determined at 0.85 Šresolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallographic structure of the corresponding AKR1B10-NADP(+)-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/química , Diseño de Fármacos , Aldo-Ceto Reductasas , Ácidos Carboxílicos/química , Cristalografía por Rayos X , Estabilidad de Enzimas/efectos de los fármacos , Halógenos , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , NADP/química , Proteínas Recombinantes/química
6.
J Cancer ; 15(6): 1657-1667, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370384

RESUMEN

Colorectal cancer (CRC) is the leading cause of cancer death, but little is known about its etiopathology. Aldo-keto reductase 1B10 (AKR1B10) protein is primarily expressed in intestinal epithelial cells, but lost in colorectal cancer tissues. This study revealed that AKR1B10 may not be a prognostic but an etiological factor in colorectal tumorigenesis. Using a tissue microarray, we investigated the expression of AKR1B10 in tumor tissues of 592 colorectal cancer patients with a mean follow-up of 25 years. Results exhibited that AKR1B10 protein was undetectable in 374 (63.13%), weakly positive in 146 (24.66%), and positive 72 (12.16%) of 592 tumor tissues. Kaplan-Meier analysis showed that AKR1B10 expression was not correlated with overall survival or disease-free survival. Similar results were obtained in various survival analyses stratified by clinicopathological parameters. AKR1B10 was not correlated with tumor T-pathology, N-pathology, TNM stages, cell differentiation and lymph node/regional/distant metastasis either. However, AKR1B10 silencing in culture cells enhanced carbonyl induced protein and DNA damage; and in ulcerative colitis tissues, AKR1B10 deficiency was associated acrolein-protein lesions. Together this study suggests that AKR1B10 downregulation may not be a prognostic but a carcinogenic factor of colorectal cancer.

7.
Cell Mol Life Sci ; 68(6): 1065-77, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20835842

RESUMEN

Human ζ-crystallin is a Zn(2+)-lacking medium-chain dehydrogenase/reductase (MDR) included in the quinone oxidoreductase (QOR) family because of its activity with quinones. In the present work a novel enzymatic activity was characterized: the double bond α,ß-hydrogenation of medium-chain 2-alkenals and 3-alkenones. The enzyme is especially active with lipid peroxidation products such as 4-hydroxyhexenal, and a role in their detoxification is discussed. This specificity is novel in the QOR family, and it is similar to that described in the distantly related alkenal/one reductase family. Moreover, we report the X-ray structure of ζ-crystallin, which represents the first structure solved for a tetrameric Zn(2+)-lacking MDR, and which allowed the identification of the active-site lining residues. Docking simulations suggest a role for Tyr53 and Tyr59 in catalysis. The kinetics of Tyr53Phe and Tyr59Phe mutants support the implication of Tyr53 in binding/catalysis of alkenal/one substrates, while Tyr59 is involved in the recognition of 4-OH-alkenals.


Asunto(s)
Modelos Moleculares , zeta-Cristalinas/química , zeta-Cristalinas/metabolismo , Aldehídos/metabolismo , Catálisis , Clonación Molecular , Cristalografía por Rayos X , Cartilla de ADN/genética , Cromatografía de Gases y Espectrometría de Masas , Humanos , Hidrogenación , Cinética , Estructura Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Especificidad por Sustrato , zeta-Cristalinas/aislamiento & purificación
8.
Biochem J ; 440(3): 335-44, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21851338

RESUMEN

Human AKR (aldo-keto reductase) 1C proteins (AKR1C1-AKR1C4) exhibit relevant activity with steroids, regulating hormone signalling at the pre-receptor level. In the present study, investigate the activity of the four human AKR1C enzymes with retinol and retinaldehyde. All of the enzymes except AKR1C2 showed retinaldehyde reductase activity with low Km values (~1 µM). The kcat values were also low (0.18-0.6 min-1), except for AKR1C3 reduction of 9-cis-retinaldehyde whose kcat was remarkably higher (13 min-1). Structural modelling of the AKR1C complexes with 9-cis-retinaldehyde indicated a distinct conformation of Trp227, caused by changes in residue 226 that may contribute to the activity differences observed. This was partially supported by the kinetics of the AKR1C3 R226P mutant. Retinol/retinaldehyde conversion, combined with the use of the inhibitor flufenamic acid, indicated a relevant role for endogenous AKR1Cs in retinaldehyde reduction in MCF-7 breast cancer cells. Overexpression of AKR1C proteins depleted RA (retinoic acid) transactivation in HeLa cells treated with retinol. Thus AKR1Cs may decrease RA levels in vivo. Finally, by using lithocholic acid as an AKR1C3 inhibitor and UVI2024 as an RA receptor antagonist, we provide evidence that the pro-proliferative action of AKR1C3 in HL-60 cells involves the RA signalling pathway and that this is in part due to the retinaldehyde reductase activity of AKR1C3.


Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Retinaldehído/química , 20-Hidroxiesteroide Deshidrogenasas/química , 3-Hidroxiesteroide Deshidrogenasas/química , 3-Hidroxiesteroide Deshidrogenasas/genética , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Sustitución de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular , Humanos , Hidroxiprostaglandina Deshidrogenasas/química , Hidroxiprostaglandina Deshidrogenasas/genética , Hidroxiesteroide Deshidrogenasas/química , Hidroxiesteroide Deshidrogenasas/metabolismo , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Unión Proteica , Receptores de Ácido Retinoico/antagonistas & inhibidores , Receptores de Ácido Retinoico/metabolismo , Retinaldehído/farmacología , Retinaldehído/fisiología , Especificidad por Sustrato , Activación Transcripcional , Vitamina A/química , Vitamina A/farmacología , Vitamina A/fisiología
9.
Commun Biol ; 5(1): 354, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418200

RESUMEN

Human aldehyde dehydrogenase (ALDH) participates in the oxidative stress response and retinoid metabolism, being involved in several diseases, including cancer, diabetes and obesity. The ALDH1A3 isoform has recently elicited wide interest because of its potential use as a cancer stem cell biomarker and drug target. We report high-resolution three-dimensional ALDH1A3 structures for the apo-enzyme, the NAD+ complex and a binary complex with ATP. Each subunit of the ALDH1A3-ATP complex contains one ATP molecule bound to the adenosine-binding pocket of the cofactor-binding site. The ATP complex also shows a molecule, putatively identified as a polyethylene glycol aldehyde, covalently bound to the active-site cysteine. This mimics the thioacyl-enzyme catalytic intermediate, which is trapped in a dead enzyme lacking an active cofactor. At physiological concentrations, ATP inhibits the dehydrogenase activity of ALDH1A3 and other isoforms, with a Ki value of 0.48 mM for ALDH1A3, showing a mixed inhibition type against NAD+. ATP also inhibits esterase activity in a concentration-dependent manner. The current ALDH1A3 structures at higher resolution will facilitate the rational design of potent and selective inhibitors. ATP binding to ALDH1A3 enables activity modulation by the energy status of the cell and metabolic reprogramming, which may be relevant in several disease conditions.


Asunto(s)
Adenosina Trifosfato , Aldehído Oxidorreductasas , Biomarcadores de Tumor , Neoplasias , Adenosina Trifosfato/metabolismo , Aldehído Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/metabolismo , Biomarcadores de Tumor/metabolismo , Humanos , NAD/metabolismo , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo
10.
J Med Chem ; 65(5): 3833-3848, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35212533

RESUMEN

Aldehyde dehydrogenases (ALDHs) are overexpressed in various tumor types including prostate cancer and considered a potential target for therapeutic intervention. 4-(Diethylamino)benzaldehyde (DEAB) has been extensively reported as a pan-inhibitor of ALDH isoforms, and here, we report on the synthesis, ALDH isoform selectivity, and cellular potencies in prostate cancer cells of 40 DEAB analogues; three analogues (14, 15, and 16) showed potent inhibitory activity against ALDH1A3, and two analogues (18 and 19) showed potent inhibitory activity against ALDH3A1. Significantly, 16 analogues displayed increased cytotoxicity (IC50 = 10-200 µM) compared with DEAB (>200 µM) against three different prostate cancer cell lines. Analogues 14 and 18 were more potent than DEAB against patient-derived primary prostate tumor epithelial cells, as single agents or in combination treatment with docetaxel. In conclusion, our study supports the use of DEAB as an ALDH inhibitor but also reveals closely related analogues with increased selectivity and potency.


Asunto(s)
Aldehído Deshidrogenasa , Neoplasias de la Próstata , Benzaldehídos , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico
11.
Metabolites ; 11(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34940623

RESUMEN

Human aldo-keto reductase 1B10 (AKR1B10) is overexpressed in many cancer types and is involved in chemoresistance. This makes AKR1B10 to be an interesting drug target and thus many enzyme inhibitors have been investigated. High-resolution crystallographic structures of AKR1B10 with various reversible inhibitors were deeply analyzed and compared to those of analogous complexes with aldose reductase (AR). In both enzymes, the active site included an anion-binding pocket and, in some cases, inhibitor binding caused the opening of a transient specificity pocket. Different structural conformers were revealed upon inhibitor binding, emphasizing the importance of the highly variable loops, which participate in the transient opening of additional binding subpockets. Two key differences between AKR1B10 and AR were observed regarding the role of external loops in inhibitor binding. The first corresponded to the alternative conformation of Trp112 (Trp111 in AR). The second difference dealt with loop A mobility, which defined a larger and more loosely packed subpocket in AKR1B10. From this analysis, the general features that a selective AKR1B10 inhibitor should comply with are the following: an anchoring moiety to the anion-binding pocket, keeping Trp112 in its native conformation (AKR1B10-like), and not opening the specificity pocket in AR.

12.
J Biol Chem ; 284(25): 17194-17205, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19349281

RESUMEN

Tumor suppressor p53 regulates the expression of p53-induced genes (PIG) that trigger apoptosis. PIG3 or TP53I3 is the only known member of the medium chain dehydrogenase/reductase superfamily induced by p53 and is used as a proapoptotic marker. Although the participation of PIG3 in the apoptotic pathway is proven, the protein and its mechanism of action were never characterized. We analyzed human PIG3 enzymatic function and found NADPH-dependent reductase activity with ortho-quinones, which is consistent with the classification of PIG3 in the quinone oxidoreductase family. However, the activity is much lower than that of zeta-crystallin, a better known quinone oxidoreductase. In addition, we report the crystallographic structure of PIG3, which allowed the identification of substrate- and cofactor-binding sites, with residues fully conserved from bacteria to human. Tyr-59 in zeta-crystallin (Tyr-51 in PIG3) was suggested to participate in the catalysis of quinone reduction. However, kinetics of Tyr/Phe and Tyr/Ala mutants of both enzymes demonstrated that the active site Tyr is not catalytic but may participate in substrate binding, consistent with a mechanism based on propinquity effects. It has been proposed that PIG3 contribution to apoptosis would be through oxidative stress generation. We found that in vitro activity and in vivo overexpression of PIG3 accumulate reactive oxygen species. Accordingly, an inactive PIG3 mutant (S151V) did not produce reactive oxygen species in cells, indicating that enzymatically active protein is necessary for this function. This supports that PIG3 action is through oxidative stress produced by its enzymatic activity and provides essential knowledge for eventual control of apoptosis.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Apoptosis/fisiología , Sitios de Unión , Dominio Catalítico/genética , Cristalografía por Rayos X , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , NADP/metabolismo , Filogenia , Estructura Cuaternaria de Proteína , Proteínas Proto-Oncogénicas/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Proteína p53 Supresora de Tumor/metabolismo , Tirosina/química
13.
Proc Natl Acad Sci U S A ; 104(52): 20764-9, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18087047

RESUMEN

AKR1B10 is a human aldo-keto reductase (AKR) found to be elevated in several cancer types and in precancerous lesions. In vitro, AKR1B10 exhibits a much higher retinaldehyde reductase activity than any other human AKR, including AKR1B1 (aldose reductase). We here demonstrate that AKR1B10 also acts as a retinaldehyde reductase in vivo. This activity may be relevant in controlling the first step of retinoic acid synthesis. Up-regulation of AKR1B10, resulting in retinoic acid depletion, may lead to cellular proliferation. Both in vitro and in vivo activities of AKR1B10 were inhibited by tolrestat, an AKR1B1 inhibitor developed for diabetes treatment. The crystal structure of the ternary complex AKR1B10-NADP(+)-tolrestat was determined at 1.25-A resolution. Molecular dynamics models of AKR1B10 and AKR1B1 with retinaldehyde isomers and site-directed mutagenesis show that subtle differences at the entrance of the retinoid-binding site, especially at position 125, are determinant for the all-trans-retinaldehyde specificity of AKR1B10. Substitutions in the retinaldehyde cyclohexene ring also influence the specificity. These structural features should facilitate the design of specific inhibitors, with potential use in cancer and diabetes treatments.


Asunto(s)
Aldehído Reductasa/química , Aldehído Reductasa/fisiología , Regulación Neoplásica de la Expresión Génica , Oxidorreductasas/metabolismo , Retinaldehído/química , Tretinoina , Oxidorreductasas de Alcohol/metabolismo , Aldehído Reductasa/metabolismo , Aldo-Ceto Reductasas , Animales , Biomarcadores de Tumor/metabolismo , Células COS , Chlorocebus aethiops , Simulación por Computador , Cristalografía por Rayos X , Humanos , Naftalenos/farmacología , Conformación Proteica , Estructura Terciaria de Proteína , Tretinoina/metabolismo
14.
Chem Biol Interact ; 307: 186-194, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31028727

RESUMEN

The aldo-keto reductase (AKR) superfamily comprises NAD(P)H-dependent enzymes that catalyze the reduction of a variety of carbonyl compounds. AKRs are classified in families and subfamilies. Humans exhibit three members of the AKR1B subfamily: AKR1B1 (aldose reductase, participates in diabetes complications), AKR1B10 (overexpressed in several cancer types), and the recently described AKR1B15. AKR1B10 and AKR1B15 share 92% sequence identity, as well as the capability of being active towards retinaldehyde. However, AKR1B10 and AKR1B15 exhibit strong differences in substrate specificity and inhibitor selectivity. Remarkably, their substrate-binding sites are the most divergent parts between them. Out of 27 residue substitutions, six are changes to Phe residues in AKR1B15. To investigate the participation of these structural changes, especially the Phe substitutions, in the functional features of each enzyme, we prepared two AKR1B10 mutants. The AKR1B10 m mutant carries a segment of six AKR1B15 residues (299-304, including three Phe residues) in the respective AKR1B10 region. An additional substitution (Val48Phe) was incorporated in the second mutant, AKR1B10mF48. This resulted in structures with smaller and more hydrophobic binding pockets, more similar to that of AKR1B15. In general, the AKR1B10 mutants mirrored well the specific functional features of AKR1B15, i.e., the different preferences towards the retinaldehyde isomers, the much higher activity with steroids and ketones, and the unique behavior with inhibitors. It can be concluded that the Phe residues of loop C (299-304) contouring the substrate-binding site, in addition to Phe at position 48, strongly contribute to a narrower and more hydrophobic site in AKR1B15, which would account for its functional uniqueness. In addition, we have investigated the AKR1B10 and AKR1B15 activity toward steroids. While AKR1B10 only exhibits residual activity, AKR1B15 is an efficient 17-ketosteroid reductase. Finally, the functional role of AKR1B15 in steroid and retinaldehyde metabolism is discussed.


Asunto(s)
Aldo-Ceto Reductasas/metabolismo , Ingeniería de Proteínas , Retinoides/metabolismo , Esteroides/metabolismo , Aldo-Ceto Reductasas/antagonistas & inhibidores , Aldo-Ceto Reductasas/genética , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Isomerismo , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Retinaldehído/química , Retinaldehído/metabolismo , Retinoides/química , Alineación de Secuencia , Esteroides/química , Especificidad por Sustrato
15.
Chem Biol Interact ; 306: 123-130, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30958995

RESUMEN

Aldehyde dehydrogenases (ALDHs) are enzymes catalyzing the NAD(P)+-dependent oxidation of aldehydes to their corresponding carboxylic acids. High ALDH activity has been related to some important features of cancer stem cells. ALDH1A enzymes, involved in the retinoic acid signaling pathway, are promising drug targets for cancer therapy, and the design of selective ALDH1A inhibitors has a growing pharmacological interest. In the present work, two already known compounds (DEAB and WIN 18,446) and novel thiazolidinedione and pyrimido quinoline acetic acid derivatives (compounds 5a and 64, formerly described as aldo-keto reductase inhibitors) were tested as inhibitors of the ALDH1A enzymes (namely, ALDH1A1, ALDH1A2 and ALDH1A3) as a first step to develop some potential drugs for cancer therapy. The inhibitory capacity of these compounds against the ALDH1A activity was characterized in vitro by using purified recombinant proteins. The IC50 values of each compound were determined indicating that the most potent inhibitors against ALDH1A1, ALDH1A2 and ALDH1A3 were DEAB, WIN 18,446 and compound 64, respectively. Type of inhibition and Ki values were determined for DEAB against ALDH1A1 (competitive, Ki = 0.13 µM) and compound 64 against ALDH1A3 (non-competitive, Ki = 1.77 µM). The effect of these inhibitors on A549 human lung cancer cell viability was assessed, being compound 64 the only inhibitor showing an important reduction of cell survival. We also tested the effect of the ALDH substrate, retinaldehyde, which was cytotoxic above 10 µM. This toxicity was enhanced in the presence of DEAB. Both DEAB and compound 64 were able to inhibit the ALDH1A activity in A549 cells. The current work suggests that, by blocking ALDH activity, drug inactivation may be avoided. Thus these results may be relevant to design novel combination therapies to fight cancer cell chemoresistance, using both enzyme inhibitors and chemotherapeutic agents.


Asunto(s)
Aldehído Deshidrogenasa/antagonistas & inhibidores , Aldehído Oxidorreductasas/antagonistas & inhibidores , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Retinal-Deshidrogenasa/antagonistas & inhibidores , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Aldehído Oxidorreductasas/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Cinética , Estructura Molecular , Retinal-Deshidrogenasa/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
16.
Sci Rep ; 9(1): 3177, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816220

RESUMEN

Human aldose reductase (hAR, AKR1B1) has been explored as drug target since the 1980s for its implication in diabetic complications. An activated form of hAR was found in cells from diabetic patients, showing a reduced sensitivity to inhibitors in clinical trials, which may prevent its pharmacological use. Here we report the conversion of native hAR to its activated form by X-ray irradiation simulating oxidative stress conditions. Upon irradiation, the enzyme activity increases moderately and the potency of several hAR inhibitors decay before global protein radiation damage appears. The catalytic behavior of activated hAR is also reproduced as the KM increases dramatically while the kcat is not much affected. Consistently, the catalytic tetrad is not showing any modification. The only catalytically-relevant structural difference observed is the conversion of residue Cys298 to serine and alanine. A mechanism involving electron capture is suggested for the hAR activation. We propose that hAR inhibitors should not be designed against the native protein but against the activated form as obtained from X-ray irradiation. Furthermore, since the reactive species produced under irradiation conditions are the same as those produced under oxidative stress, the described irradiation method can be applied to other relevant proteins under oxidative stress environments.


Asunto(s)
Aldehído Reductasa/genética , Inhibidores Enzimáticos/farmacología , Estrés Oxidativo/efectos de la radiación , Alanina/genética , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/efectos de la radiación , Catálisis/efectos de los fármacos , Catálisis/efectos de la radiación , Microambiente Celular/efectos de la radiación , Activación Enzimática/efectos de la radiación , Inhibidores Enzimáticos/efectos de la radiación , Humanos , Oxidación-Reducción , Estrés Oxidativo/genética , Serina/genética , Rayos X
17.
Mol Vis ; 14: 1496-502, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18709137

RESUMEN

PURPOSE: Cortistatin (CST), a neuropeptide with strong structural and functional similarities to somatostatin, is abundant in the vitreous fluid, and it is decreased in patients with proliferative diabetic retinopathy. The aims of the present study were to explore whether the retina produces CST, and to compare its expression between diabetic and nondiabetic donors. Retinal neurodegeneration was assessed by measuring glial fibrilar acidic protein (GFAP) by confocal laser microscopy and counting the apoptotic TUNEL positive cells in which nuclear fragmentation as well as condensation were present. METHODS: Human postmortem eyes (10) from five diabetic donors were compared with 10 eyes from five nondiabetic donors, matched by age. CST mRNA (RT-PCR) and CST (confocal laser microscopy) were measured separately in both the neuroretina and retinal pigment epithelium (RPE). Retinal neurodegeneration was assessed by measuring glial fibrillar acidic protein (GFAP) by confocal laser microscopy and counting the apoptotic cells by TUNEL. RESULTS: CST was found to be produced by the human retina, and higher levels of CST mRNA were found in RPE than in the neuroretina. CST mRNA levels in diabetic donors were significantly lower in both the RPE (p=0.001) and the neuroretina (p=0.03) in comparison with nondiabetic donors. CST immunofluorescence was in agreement with mRNA expression, but the differences were only significant when comparing neuroretinas (p=0.03). Increased GFAP and a higher degree of apoptosis were observed in diabetic retinas in comparison with nondiabetic retinas. These changes were inversely related with CST levels. CONCLUSIONS: CST is expressed in the human retina. There is more CST in the RPE than in the neuroretina. A lower expression of CST exists in diabetic retinas and it is associated with retinal neurodegeneration.


Asunto(s)
Apoptosis , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Neuroglía/patología , Neuropéptidos/metabolismo , Retina/metabolismo , Retina/patología , Anciano , Estudios de Casos y Controles , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Degeneración Nerviosa/patología , Donantes de Tejidos
18.
Eur J Med Chem ; 152: 160-174, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29705708

RESUMEN

Human aldose reductase (AKR1B1, AR) is a key enzyme of the polyol pathway, catalyzing the reduction of glucose to sorbitol at high glucose concentrations, as those found in diabetic condition. Indeed, AKR1B1 overexpression is related to diabetes secondary complications and, in some cases, with cancer. For many years, research has been focused on finding new AKR1B1 inhibitors (ARIs) to overcome these diseases. Despite the efforts, most of the new drug candidates failed because of their poor pharmacokinetic properties and/or unacceptable side effects. Here we report the synthesis of a series of 1-oxopyrimido[4,5-c]quinoline-2-acetic acid derivatives as novel ARIs. IC50 assays and X-ray crystallographic studies proved that these compounds are promising hits for further drug development, with high potency and selectivity against AKR1B1. Based on the determined X-ray structures with hit-to-lead compounds, we designed and synthesized a second series that yielded lead compound 68 (Kiappvs. AKR1B1 = 73 nM). These compounds are related to the previously reported 2-aminopyrimido[4,5-c]quinolin-1(2H)-ones, which exhibit antimitotic activity. Regardless of their similarity, the 2-amino compounds are unable to inhibit AKR1B1 while the 2-acetic acid derivatives are not cytotoxic against fibrosarcoma HT-1080 cells. Thus, the replacement of the amino group by an acetic acid moiety changes their biological activity, improving their potency as ARIs.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Quinolinas/farmacología , Aldehído Reductasa/metabolismo , Aldo-Ceto Reductasas , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad
19.
Novartis Found Symp ; 285: 158-77; discussion 177-82, 198-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17590994

RESUMEN

Alcoholic myopathy is characterized by biochemical and morphological lesions within muscle, ranging from impairment of muscle strength and loss of lean tissue to cellular disturbances and altered gene expression. The chronic form of the disease is five times more common than cirrhosis and is characterized by selective atrophy of type 11 (anaerobic) fibres: type I (aerobic) fibres are relatively protected. Although the causative agent is known (i.e. ethanol), the intervening steps between alcohol ingestion and the development of symptoms and lesions are poorly understood. However, acetaldehyde appears to have an important role in the aetiology of the disease. For example, alcohol is a potent perturbant of muscle protein synthesis in vivo, and this effect is exacerbated by cyanamide pre-dosage, which raises acetaldehyde concentrations. Acetaldehyde alone also reduces muscle protein synthesis in vivo and proteolytic activity in vitro. The formation of acetaldehyde protein adducts is another mechanism of putative importance in alcoholic myopathy. These adducts are formed within muscle in response to either acute or chronic alcohol exposure and the adducts are located preferentially within the sarcolemmal and sub-sarcolemmal regions. However, the significance of protein adduct formation is unclear since we do not currently know the identity of the adducted muscle proteins nor whether adduction alters the biochemical or functional properties of skeletal muscle proteins.


Asunto(s)
Acetaldehído/metabolismo , Trastornos Inducidos por Alcohol/metabolismo , Modelos Animales de Enfermedad , Etanol/toxicidad , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Enfermedades Musculares/metabolismo , Alcohol Deshidrogenasa/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Trastornos Inducidos por Alcohol/patología , Animales , Catalasa/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Proteínas Musculares/biosíntesis , Músculo Esquelético/patología , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/patología , Ratas , Ratas Wistar
20.
Biochem J ; 399(1): 101-9, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16787387

RESUMEN

Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low K(m) values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low K(m) values for retinoids (0.12-1.1 microM), whilst they strongly differ in their kcat values, which range from 0.35 min(-1) for AKR1B1 to 302 min(-1) for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo.


Asunto(s)
Acil-CoA Deshidrogenasa/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Butiril-CoA Deshidrogenasa/metabolismo , Retinoides/metabolismo , Aldehído Reductasa , Aldo-Ceto Reductasas , Animales , Línea Celular , Regulación Enzimológica de la Expresión Génica , Humanos , Insectos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA