Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
EMBO J ; 41(18): e10242, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35993331

RESUMEN

Microtubule-associated protein tau is a central factor in Alzheimer's disease and other tauopathies. However, the physiological functions of tau are unclear. Here, we used proximity-labelling proteomics to chart tau interactomes in primary neurons and mouse brains in vivo. Tau interactors map onto pathways of cytoskeletal, synaptic vesicle and postsynaptic receptor regulation and show significant enrichment for Parkinson's, Alzheimer's and prion disease. We find that tau interacts with and dose-dependently reduces the activity of N-ethylmaleimide sensitive fusion protein (NSF), a vesicular ATPase essential for AMPA-type glutamate receptor (AMPAR) trafficking. Tau-deficient (tau-/- ) neurons showed mislocalised expression of NSF and enhanced synaptic AMPAR surface levels, reversible through the expression of human tau or inhibition of NSF. Consequently, enhanced AMPAR-mediated associative and object recognition memory in tau-/- mice is suppressed by both hippocampal tau and infusion with an NSF-inhibiting peptide. Pathologic mutant tau from mouse models or Alzheimer's disease significantly enhances NSF inhibition. Our results map neuronal tau interactomes and delineate a functional link of tau with NSF in plasticity-associated AMPAR-trafficking and memory.


Asunto(s)
Enfermedad de Alzheimer , Receptores AMPA , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Hipocampo/metabolismo , Humanos , Memoria , Ratones , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Neuronas/metabolismo , Transporte de Proteínas , Receptores AMPA/genética , Receptores AMPA/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33737393

RESUMEN

Neurons are postmitotic cells. Reactivation of the cell cycle by neurons has been reported in Alzheimer's disease (AD) brains and models. This gave rise to the hypothesis that reentering the cell cycle renders neurons vulnerable and thus contributes to AD pathogenesis. Here, we use the fluorescent ubiquitination-based cell cycle indicator (FUCCI) technology to monitor the cell cycle in live neurons. We found transient, self-limited cell cycle reentry activity in naive neurons, suggesting that their postmitotic state is a dynamic process. Furthermore, we observed a diverse response to oligomeric amyloid-ß (oAß) challenge; neurons without cell cycle reentry activity would undergo cell death without activating the FUCCI reporter, while neurons undergoing cell cycle reentry activity at the time of the oAß challenge could maintain and increase FUCCI reporter signal and evade cell death. Accordingly, we observed marked neuronal FUCCI positivity in the brains of human mutant Aß precursor protein transgenic (APP23) mice together with increased neuronal expression of the endogenous cell cycle control protein geminin in the brains of 3-mo-old APP23 mice and human AD brains. Taken together, our data challenge the current view on cell cycle in neurons and AD, suggesting that pathways active during early cell cycle reentry in neurons protect from Aß toxicity.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Ciclo Celular/fisiología , Neuronas/fisiología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/farmacología , Péptidos beta-Amiloides/toxicidad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Biomarcadores , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Ratones , Ratones Transgénicos
3.
Biochem J ; 478(7): 1471-1484, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33769438

RESUMEN

Tau pathology initiates in defined brain regions and is known to spread along neuronal connections as symptoms progress in Alzheimer's disease (AD) and other tauopathies. This spread requires the release of tau from donor cells, but the underlying molecular mechanisms remained unknown. Here, we established the interactome of the C-terminal tail region of tau and identified syntaxin 8 (STX8) as a mediator of tau release from cells. Similarly, we showed the syntaxin 6 (STX6), part of the same SNARE family as STX8 also facilitated tau release. STX6 was previously genetically linked to progressive supranuclear palsy (PSP), a tauopathy. Finally, we demonstrated that the transmembrane domain of STX6 is required and sufficient to mediate tau secretion. The differential role of STX6 and STX8 in alternative secretory pathways suggests the association of tau with different secretory processes. Taken together, both syntaxins, STX6 and STX8, may contribute to AD and PSP pathogenesis by mediating release of tau from cells and facilitating pathology spreading.


Asunto(s)
Enfermedad de Alzheimer/patología , Dominios y Motivos de Interacción de Proteínas , Proteínas Qa-SNARE/metabolismo , Vías Secretoras , Tauopatías/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Unión Proteica , Proteínas Qa-SNARE/genética , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética
4.
Brain ; 143(3): 783-799, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32185393

RESUMEN

Frontotemporal dementia and amyotrophic lateral sclerosis are clinically and pathologically overlapping disorders with shared genetic causes. We previously identified a disease locus on chromosome 16p12.1-q12.2 with genome-wide significant linkage in a large European Australian family with autosomal dominant inheritance of frontotemporal dementia and amyotrophic lateral sclerosis and no mutation in known amyotrophic lateral sclerosis or dementia genes. Here we demonstrate the segregation of a novel missense variant in CYLD (c.2155A>G, p.M719V) within the linkage region as the genetic cause of disease in this family. Immunohistochemical analysis of brain tissue from two CYLD p.M719V mutation carriers showed widespread glial CYLD immunoreactivity. Primary mouse neurons transfected with CYLDM719V exhibited increased cytoplasmic localization of TDP-43 and shortened axons. CYLD encodes a lysine 63 deubiquitinase and CYLD cutaneous syndrome, a skin tumour disorder, is caused by mutations that lead to reduced deubiquitinase activity. In contrast with CYLD cutaneous syndrome-causative mutations, CYLDM719V exhibited significantly increased lysine 63 deubiquitinase activity relative to the wild-type enzyme (paired Wilcoxon signed-rank test P = 0.005). Overexpression of CYLDM719V in HEK293 cells led to more potent inhibition of the cell signalling molecule NF-κB and impairment of autophagosome fusion to lysosomes, a key process in autophagy. Although CYLD mutations appear to be rare, CYLD's interaction with at least three other proteins encoded by frontotemporal dementia and/or amyotrophic lateral sclerosis genes (TBK1, OPTN and SQSTM1) suggests that it may play a central role in the pathogenesis of these disorders. Mutations in several frontotemporal dementia and amyotrophic lateral sclerosis genes, including TBK1, OPTN and SQSTM1, result in a loss of autophagy function. We show here that increased CYLD activity also reduces autophagy function, highlighting the importance of autophagy regulation in the pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/fisiología , Demencia Frontotemporal/genética , Predisposición Genética a la Enfermedad/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Autofagosomas/metabolismo , Autofagosomas/fisiología , Axones/patología , Encéfalo/metabolismo , Proteínas de Unión al ADN , Enzima Desubiquitinante CYLD/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Demencia Frontotemporal/metabolismo , Ratones , Mutación Missense/genética , FN-kappa B/antagonistas & inhibidores , Cultivo Primario de Células , Transfección
5.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502205

RESUMEN

Tropomyosin (Tpm) has been regarded as the master regulator of actin dynamics. Tpms regulate the binding of the various proteins involved in restructuring actin. The actin cytoskeleton is the predominant cytoskeletal structure in dendritic spines. Its regulation is critical for spine formation and long-term activity-dependent changes in synaptic strength. The Tpm isoform Tpm3.1 is enriched in dendritic spines, but its role in regulating the synapse structure and function is not known. To determine the role of Tpm3.1, we studied the synapse structure and function of cultured hippocampal neurons from transgenic mice overexpressing Tpm3.1. We recorded hippocampal field excitatory postsynaptic potentials (fEPSPs) from brain slices to examine if Tpm3.1 overexpression alters long-term synaptic plasticity. Tpm3.1-overexpressing cultured neurons did not show a significantly altered dendritic spine morphology or synaptic activity. Similarly, we did not observe altered synaptic transmission or plasticity in brain slices. Furthermore, expression of Tpm3.1 at the postsynaptic compartment does not increase the local F-actin levels. The results suggest that although Tpm3.1 localises to dendritic spines in cultured hippocampal neurons, it does not have any apparent impact on dendritic spine morphology or function. This is contrary to the functional role of Tpm3.1 previously observed at the tip of growing neurites, where it increases the F-actin levels and impacts growth cone dynamics.


Asunto(s)
Espinas Dendríticas/fisiología , Potenciales Postsinápticos Excitadores , Hipocampo/fisiología , Neurogénesis , Plasticidad Neuronal , Sinapsis/fisiología , Tropomiosina/metabolismo , Citoesqueleto de Actina , Animales , Células Cultivadas , Femenino , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas , Tropomiosina/genética
6.
J Neurosci ; 39(48): 9645-9659, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31641049

RESUMEN

Sphingosine 1-phosphate (S1P) is a potent vasculoprotective and neuroprotective signaling lipid, synthesized primarily by sphingosine kinase 2 (SK2) in the brain. We have reported pronounced loss of S1P and SK2 activity early in Alzheimer's disease (AD) pathogenesis, and an inverse correlation between hippocampal S1P levels and age in females, leading us to speculate that loss of S1P is a sensitizing influence for AD. Paradoxically, SK2 was reported to mediate amyloid ß (Aß) formation from amyloid precursor protein (APP) in vitro To determine whether loss of S1P sensitizes to Aß-mediated neurodegeneration, we investigated whether SK2 deficiency worsens pathology and memory in male J20 (PDGFB-APPSwInd) mice. SK2 deficiency greatly reduced Aß content in J20 mice, associated with significant improvements in epileptiform activity and cross-frequency coupling measured by hippocampal electroencephalography. However, several key measures of APPSwInd-dependent neurodegeneration were enhanced on the SK2-null background, despite reduced Aß burden. These included hippocampal volume loss, oligodendrocyte attrition and myelin loss, and impaired performance in Y-maze and social novelty memory tests. Inhibition of the endosomal cholesterol exporter NPC1 greatly reduced sphingosine phosphorylation in glial cells, linking loss of SK2 activity and S1P in AD to perturbed endosomal lipid metabolism. Our findings establish SK2 as an important endogenous regulator of both APP processing to Aß, and oligodendrocyte survival, in vivo These results urge greater consideration of the roles played by oligodendrocyte dysfunction and altered membrane lipid metabolic flux as drivers of neurodegeneration in AD.SIGNIFICANCE STATEMENT Genetic, neuropathological, and functional studies implicate both Aß and altered lipid metabolism and/or signaling as key pathogenic drivers of Alzheimer's disease. In this study, we first demonstrate that the enzyme SK2, which generates the signaling lipid S1P, is required for Aß formation from APP in vivo Second, we establish a new role for SK2 in the protection of oligodendrocytes and myelin. Loss of SK2 sensitizes to Aß-mediated neurodegeneration by attenuating oligodendrocyte survival and promoting hippocampal atrophy, despite reduced Aß burden. Our findings support a model in which Aß-independent sensitizing influences such as loss of neuroprotective S1P are more important drivers of neurodegeneration than gross Aß concentration or plaque density.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/patología , Animales , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/prevención & control , Femenino , Hipocampo/patología , Masculino , Ratones , Ratones Transgénicos , Neuroprotección/fisiología , Técnicas de Cultivo de Órganos , Tamaño de los Órganos/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Placa Amiloide/patología
7.
J Neurochem ; 153(2): 173-188, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31742704

RESUMEN

Sphingosine 1-phosphate (S1P) is an essential lipid metabolite that signals through a family of five G protein-coupled receptors, S1PR1-S1PR5, to regulate cell physiology. The multiple sclerosis drug Fingolimod (FTY720) is a potent S1P receptor agonist that causes peripheral lymphopenia. Recent research has demonstrated direct neuroprotective properties of FTY720 in several neurodegenerative paradigms; however, neuroprotective properties of the native ligand S1P have not been established. We aimed to establish the significance of neurotrophic factor up-regulation by S1P for neuroprotection, comparing S1P with FTY720. S1P induced brain-derived neurotrophic factor (BDNF), leukemia inhibitory factor (LIF), platelet-derived growth factor B (PDGFB), and heparin-binding EGF-like growth factor (HBEGF) gene expression in primary human and murine astrocytes, but not in neurons, and to a much greater extent than FTY720. Accordingly, S1P but not FTY720 protected cultured neurons against excitotoxic cell death in a primary murine neuron-glia coculture model, and a neutralizing antibody to LIF blocked this S1P-mediated neuroprotection. Antagonists of S1PR1 and S1PR2 both inhibited S1P-mediated neurotrophic gene induction in human astrocytes, indicating that simultaneous activation of both receptors is required. S1PR2 signaling was transduced through Gα13 and the small GTPase Rho, and was necessary for the up-regulation and activation of the transcription factors FOS and JUN, which regulate LIF, BDNF, and HBEGF transcription. In summary, we show that S1P protects hippocampal neurons against excitotoxic cell death through up-regulation of neurotrophic gene expression, particularly LIF, in astrocytes. This up-regulation requires both S1PR1 and S1PR2 signaling. FTY720 does not activate S1PR2, explaining its relative inefficacy compared to S1P.


Asunto(s)
Astrocitos/metabolismo , Clorhidrato de Fingolimod/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Lisofosfolípidos/farmacología , Factores de Crecimiento Nervioso/biosíntesis , Neuronas/metabolismo , Esfingosina/análogos & derivados , Animales , Astrocitos/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Ratones , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Esfingosina/farmacología , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología
8.
J Cell Sci ; 129(6): 1198-209, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26826187

RESUMEN

Inhibitory proteins, particularly Nogo 66, a highly conserved 66-amino-acid loop of Nogo A (an isoform of RTN4), play key roles in limiting the intrinsic capacity of the central nervous system (CNS) to regenerate after injury. Ligation of surface Nogo receptors (NgRs) and/or leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse orthologue the paired immunoglobulin-like receptor B (PIRB) by Nogo 66 transduces inhibitory signals that potently inhibit neurite outgrowth. Here, we show that soluble leukocyte immunoglobulin-like receptor A3 (LILRA3) is a high-affinity receptor for Nogo 66, suggesting that LILRA3 might be a competitive antagonist to these cell surface inhibitory receptors. Consistent with this, LILRA3 significantly reversed Nogo-66-mediated inhibition of neurite outgrowth and promoted synapse formation in primary cortical neurons through regulation of the ERK/MEK pathway. LILRA3 represents a new antagonist to Nogo-66-mediated inhibition of neurite outgrowth in the CNS, a function distinct from its immune-regulatory role in leukocytes. This report is also the first to demonstrate that a member of LILR family normally not expressed in rodents exerts functions on mouse neurons through the highly homologous Nogo 66 ligand.


Asunto(s)
Neuritas/metabolismo , Neuronas/citología , Proteínas Nogo/metabolismo , Receptores Inmunológicos/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Proyección Neuronal , Neuronas/metabolismo , Proteínas Nogo/genética , Unión Proteica , Receptores Inmunológicos/genética , Sinapsis/genética
9.
Cell Mol Neurobiol ; 38(8): 1557-1563, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30218404

RESUMEN

Overcoming neurite inhibition is integral for restoring neuronal connectivity after CNS injury. Actin dynamics are critical for neurite growth cone formation and extension. The tropomyosin family of proteins is a regarded as master regulator of actin dynamics. This study investigates tropomyosin isoform 3.1 (Tpm3.1) as a potential candidate for overcoming an inhibitory substrate, as it is known to influence neurite branching and outgrowth. We designed a microfluidic device that enables neurons to be grown adjacent to an inhibitory substrate, Nogo-66. Results show that neurons, overexpressing hTpm3.1, have an increased propensity to overcome Nogo-66 inhibition. We propose Tpm3.1 as a potential target for promoting neurite growth in an inhibitory environment in the central nervous system.


Asunto(s)
Hipocampo/citología , Dispositivos Laboratorio en un Chip , Proyección Neuronal , Neuronas/metabolismo , Tropomiosina/metabolismo , Animales , Humanos , Proyección Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Nogo/farmacología , Reproducibilidad de los Resultados
10.
Mol Cell Neurosci ; 84: 112-118, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28545680

RESUMEN

Bulk endocytosis allows stimulated neurons to take up a large portion of the presynaptic plasma membrane in order to regenerate synaptic vesicle pools. Actin, one of the most abundant proteins in eukaryotic cells, plays an important role in this process, but a detailed mechanistic understanding of the involvement of the cortical actin network is still lacking, in part due to the relatively small size of nerve terminals and the limitation of optical microscopy. We recently discovered that neurosecretory cells display a similar, albeit much larger, form of bulk endocytosis in response to secretagogue stimulation. This allowed us to identify a novel highly dynamic role for the acto-myosin II cortex in generating constricting rings that precede the fission of nascent bulk endosomes. In this review we focus on the mechanism underpinning this dramatic switch in the organization and function of the cortical actin network. We provide additional experimental data that suggest a role of tropomyosin Tpm3.1 and Tpm4.2 in this process, together with an emerging model of how actin controls bulk endocytosis.


Asunto(s)
Endocitosis/fisiología , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Endosomas/metabolismo , Humanos , Membranas Sinápticas/metabolismo
11.
Mol Cell Neurosci ; 84: 48-57, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28433463

RESUMEN

Actin is a profoundly influential protein; it impacts, among other processes, membrane morphology, cellular motility, and vesicle transport. Actin can polymerize into long filaments that push on membranes and provide support for intracellular transport. Actin filaments have polar ends: the fast-growing (barbed) end and the slow-growing (pointed) end. Depolymerization from the pointed end supplies monomers for further polymerization at the barbed end. Tropomodulins (Tmods) cap pointed ends by binding onto actin and tropomyosins (Tpms). Tmods and Tpms have been shown to regulate many cellular processes; however, very few studies have investigated their joint role in the nervous system. Recent data directly indicate that they can modulate neuronal morphology. Additional studies suggest that Tmod and Tpm impact molecular processes influential in synaptic signaling. To facilitate future research regarding their joint role in actin regulation in the nervous system, we will comprehensively discuss Tpm and Tmod and their known functions within molecular systems that influence neuronal development.


Asunto(s)
Actinas/metabolismo , Morfogénesis/fisiología , Neuronas/metabolismo , Tropomodulina/metabolismo , Tropomiosina/metabolismo , Animales , Citoesqueleto/metabolismo , Humanos
12.
Neurobiol Dis ; 97(Pt A): 24-35, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27816769

RESUMEN

BACKGROUND: The recently diagnosed leukodystrophy Hypomyelination with Brain stem and Spinal cord involvement and Leg spasticity (HBSL) is caused by mutations of the cytoplasmic aspartyl-tRNA synthetase geneDARS. The physiological role of DARS in translation is to accurately pair aspartate with its cognate tRNA. Clinically, HBSL subjects show a distinct pattern of hypomyelination and develop progressive leg spasticity, variable cognitive impairment and epilepsy. To elucidate the underlying pathomechanism, we comprehensively assessed endogenous DARS expression in mice. Additionally, aiming at creating the first mammalian HBSL model, we genetically engineered and phenotyped mutant mice with a targetedDarslocus. RESULTS: DARS, although expressed in all organs, shows a distinct expression pattern in the adult brain with little immunoreactivity in macroglia but enrichment in neuronal subpopulations of the hippocampus, cerebellum, and cortex. Within neurons, DARS is mainly located in the cell soma where it co-localizes with other components of the translation machinery. Intriguingly, DARS is also present along neurites and at synapses, where it potentially contributes to local protein synthesis.Dars-null mice are not viable and die before embryonic day 11. Heterozygous mice with only one functionalDarsallele display substantially reduced DARS levels in the brain; yet these mutants show no gross abnormalities, including unchanged motor performance. However, we detected reduced pre-pulse inhibition of the acoustic startle response indicating dysfunction of attentional processing inDars+/-mice. CONCLUSIONS: Our results, for the first time, show an in-depth characterization of the DARS tissue distribution in mice, revealing surprisingly little uniformity across brain regions or between the major neural cell types. The complete loss of DARS function is not tolerated in mice suggesting that the identified HBSL mutations in humans retain some residual enzyme activity. The mild phenotype of heterozygousDars-null carriers indicates that even partial restoration of DARS levels would be therapeutically relevant. Despite the fact that they do not resemble the full spectrum of clinical symptoms, the robust pre-pulse inhibition phenotype ofDars+/-mice will be instrumental for future preclinical therapeutic efficacy studies. In summary, our data is an important contribution to a better understanding of DARS function and HBSL pathology.


Asunto(s)
Aspartato-ARNt Ligasa/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/enzimología , Animales , Aspartato-ARNt Ligasa/genética , Astrocitos/enzimología , Astrocitos/patología , Atención/fisiología , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Neuronas/enzimología , Neuronas/patología , Oligodendroglía/enzimología , Oligodendroglía/patología , Fenotipo , Inhibición Prepulso/fisiología , Reflejo de Sobresalto/fisiología , Médula Espinal/enzimología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/patología , Sinaptosomas/enzimología , Proteína de Unión al GTP ran/metabolismo
13.
Neural Plast ; 2016: 2371970, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27127658

RESUMEN

Disruption of synaptic function at excitatory synapses is one of the earliest pathological changes seen in wide range of neurological diseases. The proper control of the segregation of neurotransmitter receptors at these synapses is directly correlated with the intact regulation of the postsynaptic cytoskeleton. In this review, we are discussing key factors that regulate the structure and dynamics of the actin cytoskeleton, the major cytoskeletal building block that supports the postsynaptic compartment. Special attention is given to the complex interplay of actin-associated proteins that are found in the synaptic specialization. We then discuss our current understanding of how disruption of these cytoskeletal elements may contribute to the pathological events observed in the nervous system under disease conditions with a particular focus on Alzheimer's disease pathology.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Enfermedad de Alzheimer/metabolismo , Sinapsis/metabolismo , Citoesqueleto de Actina/patología , Enfermedad de Alzheimer/patología , Animales , Humanos , Plasticidad Neuronal/fisiología , Sinapsis/patología
14.
Mol Cell Neurosci ; 58: 11-21, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24211701

RESUMEN

BACKGROUND: The actin cytoskeleton is critically involved in the regulation of neurite outgrowth. RESULTS: The actin cytoskeleton-associated protein tropomyosin induces neurite outgrowth in B35 neuroblastoma cells and regulates neurite branching in an isoform-dependent manner. CONCLUSIONS: Our data indicate that tropomyosins are key regulators of the actin cytoskeleton during neurite outgrowth. SIGNIFICANCE: Revealing the molecular machinery that regulates the actin cytoskeleton during neurite outgrowth may provide new therapeutic strategies to promote neurite regeneration after nerve injury. SUMMARY: The formation of a branched network of neurites between communicating neurons is required for all higher functions in the nervous system. The dynamics of the actin cytoskeleton is fundamental to morphological changes in cell shape and the establishment of these branched networks. The actin-associated proteins tropomyosins have previously been shown to impact on different aspects of neurite formation. Here we demonstrate that an increased expression of tropomyosins is sufficient to induce the formation of neurites in B35 neuroblastoma cells. Furthermore, our data highlight the functional diversity of different tropomyosin isoforms during neuritogenesis. Tropomyosins differentially impact on the expression levels of the actin filament bundling protein fascin and increase the formation of filopodia along the length of neurites. Our data suggest that tropomyosins are central regulators of actin filament populations which drive distinct aspects of neuronal morphogenesis.


Asunto(s)
Conos de Crecimiento/metabolismo , Neuritas/metabolismo , Neurogénesis , Tropomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuroblastoma/metabolismo , Isoformas de Proteínas/metabolismo , Seudópodos/metabolismo , Ratas
15.
iScience ; 27(3): 109264, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38450155

RESUMEN

The axon initial segment (AIS) is located at the proximal axon demarcating the boundary between axonal and somatodendritic compartments. The AIS facilitates the generation of action potentials and maintenance of neuronal polarity. In this study, we show that the location of AIS assembly, as marked by Ankyrin G, corresponds to the nodal plane of the lowest-order harmonic of the Laplace-Beltrami operator solved over the neuronal shape. This correlation establishes a coupling between location of AIS assembly and neuronal cell morphology. We validate this correlation for neurons with atypical morphology and neurons containing multiple AnkG clusters on distinct neurites, where the nodal plane selects the appropriate axon showing enriched Tau. Based on our findings, we propose that Turing patterning systems are candidates for dynamically governing AIS location. Overall, this study highlights the importance of neuronal cell morphology in determining the precise localization of the AIS within the proximal axon.

16.
RSC Adv ; 14(47): 34637-34642, 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39479480

RESUMEN

Peptide therapeutics are an emerging class of drugs to treat neurodegenerative diseases by inhibiting protein-protein interactions (PPIs). Nerinetide has recently emerged as a promising therapeutic for the treatment of ischemic stroke and Alzheimer's Disease (AD). The design of this potent neuroprotective agent includes a cell penetrating peptide sequence that achieves delivery into neurons and a protein-protein inhibitory sequence that achieves inhibition of protein complex formation through mimicry. In this study, we deconstruct the nerinetide sequence and study the relationship between plasma stability, intraneuronal delivery and drug efficacy to provide design guidelines for the development of next generation, peptidic PPI inhibitors to treat neurodegenerative diseases.

17.
Brain ; 135(Pt 11): 3453-68, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23065479

RESUMEN

Recent reports of autoantibodies that bind to neuronal surface receptors or synaptic proteins have defined treatable forms of autoimmune encephalitis. Despite these developments, many cases of encephalitis remain unexplained. We have previously described a basal ganglia encephalitis with dominant movement and psychiatric disease, and proposed an autoimmune aetiology. Given the role of dopamine and dopamine receptors in the control of movement and behaviour, we hypothesized that patients with basal ganglia encephalitis and other putative autoimmune basal ganglia disorders harboured serum autoantibodies against important dopamine surface proteins. Basal ganglia encephalitis sera immunolabelled live surface cultured neurons that have high expression of dopamine surface proteins. To detect autoantibodies, we performed flow cytometry cell-based assays using human embryonic kidney cells to express surface antigens. Twelve of 17 children (aged 0.4-15 years, nine males) with basal ganglia encephalitis had elevated immunoglobulin G to extracellular dopamine-2 receptor, compared with 0/67 controls. Immunofluorescence on wild-type mouse brain showed that basal ganglia encephalitis sera immunolabelled microtubule-associated protein 2-positive neurons in striatum and also in cultured striatal neurons, whereas the immunolabelling was significantly decreased in dopamine-2 receptor knock-out brains. Immunocytochemistry confirmed that immunoreactivity localized to the surface of dopamine-2 receptor-transfected cells. Immunoabsorption of basal ganglia encephalitis sera on dopamine-2 receptor-transfected human embryonic kidney cells decreased immunolabelling of dopamine-2 receptor-transfected human embryonic kidney cells, neurons and wild-type mouse brain. Using a similar flow cytometry cell-based assay, we found no elevated immunoglobulin G binding to dopamine 1, 3 or 5 receptor, dopamine transporter or N-methyl-d-aspartate receptor. The 12 dopamine-2 receptor antibody-positive patients with encephalitis had movement disorders characterized by parkinsonism, dystonia and chorea. In addition, the patients had psychiatric disturbance with emotional lability, attention deficit and psychosis. Brain magnetic resonance imaging showed lesions localized to the basal ganglia in 50% of the patients. Elevated dopamine-2 receptor immunoglobulin G was also found in 10/30 patients with Sydenham's chorea, 0/22 patients with paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection and 4/44 patients with Tourette's syndrome. No dopamine-1 receptor immunoglobulin G was detected in any disease or control groups. We conclude that assessment of dopamine-2 receptor antibodies can help define autoimmune movement and psychiatric disorders.


Asunto(s)
Autoanticuerpos/sangre , Enfermedades de los Ganglios Basales/metabolismo , Encefalitis/metabolismo , Inmunoglobulina G/metabolismo , Trastornos Mentales/metabolismo , Receptores de Dopamina D2/inmunología , Adolescente , Animales , Enfermedades de los Ganglios Basales/sangre , Enfermedades de los Ganglios Basales/complicaciones , Enfermedades de los Ganglios Basales/patología , Células Cultivadas , Niño , Preescolar , Corea/sangre , Cuerpo Estriado/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/inmunología , Encefalitis/sangre , Encefalitis/complicaciones , Femenino , Células HEK293 , Humanos , Inmunohistoquímica/métodos , Lactante , Imagen por Resonancia Magnética/métodos , Masculino , Trastornos Mentales/complicaciones , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Neuroimagen/métodos , Receptores Dopaminérgicos/inmunología , Receptores de Dopamina D2/genética , Receptores de N-Metil-D-Aspartato/inmunología , Infecciones Estreptocócicas/sangre , Infecciones Estreptocócicas/complicaciones , Síndrome de Tourette/sangre
19.
Proc Natl Acad Sci U S A ; 105(41): 15997-6002, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-18832465

RESUMEN

Frontotemporal dementia (FTD) is characterized by cognitive and behavioral changes and, in a significant subset of patients, Parkinsonism. Histopathologically, FTD frequently presents with tau-containing lesions, which in familial cases result from mutations in the MAPT gene encoding tau. Here we present a novel transgenic mouse strain (K3) that expresses human tau carrying the FTD mutation K369I. K3 mice develop a progressive histopathology that is reminiscent of that in human FTD with the K369I mutation. In addition, K3 mice show early-onset memory impairment and amyotrophy in the absence of overt neurodegeneration. Different from our previously generated tau transgenic strains, the K3 mice express the transgene in the substantia nigra (SN) and show an early-onset motor phenotype that reproduces Parkinsonism with tremor, bradykinesia, abnormal gait, and postural instability. Interestingly, motor performance of young, but not old, K3 mice improves upon L-dopa treatment, which bears similarities to Parkinsonism in FTD. The early-onset symptoms in the K3 mice are mechanistically related to selectively impaired anterograde axonal transport of distinct cargos, which precedes the loss of dopaminergic SN neurons that occurs in aged mice. The impaired axonal transport in SN neurons affects, among others, vesicles containing the dopamine-synthesizing enzyme tyrosine hydroxylase. Distinct modes of transport are also impaired in sciatic nerves, which may explain amyotrophy. Together, the K3 mice are a unique model of FTD-associated Parkinsonism, with pathomechanistic implications for the human pathologic process.


Asunto(s)
Transporte Axonal , Demencia/fisiopatología , Modelos Animales de Enfermedad , Trastornos Parkinsonianos/fisiopatología , Animales , Demencia/patología , Lóbulo Frontal , Humanos , Levodopa/farmacología , Ratones , Ratones Transgénicos , Trastornos de la Destreza Motora/genética , Mutación Missense , Trastornos Parkinsonianos/genética , Fenotipo , Nervio Ciático , Sustancia Negra/patología , Lóbulo Temporal , Proteínas tau/genética
20.
Cells ; 10(3)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33807093

RESUMEN

Tropomyosins (Tpms) have been described as master regulators of actin, with Tpm3 products shown to be involved in early developmental processes, and the Tpm3 isoform Tpm3.1 controlling changes in the size of neuronal growth cones and neurite growth. Here, we used primary mouse hippocampal neurons of C57/Bl6 wild type and Bl6Tpm3flox transgenic mice to carry out morphometric analyses in response to the absence of Tpm3 products, as well as to investigate the effect of C-terminal truncation on the ability of Tpm3.1 to modulate neuronal morphogenesis. We found that the knock-out of Tpm3 leads to decreased neurite length and complexity, and that the deletion of two amino acid residues at the C-terminus of Tpm3.1 leads to more detrimental changes in neurite morphology than the deletion of six amino acid residues. We also found that Tpm3.1 that lacks the 6 C-terminal amino acid residues does not associate with stress fibres, does not segregate to the tips of neurites, and does not impact the amount of the filamentous actin pool at the axonal growth cones, as opposed to Tpm3.1, which lacks the two C-terminal amino acid residues. Our study provides further insight into the role of both Tpm3 products and the C-terminus of Tpm3.1, and it forms the basis for future studies that aim to identify the molecular mechanisms underlying Tpm3.1 targeting to different subcellular compartments.


Asunto(s)
Actinas/metabolismo , Eliminación de Gen , Hipocampo/citología , Neuronas/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Células Cultivadas , Conos de Crecimiento/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células 3T3 NIH , Neuritas/metabolismo , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA