RESUMEN
PURPOSE: Changes in microcirculation of axillary lymph nodes (ALNs) may indicate metastasis. Reliable noninvasive imaging technique to quantify such variations is lacking. We aim to develop and investigate a contrast-free ultrasound quantitative microvasculature imaging technique for detection of metastatic ALN in vivo. EXPERIMENTAL DESIGN: The proposed ultrasound-based technique, high-definition microvasculature imaging (HDMI) provides superb images of tumor microvasculature at sub-millimeter size scales and enables quantitative analysis of microvessels structures. We evaluated the new HDMI technique on 68 breast cancer patients with ultrasound-identified suspicious ipsilateral axillary lymph nodes recommended for fine needle aspiration biopsy (FNAB). HDMI was conducted before the FNAB and vessel morphological features were extracted, analyzed, and the results were correlated with the histopathology. RESULTS: Out of 15 evaluated quantitative HDMI biomarkers, 11 were significantly different in metastatic and reactive ALNs (10 with P << 0.01 and one with 0.01 < P < 0.05). We further showed that through analysis of these biomarkers, a predictive model trained on HDMI biomarkers combined with clinical information (i.e., age, node size, cortical thickness, and BI-RADS score) could identify metastatic lymph nodes with an area under the curve of 0.9 (95% CI [0.82,0.98]), sensitivity of 90%, and specificity of 88%. CONCLUSIONS: The promising results of our morphometric analysis of HDMI on ALNs offer a new means of detecting lymph node metastasis when used as a complementary imaging tool to conventional ultrasound. The fact that it does not require injection of contrast agents simplifies its use in routine clinical practice.
Asunto(s)
Neoplasias de la Mama , Neoplasias Primarias Secundarias , Humanos , Femenino , Neoplasias de la Mama/patología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Ultrasonografía , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología , Neoplasias Primarias Secundarias/patología , Microvasos/diagnóstico por imagen , Microvasos/patología , Sensibilidad y Especificidad , Estudios RetrospectivosRESUMEN
Functional ultrasound (fUS), an emerging hemodynamic-based functional neuroimaging technique, is especially suited to probe brain activity and primarily used in animal models. Increasing use of pharmacological models for essential tremor extends new research to the utilization of fUS imaging in such models. Harmaline-induced tremor is an easily provoked model for the development of new therapies for essential tremor (ET). Furthermore, harmaline-induced tremor can be suppressed by the same classic medications used for essential tremor, which leads to the utilization of this model for preclinical testing. However, changes in local cerebral activities under the effect of tremorgenic doses of harmaline have not been completely investigated. In this study, we explored the feasibility of fUS imaging for visualization of cerebral activation and deactivation associated with harmaline-induced tremor and tremor-suppressing effects of propranolol. The spatial resolution of fUS using a high frame rate imaging enabled us to visualize time-locked and site-specific changes in cerebral blood flow associated with harmaline-evoked tremor. Intraperitoneal administration of harmaline generated significant neural activity changes in the primary motor cortex and ventrolateral thalamus (VL Thal) regions during tremor and then gradually returned to baseline level as tremor subsided with time. To the best of our knowledge, this is the first functional ultrasound study to show the neurovascular activation of harmaline-induced tremor and the therapeutic suppression in a rat model. Thus, fUS can be considered a noninvasive imaging method for studying neuronal activities involved in the ET model and its treatment.
Asunto(s)
Temblor Esencial , Temblor , Animales , Ratas , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/tratamiento farmacológico , Estudios de Factibilidad , Harmalina , Propranolol , Temblor/diagnóstico por imagen , Temblor/tratamiento farmacológicoRESUMEN
BACKGROUND: There is a strong correlation between the morphological features of new tumor vessels and malignancy. However, angiogenic heterogeneity necessitates 3D microvascular data of tumor microvessels for more reliable quantification. To provide more accurate information regarding vessel morphological features and improve breast lesion characterization, we introduced a quantitative 3D high-definition microvasculature imaging (q3D-HDMI) as a new easily applicable and robust tool to morphologically characterize microvasculature networks in breast tumors using a contrast-free ultrasound-based imaging approach. METHODS: In this prospective study, from January 2020 through December 2021, a newly developed q3D-HDMI technique was evaluated on participants with ultrasound-identified suspicious breast lesions recommended for core needle biopsy. The morphological features of breast tumor microvessels were extracted from the q3D-HDMI. Leave-one-out cross-validation (LOOCV) was applied to test the combined diagnostic performance of multiple morphological parameters of breast tumor microvessels. Receiver operating characteristic (ROC) curves were used to evaluate the prediction performance of the generated pooled model. RESULTS: Ninety-three participants (mean age 52 ± 17 years, 91 women) with 93 breast lesions were studied. The area under the ROC curve (AUC) generated with q3D-HDMI was 95.8% (95% CI 0.901-1.000), yielding a sensitivity of 91.7% and a specificity of 98.2%, that was significantly higher than the AUC generated with the q2D-HDMI (p = 0.02). When compared to q2D-HDMI, the tumor microvessel morphological parameters obtained from q3D-HDMI provides distinctive information that increases accuracy in differentiating breast tumors. CONCLUSIONS: The proposed quantitative volumetric imaging technique augments conventional breast ultrasound evaluation by increasing specificity in differentiating malignant from benign breast masses.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Estudios de Factibilidad , Neoplasias de la Mama/diagnóstico por imagen , Estudios Prospectivos , Mama/diagnóstico por imagen , Microvasos/diagnóstico por imagenRESUMEN
BACKGROUND: Low specificity in current breast imaging modalities leads to increased unnecessary follow-ups and biopsies. The purpose of this study is to evaluate the efficacy of combining the quantitative parameters of high-definition microvasculature imaging (HDMI) and 2D shear wave elastography (SWE) with clinical factors (lesion depth and age) for improving breast lesion differentiation. METHODS: In this prospective study, from June 2016 through April 2021, patients with breast lesions identified on diagnostic ultrasound and recommended for core needle biopsy were recruited. HDMI and SWE were conducted prior to biopsies. Two new HDMI parameters, Murray's deviation and bifurcation angle, and a new SWE parameter, mass characteristic frequency, were included for quantitative analysis. Lesion malignancy prediction models based on HDMI only, SWE only, the combination of HDMI and SWE, and the combination of HDMI, SWE and clinical factors were trained via elastic net logistic regression with 70% (360/514) randomly selected data and validated with the remaining 30% (154/514) data. Prediction performances in the validation test set were compared across models with respect to area under the ROC curve as well as sensitivity and specificity based on optimized threshold selection. RESULTS: A total of 508 participants (mean age, 54 years ± 15), including 507 female participants and 1 male participant, with 514 suspicious breast lesions (range, 4-72 mm, median size, 13 mm) were included. Of the lesions, 204 were malignant. The SWE-HDMI prediction model, combining quantitative parameters from SWE and HDMI, with AUC of 0.973 (95% CI 0.95-0.99), was significantly higher than the result predicted with the SWE model or HDMI model alone. With an optimal cutoff of 0.25 for the malignancy probability, the sensitivity and specificity were 95.5% and 89.7%, respectively. The specificity was further improved with the addition of clinical factors. The corresponding model defined as the SWE-HDMI-C prediction model had an AUC of 0.981 (95% CI 0.96-1.00). CONCLUSIONS: The SWE-HDMI-C detection model, a combination of SWE estimates, HDMI quantitative biomarkers and clinical factors, greatly improved the accuracy in breast lesion characterization.
Asunto(s)
Neoplasias de la Mama , Diagnóstico por Imagen de Elasticidad , Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico Diferencial , Diagnóstico por Imagen de Elasticidad/métodos , Femenino , Humanos , Masculino , Microvasos/diagnóstico por imagen , Persona de Mediana Edad , Estudios Prospectivos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Ultrasonografía Mamaria/métodosRESUMEN
OBJECTIVES: To overcome the limitations of power Doppler in imaging angiogenesis, we sought to develop and investigate new quantitative biomarkers of a contrast-free ultrasound microvasculature imaging technique for differentiation of benign from malignant pathologies of breast lesion. METHODS: In this prospective study, a new high-definition microvasculature imaging (HDMI) was tested on 521 patients with 527 ultrasound-identified suspicious breast masses indicated for biopsy. Four new morphological features of tumor microvessels, microvessel fractal dimension (mvFD), Murray's deviation (MD), bifurcation angle (BA), and spatial vascularity pattern (SVP) as well as initial biomarkers were extracted and analyzed, and the results correlated with pathology. Multivariable logistic regression analysis was used to study the performance of different prediction models, initial biomarkers, new biomarkers, and combined new and initial biomarkers in differentiating benign from malignant lesions. RESULTS: The new HDMI biomarkers, mvFD, BA, MD, and SVP, were statistically significantly different in malignant and benign lesions, regardless of tumor size. Sensitivity and specificity of the new biomarkers in lesions > 20 mm were 95.6% and 100%, respectively. Combining the new and initial biomarkers together showed an AUC, sensitivity, and specificity of 97% (95% CI: 95-98%), 93.8%, and 89.2%, respectively, for all lesions regardless of mass size. The classification was further improved by adding the Breast Imaging Reporting and Data System (BI-RADS) score to the prediction model, showing an AUC, sensitivity, and specificity of 97% (95% CI: 95-98%), 93.8%, and 89.2%, respectively. CONCLUSION: The addition of new quantitative HDMI biomarkers significantly improved the accuracy in breast lesion characterization when used as a complementary imaging tool to the conventional ultrasound. KEY POINTS: ⢠Novel quantitative biomarkers extracted from tumor microvessel images increase the sensitivity and specificity in discriminating malignant from benign breast masses. ⢠New HDMI biomarkers Murray's deviation, bifurcation angles, microvessel fractal dimension, and spatial vascularity pattern outperformed the initial biomarkers. ⢠The addition of BI-RADS scores based on US descriptors to the multivariable analysis using all biomarkers remarkably increased the sensitivity, specificity, and AUC in all size groups.
Asunto(s)
Neoplasias de la Mama , Ultrasonografía Mamaria , Femenino , Humanos , Ultrasonografía Mamaria/métodos , Estudios Prospectivos , Neoplasias de la Mama/diagnóstico por imagen , Sensibilidad y Especificidad , Microvasos/diagnóstico por imagen , Biomarcadores , Diagnóstico DiferencialRESUMEN
BACKGROUND: Early prediction of tumor response to neoadjuvant chemotherapy (NACT) is crucial for optimal treatment and improved outcome in breast cancer patients. The purpose of this study is to investigate the role of shear wave elastography (SWE) for early assessment of response to NACT in patients with invasive breast cancer. METHODS: In a prospective study, 62 patients with biopsy-proven invasive breast cancer were enrolled. Three SWE studies were conducted on each patient: before, at mid-course, and after NACT but before surgery. A new parameter, mass characteristic frequency (fmass), along with SWE measurements and mass size was obtained from each SWE study visit. The clinical biomarkers were acquired from the pre-NACT core-needle biopsy. The efficacy of different models, generated with the leave-one-out cross-validation, in predicting response to NACT was shown by the area under the receiver operating characteristic curve and the corresponding sensitivity and specificity. RESULTS: A significant difference was found for SWE parameters measured before, at mid-course, and after NACT between the responders and non-responders. The combination of Emean2 and mass size (s2) gave an AUC of 0.75 (0.95 CI 0.62-0.88). For the ER+ tumors, the combination of Emean_ratio1, s1, and Ki-67 index gave an improved AUC of 0.84 (0.95 CI 0.65-0.96). For responders, fmass was significantly higher during the third visit. CONCLUSIONS: Our study findings highlight the value of SWE estimation in the mid-course of NACT for the early prediction of treatment response. For ER+ tumors, the addition of Ki-67improves the predictive power of SWE. Moreover, fmass is presented as a new marker in predicting the endpoint of NACT in responders.
Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Diagnóstico por Imagen de Elasticidad , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Estudios Prospectivos , Curva ROC , Resultado del TratamientoRESUMEN
BACKGROUND: Shear wave elastography (SWE) shows promise in peripheral neuropathy evaluation but has potential limitations due to tissue size and heterogeneity. We tested SWE sensitivity to elasticity change and the effect of probe position in a median nerve cadaver model. METHODS: Ten specimens were used to measure median nerve elasticity under increasing loads using SWE and indentation. Measurements were compared using repeated-measures analysis of variance. RESULTS: Indentation and SWE-based longitudinal nerve elasticity increased with tensile loading (P < .01), showing a similar relationship. Acquisition in a transverse plane showed lower values compared with longitudinal measurements, mostly under higher loads (P = .03), as did postdissection elasticity (P = .02). Elasticity did not change when measured proximal to the carpal tunnel. CONCLUSIONS: Longitudinal SWE is sensitive to changes in median nerve elasticity. Measuring elasticity of peripheral nerves noninvasively could elucidate intra-neural pathology related to compression neuropathies, and proof to be of added value as a diagnostic or prognostic tool.
Asunto(s)
Fenómenos Biomecánicos/fisiología , Diagnóstico por Imagen de Elasticidad/métodos , Nervio Mediano/diagnóstico por imagen , Nervio Mediano/fisiología , Cadáver , Elasticidad/fisiología , HumanosRESUMEN
Ultrasound measurements of detrusor muscle thickness have been proposed as a diagnostic biomarker in patients with bladder overactivity and voiding dysfunction. In this study, we present an approach based on deep learning (DL) and dynamic programming (DP) to segment the bladder sac and measure the detrusor muscle thickness from transabdominal 2D B-mode ultrasound images. To assess the performance of our method, we compared the results of automated methods to the manually obtained reference bladder segmentations and wall thickness measurements of 80 images obtained from 11 volunteers. It takes less than a second to segment the bladder from a 2D B-mode image for the DL method. The average Dice index for the bladder segmentation is 0.93 ± 0.04 mm, and the average root-mean-square-error and standard deviation for wall thickness measurement are 0.7 ± 0.2 mm, which is comparable to the manual ground truth. The proposed fully automated and fast method could be a useful tool for segmentation and wall thickness measurement of the bladder from transabdominal B-mode images. The computation speed and accuracy of the proposed method will enable adaptive adjustment of the ultrasound focus point, and continuous assessment of the bladder wall during the filling and voiding process of the bladder.
Asunto(s)
Manejo de Especímenes , Vejiga Urinaria , Automatización , Humanos , Ultrasonografía , Vejiga Urinaria/diagnóstico por imagenRESUMEN
PURPOSE: The occurrence of presbyopia and cataract is closely related to changes in the mechanical properties of the crystalline lens. There are no established methods so far for in vivo assessment. By introducing ultrasound elastography, we proposed group velocity (Vg) of an induced shear wave as a new biomarker to characterize the mechanical properties of the lens in our previous study. Here, we investigated the effect of the ultrasound frequency on measurement accuracy and validated the results with a conventional ex vivo compression testing. We also demonstrated a change trend in Vg and its correlation with age in a rabbit model. METHODS: Eight New Zealand white rabbits were fed normally from the fourth to seventh month. An ultrasound elastography system was developed to measure Vgin vivo on every eye once per month. The performances when using a high-frequency (L22-11v) and low-frequency (L11-4v) probe were compared. Rabbits were sacrificed after in vivo measurements by the end of the seventh month and this was followed by ex vivo ultrasound measurements and conventional compression tests on the extracted lenses. RESULTS: The results demonstrated that there were no significance differences in Vg between measurements with high-frequency (USE-HF) and low-frequency (USE-LF) probes in the same month-age group. The mean Vg and the standard deviation of four rabbits that were 7 months old were 2.37⯱â¯0.24â¯â¯m/s, 2.36⯱â¯0.25â¯m/s, 2.43⯱â¯0.26â¯m/s and 2.44⯱â¯0.38â¯m/s, with USE-HF for ex vivo and in vivo measurements and USE-LF for ex vivo and in vivo measurements, respectively. There were no significant differences (pâ¯>â¯0.05) and they were all in agreement with the results of compression tests, which was 16.16⯱â¯1.84â¯kPa in Young's modulus. The results also showed that Vg increased with age. In combination with the results of our previous study, Vg showed a relatively sharp increase from 2 to 5 months, while it had a slight increase from 5 to 7 months. CONCLUSIONS: The USE-HF and USE-LF has comparable accuracy in Vg measurements while USE-HF had an advantage regarding better spatial resolution. The change trend of Vg was in accord with the growth phase of New Zealand white rabbits, which usually results in sexual maturity at 5 months old. This implies that Vg can be used as a biomarker parameter for evaluating the mechanical properties of the lens undergoing physiological changes.
Asunto(s)
Envejecimiento/fisiología , Diagnóstico por Imagen de Elasticidad , Elasticidad/fisiología , Cristalino/fisiología , Animales , Fenómenos Biomecánicos , Módulo de Elasticidad , Cristalino/ultraestructura , Conejos , UltrasonografíaRESUMEN
B-mode ultrasound imaging guidance of cannulas can be compromised by noise, artifacts, and echogenicity that is not distinctive from that of surrounding anatomy. We have modified a venovenous extracorporeal membrane oxygenation cannula by embedding piezoelectric crystals into each of its 3 blood flow ports. Each vibrating crystal acoustically interacts with a Doppler imaging signal and produces an instantaneous color marker. The aim of this study was to compare identification of the extracorporeal membrane oxygenation cannula ports by B-mode imaging versus the color Doppler marker. Unlike B-mode imaging, the color Doppler marker identified the corresponding port even in highly challenging closed-chest scans in anesthetized pigs. The method could improve guidance accuracy of cannulas by ultrasound scans.
Asunto(s)
Oxigenación por Membrana Extracorpórea/instrumentación , Ultrasonografía Doppler en Color , Ultrasonografía Intervencional/métodos , Animales , Diseño de Equipo , PorcinosRESUMEN
Sparse array (SA) is an approach to reduce the number of system channels. However, SA suffers from grating lobe (GL) artefacts due to the sparsity of array aperture resulting in degradation of the ultrasound image quality. Based on a given or known data sets of radio frequency (RF) echo acquired from active elements of an array, RF echo data in unknown and/or inactive elements of array can be created virtually and used to suppress the GL artefact in SA. This letter presents gap-filling (GF) approaches to generate channel data, which are not physically acquired. It is demonstrated that the proposed GF technique can reduce the artefacts of SA by filling the gaps in the array aperture. Simulation results show that the GF technique can suppress the GL level of SA by up to 16 dB. Also, the GF technique can improve the image quality of fully sampled arrays with small number of active elements.
Asunto(s)
Ondas Ultrasónicas , Ultrasonografía/métodos , Acústica , Algoritmos , Modelos Teóricos , Ultrasonografía/normasRESUMEN
Vascular networks can provide invaluable information about tumor angiogenesis. Ultrafast Doppler imaging enables ultrasound to image microvessels by applying tissue clutter filtering methods on the spatio-temporal data obtained from plane-wave imaging. However, the resultant vessel images suffer from background noise that degrades image quality and restricts vessel visibilities. In this paper, we addressed microvessel visualization and the associated noise problem in the power Doppler images with the goal of achieving enhanced vessel-background separation. We proposed a combination of patch-based non-local mean filtering and top-hat morphological filtering to improve vessel outline and background noise suppression. We tested the proposed method on a flow phantom, as well as in vivo breast lesions, thyroid nodules, and pathologic liver from human subjects. The proposed non-local-based framework provided a remarkable gain of more than 15 dB, on average, in terms of contrast-to-noise and signal-to-noise ratios. In addition to improving visualization of microvessels, the proposed method provided high quality images suitable for microvessel morphology quantification that may be used for diagnostic applications.
Asunto(s)
Microvasos/diagnóstico por imagen , Fantasmas de Imagen , Ultrasonografía/métodos , Mama/diagnóstico por imagen , Mama/patología , Femenino , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Masculino , Relación Señal-Ruido , Nódulo Tiroideo/diagnóstico por imagen , Nódulo Tiroideo/patologíaRESUMEN
Vibrational characteristics of bone are directly dependent on its physical properties. In this study, a vibrational method for bone evaluation is introduced. We propose a new type of quantitative vibro-acoustic method based on the acoustic radiation force of ultrasound for bone characterization in persons with fracture. Using this method, we excited the clavicle or ulna by an ultrasound radiation force pulse which induces vibrations in the bone, resulting in an acoustic wave that is measured by a hydrophone placed on the skin. The acoustic signals were used for wave velocity estimation based on a cross-correlation technique. To further separate different vibration characteristics, we adopted a variational mode decomposition technique to decompose the received signal into an ensemble of band-limited intrinsic mode functions, allowing analysis of the acoustic signals by their constitutive components. This prospective study included 15 patients: 12 with clavicle fractures and three with ulna fractures. Contralateral intact bones were used as controls. Statistical analysis demonstrated that fractured bones can be differentiated from intact ones with a detection probability of 80%. Additionally, we introduce a "healing factor" to quantify the bone healing progress which successfully tracked the progress of healing in 80% of the clavicle fractures in the study.
Asunto(s)
Curación de Fractura/fisiología , Ultrasonografía/métodos , Adolescente , Niño , Femenino , Fracturas Óseas/diagnóstico por imagen , Humanos , Masculino , Proyectos PilotoRESUMEN
A partial differential equation-constrained optimization approach is presented for reconstructing mechanical properties (e.g., elastic moduli). The proposed method is based on the minimization of an error in constitutive equations functional augmented with a least squares data misfit term referred to as MECE for "modified error in constitutive equations." The main theme of this paper is to demonstrate several key strengths of the proposed method on experimental data. In addition, some illustrative examples are provided where the proposed method is compared with a common shear wave elastography (SWE) approach. To this end, both synthetic data, generated with transient finite element simulations, as well as ultrasonically tracked displacement data from an acoustic radiation force (ARF) experiment are used in a standard elasticity phantom. The results indicate that the MECE approach can produce accurate shear modulus reconstructions with significantly less bias than SWE.
Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Modelos Teóricos , Ondas Ultrasónicas , Simulación por Computador , Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad/instrumentación , Análisis de Elementos Finitos , Análisis de los Mínimos Cuadrados , Movimiento (Física) , Fantasmas de Imagen , Reproducibilidad de los ResultadosRESUMEN
This study uses high-pressure size exclusion chromatography (HPSEC) to quantify divalent metal ion (X(2+))-induced compaction found in vitamin K-dependent (VKD) proteins. Multiple X(2+) binding sites formed by the presence of up to 12 γ-carboxyglutamic acid (Gla) residues are present in plasma-derived FIX (pd-FIX) and recombinant FIX (r-FIX). Analytical ultracentrifugation (AUC) was used to calibrate the Stokes radius (R) measured by HPSEC. A compaction of pd-FIX caused by the filling of Ca(2+) and Mg(2+) binding sites resulted in a 5 to 6% decrease in radius of hydration as observed by HPSEC. The filling of Ca(2+) sites resulted in greater compaction than for Mg(2+) alone where this effect was additive or greater when both ions were present at physiological levels. Less X(2+)-induced compaction was observed in r-FIX with lower Gla content populations, which enabled the separation of biologically active r-FIX species from inactive ones by HPSEC. HPSEC was sensitive to R changes of approximately 0.01nm that enabled the detection of FIX compaction that was likely cooperative in nature between lower avidity X(2+) sites of the Gla domain and higher avidity X(2+) sites of the epidermal growth factor 1 (EGF1)-like domain.
Asunto(s)
Ácido 1-Carboxiglutámico/química , Cromatografía en Gel/métodos , Factor IX/química , Factor IX/metabolismo , Sitios de Unión , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Humanos , Magnesio/metabolismo , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Vitamina K/metabolismoRESUMEN
BACKGROUND: Vibro-acoustography (VA) is a newly developed imaging technology that is based on low-frequency vibrations induced in the object by the radiation force of ultrasound. VA is sensitive to the dynamic characteristics of tissue. Here, we evaluate the performance of VA in identifying benign lesions and compare the results to those of mammography. METHODS: An integrated mammography-VA system designed for in vivo breast imaging was tested on a group of female volunteers, age ≥ 18 years, with suspected breast lesions based on clinical examination. A set of VA scans was acquired after each corresponding mammography. Most lesions were classified as benign based on their histological results. However, in 4 cases, initial diagnosis based on clinical imaging determined that the lesions were cysts. These cysts were aspirated with needle aspiration and disappeared completely under direct ultrasound visualization. Therefore, no biopsies were performed on these cases and lesions were classified as benign based on clinical findings per clinical standards. To define the VA characteristics of benign breast masses, we adopted the features that are normally attributed to such masses in mammography. In a blinded assessment, three radiologists evaluated the VA images independently. The diagnostic accuracy of VA for detection of benign lesions was assessed by comparing the reviewers' evaluations with clinical data. RESULTS: Out of a total 29 benign lesions in the group, the reviewers were able to locate all lesions on VA images and mammography, 100% with (95% confidence interval (CI): 88% to 100%). Two reviewers were also able to correctly classify 83% (95% CI: 65% to 92%), and the third reviewer 86% (95% CI: 65% to 95%) of lesions, as benign on VA images and 86% (95% CI: 69% to 95%) on mammography. CONCLUSIONS: The results suggest that the mammographic characteristics of benign lesion may also be used to identify such lesions in VA. Furthermore, the results show the ability of VA to detect benign breast abnormalities with a performance comparable to mammography. Therefore, the VA technology has the potential to be utilized as a complementary tool for breast imaging applications. Additional studies are needed to compare the capabilities of VA and traditional ultrasound imaging.
Asunto(s)
Quiste Mamario/patología , Diagnóstico por Imagen de Elasticidad/métodos , Glándulas Mamarias Humanas/patología , Mamografía/métodos , Femenino , Humanos , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a significant contributor to worldwide cancer-related deaths. Various medical imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasound, play a crucial role in accurately evaluating HCC and formulating effective treatment plans. Artificial Intelligence (AI) technologies have demonstrated potential in supporting physicians by providing more accurate and consistent medical diagnoses. Recent advancements have led to the development of AI-based multi-modal prediction systems. These systems integrate medical imaging with other modalities, such as electronic health record reports and clinical parameters, to enhance the accuracy of predicting biological characteristics and prognosis, including those associated with HCC. These multi-modal prediction systems pave the way for predicting the response to transarterial chemoembolization and microvascular invasion treatments and can assist clinicians in identifying the optimal patients with HCC who could benefit from interventional therapy. This paper provides an overview of the latest AI-based medical imaging models developed for diagnosing and predicting HCC. It also explores the challenges and potential future directions related to the clinical application of AI techniques.
RESUMEN
Contrast-free ultrasound quantitative microvasculature imaging shows promise in several applications, including the assessment of benign and malignant lesions. However, motion represents one of the major challenges in imaging tumor microvessels in organs that are prone to physiological motions. This study aims at addressing potential microvessel image degradation in in vivo human thyroid due to its proximity to carotid artery. The pulsation of the carotid artery induces inter-frame motion that significantly degrades microvasculature images, resulting in diagnostic errors. The main objective of this study is to reduce inter-frame motion artifacts in high-frame-rate ultrasound imaging to achieve a more accurate visualization of tumor microvessel features. We propose a low-complex deep learning network comprising depth-wise separable convolutional layers and hybrid adaptive and squeeze-and-excite attention mechanisms to correct inter-frame motion in high-frame-rate images. Rigorous validation using phantom and in-vivo data with simulated inter-frame motion indicates average improvements of 35% in Pearson correlation coefficients (PCCs) between motion corrected and reference data with respect to that of motion corrupted data. Further, reconstruction of microvasculature images using motion-corrected frames demonstrates PCC improvement from 31 to 35%. Another thorough validation using in-vivo thyroid data with physiological inter-frame motion demonstrates average improvement of 20% in PCC and 40% in mean inter-frame correlation. Finally, comparison with the conventional image registration method indicates the suitability of proposed network for real-time inter-frame motion correction with 5000 times reduction in motion corrected frame prediction latency.
Asunto(s)
Aprendizaje Profundo , Microvasos , Fantasmas de Imagen , Ultrasonografía , Humanos , Microvasos/diagnóstico por imagen , Ultrasonografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Glándula Tiroides/diagnóstico por imagen , Glándula Tiroides/irrigación sanguínea , Movimiento (Física) , Arterias Carótidas/diagnóstico por imagen , Artefactos , Neoplasias de la Tiroides/diagnóstico por imagenRESUMEN
Angiogenesis has an essential role in the de novo evolution of choroidal melanoma as well as choroidal nevus transformation into melanoma. Differentiating early-stage melanoma from nevus is of high clinical importance; thus, imaging techniques that provide objective information regarding tumor microvasculature structures could aid accurate early detection. Herein, we investigated the feasibility of quantitative high-definition microvessel imaging (qHDMI) for differentiation of choroidal tumors in humans. This new ultrasound-based technique encompasses a series of morphological filtering and vessel enhancement techniques, enabling the visualization of tumor microvessels as small as 150 microns and extracting vessel morphological features as new tumor biomarkers. Distributional differences between the malignant melanomas and benign nevi were tested on 37 patients with choroidal tumors using a non-parametric Wilcoxon rank-sum test, and statistical significance was declared for biomarkers with p-values < 0.05. The ocular oncology diagnosis was choroidal melanoma (malignant) in 21 and choroidal nevus (benign) in 15 patients. The mean thickness of benign and malignant masses was 1.70 ± 0.40 mm and 3.81 ± 2.63 mm, respectively. Six HDMI biomarkers, including number of vessel segments (p = 0.003), number of branch points (p = 0.003), vessel density (p = 0.03), maximum tortuosity (p = 0.001), microvessel fractal dimension (p = 0.002), and maximum diameter (p = 0.003) exhibited significant distributional differences between the two groups. Contrast-free HDMI provided noninvasive imaging and quantification of microvessels of choroidal tumors. The results of this pilot study indicate the potential use of qHDMI as a complementary tool for characterization of small ocular tumors and early detection of choroidal melanoma.
RESUMEN
Despite advances in neonatal care, metabolic bone disease of prematurity (MBDP) remains a common problem in preterm infants. The development of non-invasive and affordable diagnostic approaches can be highly beneficial in the diagnosis and management of preterm infants at risk of MBDP. In this study, we present an ultrasound method called pulsed vibro-acoustic analysis to investigate the progression of bone mineralization in infants over time versus weight and postmenstrual age. The proposed pulsed vibro-acoustic analysis method is used to evaluate the vibrational characteristics of the bone. This method uses the acoustic radiation force of ultrasound to vibrate the bone. The generated acoustic waves are detected using a hydrophone placed on the skin over the tibia. The frequency of vibration and the speeds of received acoustic waves have information regarding the material property of the bone. We examined the feasibility of this method through an in vivo study consisting of 25 preterm and 10 full term infants. The pulsed vibro-acoustic data were acquired longitudinally in preterm infants with multiple visits and at a single visit in full term infants. Speed of sound and mean peak frequency of slow and fast sound waves recorded by hydrophone were used to analyze bone mineralization progress. Linear mixed model was used for statistical analysis in characterizing the mineralization progress in preterm infants compared to data from full term subjects. Significance changes in wave parameters (speed of sound and mean peak frequency) with respect to the postmenstrual age and weight in preterm infants were observed with p-values less than 0.05. Statistical significances in speed of sound measurement for both fast and slow waves were observed between preterm and full term infants, with p-values of <0.01 and 0.02, respectively. The results of this pilot study indicate the potential use of vibro-acoustic analysis for monitoring the progression of bone mineralization in preterm infants.