Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38868940

RESUMEN

BACKGROUND: Plasma concentration of PAI-1 (plasminogen activator inhibitor-1) correlates with arterial stiffness. Vascular smooth muscle cells (SMCs) express PAI-1, and the intrinsic stiffness of SMCs is a major determinant of total arterial stiffness. We hypothesized that PAI-1 promotes SMC stiffness by regulating the cytoskeleton and that pharmacological inhibition of PAI-1 decreases SMC and aortic stiffness. METHODS: PAI-039, a specific inhibitor of PAI-1, and small interfering RNA were used to inhibit PAI-1 expression in cultured human SMCs. Effects of PAI-1 inhibition on SMC stiffness, F-actin (filamentous actin) content, and cytoskeleton-modulating enzymes were assessed. WT (wild-type) and PAI-1-deficient murine SMCs were used to determine PAI-039 specificity. RNA sequencing was performed to determine the effects of PAI-039 on SMC gene expression. In vivo effects of PAI-039 were assessed by aortic pulse wave velocity. RESULTS: PAI-039 significantly reduced intrinsic stiffness of human SMCs, which was accompanied by a significant decrease in cytoplasmic F-actin content. PAI-1 gene knockdown also decreased cytoplasmic F-actin. PAI-1 inhibition significantly increased the activity of cofilin, an F-actin depolymerase, in WT murine SMCs, but not in PAI-1-deficient SMCs. RNA-sequencing analysis suggested that PAI-039 upregulates AMPK (AMP-activated protein kinase) signaling in SMCs, which was confirmed by Western blotting. Inhibition of AMPK prevented activation of cofilin by PAI-039. In mice, PAI-039 significantly decreased aortic stiffness and tunica media F-actin content without altering the elastin or collagen content. CONCLUSIONS: PAI-039 decreases intrinsic SMC stiffness and cytoplasmic stress fiber content. These effects are mediated by AMPK-dependent activation of cofilin. PAI-039 also decreases aortic stiffness in vivo. These findings suggest that PAI-1 is an important regulator of the SMC cytoskeleton and that pharmacological inhibition of PAI-1 has the potential to prevent and treat cardiovascular diseases involving arterial stiffening.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38833147

RESUMEN

PURPOSE: The objective of the study is to test the efficacy of cyclopentenyl cytosine (CPEC)-coated stents on blocking artery stenosis, promoting reendothelialization, and reducing thrombosis. METHODS: Scanning electron microscopy was employed to observe the morphological characteristics of stents coated with a mixture of CPEC and poly(lactic-co-glycolic acid) (PLGA) copolymer. PLGA has been used in various Food and Drug Administration (FDA)-approved therapeutic devices. In vitro release of CPEC was tested to measure the dynamic drug elution. Comparison between CPEC- and everolimus-coated stents on neointimal formation and thrombosis formation was conducted after being implanted into the human internal mammary artery and grafted to the mouse aorta. RESULTS: Optimization in stent coating resulted in uniform and consistent coating with minimal variation. In vitro drug release tests demonstrated a gradual and progressive discharge of CPEC. CPEC- or everolimus-coated stents caused much less stenosis than bare-metal stents. However, CPEC stent-implanted arteries exhibited enhanced reendothelialization compared to everolimus stents. Mechanistically, CPEC-coated stents reduced the proliferation of vascular smooth muscle cells while simultaneously promoting reendothelialization. More significantly, unlike everolimus-coated stents, CPEC-coated stents showed a significant reduction in thrombosis formation even in the absence of ongoing anticoagulant treatment. CONCLUSIONS: The study establishes CPEC-coated stent as a promising new device for cardiovascular interventions. By enhancing reendothelialization and preventing thrombosis, CPEC offers advantages over conventional approaches, including the elimination of the need for anti-clogging drugs, which pave the way for improved therapeutic outcomes and management of atherosclerosis-related medical procedures.

4.
Am J Physiol Heart Circ Physiol ; 320(3): H1185-H1198, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33416452

RESUMEN

Ischemia/reperfusion (I/R)-induced rapid inflammation involving activation of leukocyte-endothelial adhesive interactions and leukocyte infiltration into tissues is a major contributor to postischemic tissue injury. However, the molecular mediators involved in this pathological process are not fully known. We have previously reported that caveolin-2 (Cav-2), a protein component of plasma membrane caveolae, regulated leukocyte infiltration in mouse lung carcinoma tumors. The goal of the current study was to examine if Cav-2 plays a role in I/R injury and associated acute leukocyte-mediated inflammation. Using a mouse small intestinal I/R model, we demonstrated that I/R downregulates Cav-2 protein levels in the small bowel. Further study using Cav-2-deficient mice revealed aggravated postischemic tissue injury determined by scoring of villi length in H&E-stained tissue sections, which correlated with increased numbers of MPO-positive tissue-infiltrating leukocytes determined by IHC staining. Intravital microscopic analysis of upstream events relative to leukocyte transmigration and tissue infiltration revealed that leukocyte-endothelial cell adhesive interactions in postcapillary venules, namely leukocyte rolling and adhesion were also enhanced in Cav-2-deficient mice. Mechanistically, Cav-2 deficiency increased plasminogen activator inhibitor-1 (PAI-1) protein levels in the intestinal tissue and a pharmacological inhibition of PAI-1 had overall greater inhibitory effect on both aggravated I/R tissue injury and enhanced leukocyte-endothelial interactions in postcapillary venules in Cav-2-deficient mice. In conclusion, our data suggest that Cav-2 protein alleviates tissue injury in response to I/R by dampening PAI-1 protein levels and thereby reducing leukocyte-endothelial adhesive interactions.NEW & NOTEWORTHY The role of caveolin-2 in regulating ischemia/reperfusion (I/R) tissue injury and the mechanisms underlying its effects are unknown. This study uses caveolin-2-deficient mouse and small intestinal I/R injury models to examine the role of caveolin-2 in the leukocyte-dependent reperfusion injury. We demonstrate for the first time that caveolin-2 plays a protective role from the I/R-induced leukocyte-dependent reperfusion injury by reducing PAI-1 protein levels in intestinal tissue and leukocyte-endothelial adhesive interactions in postcapillary venules.


Asunto(s)
Caveolina 2/deficiencia , Adhesión Celular , Células Endoteliales/metabolismo , Enfermedades del Yeyuno/metabolismo , Yeyuno/irrigación sanguínea , Rodamiento de Leucocito , Leucocitos/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Daño por Reperfusión/metabolismo , Migración Transendotelial y Transepitelial , Vénulas/metabolismo , Animales , Caveolina 2/genética , Modelos Animales de Enfermedad , Células Endoteliales/patología , Enfermedades del Yeyuno/genética , Enfermedades del Yeyuno/patología , Leucocitos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Transducción de Señal , Vénulas/patología
5.
Arterioscler Thromb Vasc Biol ; 40(6): 1479-1490, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268785

RESUMEN

OBJECTIVE: Enhanced expression of PAI-1 (plasminogen activator inhibitor-1) has been implicated in atherosclerosis formation in humans with obesity and metabolic syndrome. However, little is known about the effects of pharmacological targeting of PAI-1 on atherogenesis. This study examined the effects of pharmacological PAI-1 inhibition on atherosclerosis formation in a murine model of obesity and metabolic syndrome. Approach and Results: LDL receptor-deficient (ldlr-/-) mice were fed a Western diet high in cholesterol, fat, and sucrose to induce obesity, metabolic dysfunction, and atherosclerosis. Western diet triggered significant upregulation of PAI-1 expression compared with normal diet controls. Addition of a pharmacological PAI-1 inhibitor (either PAI-039 or MDI-2268) to Western diet significantly inhibited obesity and atherosclerosis formation for up to 24 weeks without attenuating food consumption. Pharmacological PAI-1 inhibition significantly decreased macrophage accumulation and cell senescence in atherosclerotic plaques. Recombinant PAI-1 stimulated smooth muscle cell senescence, whereas a PAI-1 mutant defective in LRP1 (LDL receptor-related protein 1) binding did not. The prosenescent effect of PAI-1 was blocked by PAI-039 and R2629, a specific anti-LRP1 antibody. PAI-039 significantly decreased visceral adipose tissue inflammation, hyperglycemia, and hepatic triglyceride content without altering plasma lipid profiles. CONCLUSIONS: Pharmacological targeting of PAI-1 inhibits atherosclerosis in mice with obesity and metabolic syndrome, while inhibiting macrophage accumulation and cell senescence in atherosclerotic plaques, as well as obesity-associated metabolic dysfunction. PAI-1 induces senescence of smooth muscle cells in an LRP1-dependent manner. These results help to define the role of PAI-1 in atherosclerosis formation and suggest a new plasma-lipid-independent strategy for inhibiting atherogenesis.


Asunto(s)
Aterosclerosis/prevención & control , Síndrome Metabólico/tratamiento farmacológico , Inhibidor 1 de Activador Plasminogénico/efectos de los fármacos , Animales , Senescencia Celular/efectos de los fármacos , Dieta Occidental , Modelos Animales de Enfermedad , Ácidos Indolacéticos/administración & dosificación , Macrófagos/efectos de los fármacos , Macrófagos/patología , Síndrome Metabólico/patología , Síndrome Metabólico/prevención & control , Ratones , Ratones Noqueados , Obesidad/etiología , Obesidad/prevención & control , Placa Aterosclerótica/patología , Inhibidor 1 de Activador Plasminogénico/fisiología , Receptores de LDL/deficiencia , Receptores de LDL/genética
6.
Mo Med ; 118(3): 219-225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149081

RESUMEN

Consumption of oily fish high in omega-3 fatty acids (n-3FAs) is strongly associated with reduced risk of adverse cardiovascular events. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the n-3FAs in fish oil believed to confer its beneficial effects. Over the past two decades, multiple clinical trials have been conducted to test the hypothesis that encapsulated EPA and DHA supplements improve cardiovascular outcomes in patients with established cardiovascular disease or at risk of developing it. Over the same time period, over-the-counter fish oil supplements have become a multi-billion-dollar industry. In this article, we briefly review available clinical trial data involving EPA and DHA supplementation. Based on currently available information, we conclude that combination capsules containing EPA and DHA should not be used to reduce cardiovascular risk. Some studies suggest that EPA as stand-alone therapy decreases cardiovascular risk. Nevertheless, we advocate a restrictive approach to using EPA to improve cardiovascular outcomes.


Asunto(s)
Enfermedades Cardiovasculares , Ácidos Grasos Omega-3 , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Suplementos Dietéticos , Ácidos Docosahexaenoicos/uso terapéutico , Ácidos Grasos Omega-3/uso terapéutico , Aceites de Pescado/uso terapéutico , Humanos
7.
Am J Physiol Endocrinol Metab ; 317(3): E548-E558, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31310581

RESUMEN

Endothelin-1 (ET-1) is a potent vasoconstrictor and proinflammatory peptide that is upregulated in obesity. Herein, we tested the hypothesis that ET-1 signaling promotes visceral adipose tissue (AT) inflammation and disrupts glucose homeostasis. We also tested if reduced ET-1 is a required mechanism by which exercise ameliorates AT inflammation and improves glycemic control in obesity. We found that 1) diet-induced obesity, AT inflammation, and glycemic dysregulation were not accompanied by significantly increased levels of ET-1 in AT or circulation in wild-type mice and that endothelial overexpression of ET-1 and consequently increased ET-1 levels did not cause AT inflammation yet impaired glucose tolerance; 2) reduced AT inflammation and improved glucose tolerance with voluntary wheel running was not associated with decreased levels of ET-1 in AT or circulation in obese mice nor did endothelial overexpression of ET-1 impede such exercise-induced metabolic adaptations; 3) chronic pharmacological blockade of ET-1 receptors did not suppress AT inflammation in obese mice but improved glucose tolerance; and 4) in a cohort of human subjects with a wide range of body mass indexes, ET-1 levels in AT, or circulation were not correlated with markers of inflammation in AT. In aggregate, we conclude that ET-1 signaling is not implicated in the development of visceral AT inflammation but promotes glucose intolerance, thus representing an important therapeutic target for glycemic dysregulation in conditions characterized by hyperendothelinemia. Furthermore, we show that the salutary effects of exercise on AT and systemic metabolic function are not contingent on the suppression of ET-1 signaling.


Asunto(s)
Endotelina-1/metabolismo , Intolerancia a la Glucosa/metabolismo , Inflamación/patología , Grasa Intraabdominal/patología , Condicionamiento Físico Animal/fisiología , Animales , Índice de Masa Corporal , Endotelina-1/antagonistas & inhibidores , Endotelina-1/genética , Ejercicio Físico/fisiología , Femenino , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/patología , Carrera
8.
J Biol Chem ; 292(6): 2345-2358, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28053087

RESUMEN

Re-establishing blood supply is the primary goal for reducing myocardial injury in subjects with ischemic heart disease. Paradoxically, reperfusion results in nitroxidative stress and a marked inflammatory response in the heart. TRAF3IP2 (TRAF3 Interacting Protein 2; previously known as CIKS or Act1) is an oxidative stress-responsive cytoplasmic adapter molecule that is an upstream regulator of both IκB kinase (IKK) and c-Jun N-terminal kinase (JNK), and an important mediator of autoimmune and inflammatory responses. Here we investigated the role of TRAF3IP2 in ischemia/reperfusion (I/R)-induced nitroxidative stress, inflammation, myocardial dysfunction, injury, and adverse remodeling. Our data show that I/R up-regulates TRAF3IP2 expression in the heart, and its gene deletion, in a conditional cardiomyocyte-specific manner, significantly attenuates I/R-induced nitroxidative stress, IKK/NF-κB and JNK/AP-1 activation, inflammatory cytokine, chemokine, and adhesion molecule expression, immune cell infiltration, myocardial injury, and contractile dysfunction. Furthermore, Traf3ip2 gene deletion blunts adverse remodeling 12 weeks post-I/R, as evidenced by reduced hypertrophy, fibrosis, and contractile dysfunction. Supporting the genetic approach, an interventional approach using ultrasound-targeted microbubble destruction-mediated delivery of phosphorothioated TRAF3IP2 antisense oligonucleotides into the LV in a clinically relevant time frame significantly inhibits TRAF3IP2 expression and myocardial injury in wild type mice post-I/R. Furthermore, ameliorating myocardial damage by targeting TRAF3IP2 appears to be more effective to inhibiting its downstream signaling intermediates NF-κB and JNK. Therefore, TRAF3IP2 could be a potential therapeutic target in ischemic heart disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Remodelación Ventricular , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Eliminación de Gen , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Especies de Nitrógeno Reactivo/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 36(11): 2167-2175, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27659097

RESUMEN

OBJECTIVE: Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor that promotes and inhibits cell migration, plays a complex and important role in adverse vascular remodeling. Little is known about the effects of pharmacological PAI-1 inhibitors, an emerging drug class, on migration of vascular smooth muscle cells (SMCs) and endothelial cells (ECs), crucial mediators of vascular remodeling. We investigated the effects of PAI-039 (tiplaxtinin), a specific PAI-1 inhibitor, on SMC and EC migration in vitro and vascular remodeling in vivo. APPROACH AND RESULTS: PAI-039 inhibited SMC migration through collagen gels, including those supplemented with vitronectin and other extracellular matrix proteins, but did not inhibit migration of PAI-1-deficient SMCs, suggesting that its antimigratory effects were PAI-1-specific and physiologically relevant. However, PAI-039 did not inhibit EC migration. PAI-039 inhibited phosphorylation and nuclear translocation of signal transducers and activators of transcription-1 in SMCs, but had no discernable effect on signal transducer and activator of transcription-1 signaling in ECs. Expression of low-density lipoprotein receptor-related protein 1, a motogenic PAI-1 receptor that activates Janus kinase/signal transducers and activators of transcription-1 signaling, was markedly lower in ECs than in SMCs. Notably, PAI-039 significantly inhibited intimal hyperplasia and inflammation in murine models of adverse vascular remodeling, but did not adversely affect re-endothelialization after endothelium-denuding mechanical vascular injury. CONCLUSIONS: PAI-039 inhibits SMC migration and intimal hyperplasia, while having no inhibitory effect on ECs, which seems to be because of differences in PAI-1-dependent low-density lipoprotein receptor-related protein 1/Janus kinase/signal transducer and activator of transcription-1 signaling between SMCs and ECs. These findings suggest that PAI-1 may be an important therapeutic target in obstructive vascular diseases characterized by neointimal hyperplasia.


Asunto(s)
Traumatismos de las Arterias Carótidas/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Neointima , Inhibidor 1 de Activador Plasminogénico/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Animales , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Genotipo , Humanos , Hiperplasia , Quinasas Janus/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida , Músculo Liso/metabolismo , Músculo Liso/patología , Músculo Liso/trasplante , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/trasplante , Fenotipo , Fosforilación , Inhibidor 1 de Activador Plasminogénico/deficiencia , Inhibidor 1 de Activador Plasminogénico/genética , Repitelización/efectos de los fármacos , Receptores de LDL/deficiencia , Receptores de LDL/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Remodelación Vascular/efectos de los fármacos , Vena Cava Inferior/efectos de los fármacos , Vena Cava Inferior/metabolismo , Vena Cava Inferior/patología , Vena Cava Inferior/trasplante
11.
J Cell Physiol ; 231(5): 1130-41, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26445208

RESUMEN

Both oxidative stress and inflammation contribute to chronic hypertension-induced myocardial fibrosis and adverse cardiac remodeling. Here we investigated whether angiotensin (Ang)-II-induced fibroblast proliferation and migration are NADPH oxidase (Nox) 4/ROS and IL-18 dependent. Our results show that the potent induction of mouse cardiac fibroblast (CF) proliferation and migration by Ang-II is markedly attenuated by Nox4 knockdown and the Nox inhibitor DPI. Further, Nox4 knockdown and DPI pre-treatment attenuated Ang-II-induced IL-18, IL-18Rα and collagen expression, and MMP9 and LOX activation. While neutralization of IL-18 blunted Ang-II-induced CF proliferation and migration, knockdown of MMP9 attenuated CF migration. The antioxidant NAC and the cell-permeable SOD mimetics Tempol, MnTBAP, and MnTMPyP attenuated oxidative stress and inhibited CF proliferation and migration. The Nox1/Nox4 dual inhibitor GKT137831 also blunted Ang-II-induced H2 O2 production and CF proliferation and migration. Further, AT1 bound Nox4, and Ang-II enhanced their physical association. Notably, GKT137831 attenuated the AT1/Nox4 interaction. These results indicate that Ang-II induces CF proliferation and migration in part via Nox4/ROS-dependent IL-18 induction and MMP9 activation, and may involve AT1/Nox4 physical association. Thus, either (i) neutralizing IL-18, (ii) blocking AT1/Nox4 interaction or (iii) use of the Nox1/Nox4 inhibitor GKT137831 may have therapeutic potential in chronic hypertension-induced adverse cardiac remodeling.


Asunto(s)
Angiotensina II/farmacología , Movimiento Celular/efectos de los fármacos , Fibroblastos/citología , Técnicas de Silenciamiento del Gen , Miocardio/citología , NADPH Oxidasas/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Receptor de Angiotensina Tipo 1/metabolismo , Envejecimiento , Animales , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Interleucina-18/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , NADPH Oxidasa 4 , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Pirazolonas , Piridonas , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción AP-1/metabolismo
12.
Arterioscler Thromb Vasc Biol ; 35(1): 111-20, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378411

RESUMEN

OBJECTIVE: Plasminogen activator inhibitor-1 (PAI-1) regulates angiogenesis via effects on extracellular matrix proteolysis and cell adhesion. However, no previous study has implicated PAI-1 in controlling vascular endothelial growth factor (VEGF) signaling. We tested the hypothesis that PAI-1 downregulates VEGF receptor-2 (VEGFR-2) activation by inhibiting a vitronectin-dependent cooperative binding interaction between VEGFR-2 and αVß3. APPROACH AND RESULTS: We studied effects of PAI-1 on VEGF signaling in human umbilical vein endothelial cells. PAI-1 inhibited VEGF-induced phosphorylation of VEGFR-2 in human umbilical vein endothelial cells grown on vitronectin, but not on fibronectin or collagen. PAI-1 inhibited the binding of VEGFR-2 to ß3 integrin, VEGFR-2 endocytosis, and intracellular signaling pathways downstream of VEGFR-2. The anti-VEGF effect of PAI-1 was mediated by 2 distinct pathways, one requiring binding to vitronectin and another requiring binding to very low-density lipoprotein receptor. PAI-1 inhibited VEGF-induced angiogenesis in vitro and in vivo, and pharmacological inhibition of PAI-1 promoted collateral arteriole development and recovery of hindlimb perfusion after femoral artery interruption. CONCLUSIONS: PAI-1 inhibits activation of VEGFR-2 by VEGF by disrupting a vitronectin-dependent proangiogenic binding interaction involving αVß3 and VEGFR-2. These results broaden our understanding of the roles of PAI-1, vitronectin, and endocytic receptors in regulating VEGFR-2 activation and suggest novel therapeutic strategies for regulating VEGF signaling.


Asunto(s)
Células Endoteliales/metabolismo , Integrina alfaVbeta3/metabolismo , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Inhibidor 1 de Activador Plasminogénico/metabolismo , Receptor Cross-Talk , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Adhesión Celular , Movimiento Celular , Células Cultivadas , Modelos Animales de Enfermedad , Endocitosis , Células Endoteliales/efectos de los fármacos , Miembro Posterior , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ácidos Indolacéticos/administración & dosificación , Isquemia/metabolismo , Isquemia/fisiopatología , Isquemia/prevención & control , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Neovascularización Fisiológica/efectos de los fármacos , Fosforilación , Inhibidor 1 de Activador Plasminogénico/genética , Interferencia de ARN , Receptor Cross-Talk/efectos de los fármacos , Receptores de LDL/metabolismo , Proteínas Recombinantes/metabolismo , Inhibidores de Serina Proteinasa/administración & dosificación , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Vitronectina/deficiencia , Vitronectina/genética
13.
Int J Mol Sci ; 17(3): 316, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26938531

RESUMEN

In our efforts to develop new approaches to treat and prevent human vascular diseases, we report herein our results on the proliferation and migration of human smooth muscles cells (SMCs) and endothelial cells (ECs) using epigallocatechin-3-gallate conjugated gold nanoparticles (EGCg-AuNPs) as possible alternatives to drug coated stents. Detailed in vitro stability studies of EGCg-AuNPs in various biological fluids, affinity and selectivity towards SMCs and ECs have been investigated. The EGCg-AuNPs showed selective inhibitory efficacy toward the migration of SMCs. However, the endothelial cells remained unaffected under similar experimental conditions. The cellular internalization studies have indicated that EGCg-AuNPs internalize into the SMCs and ECs within short periods of time through laminin receptor mediated endocytosis mode. Favorable toxicity profiles and selective affinity toward SMCs and ECs suggest that EGCg-AuNPs may provide attractive alternatives to drug coated stents and therefore offer new therapeutic approaches in treating cardiovascular diseases.


Asunto(s)
Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Catequina/análogos & derivados , Portadores de Fármacos/química , Oro/química , Nanopartículas del Metal/química , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antioxidantes/farmacocinética , Catequina/administración & dosificación , Catequina/farmacocinética , Catequina/farmacología , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Reestenosis Coronaria/prevención & control , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Receptores de Laminina/metabolismo , Proteínas Ribosómicas
15.
Mol Cancer ; 14: 140, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26215730

RESUMEN

BACKGROUND: An increased incidence of venous thromboembolism (VTE) is associated with anti-vascular endothelial growth factor (VEGF) treatment in cancer. However, the mechanism underlying this effect remains elusive. In this study, we examined the effect of bevacizumab, a humanized monoclonal antibody against VEGF-A, on VTE in a murine xenograft A549 cell tumor model. METHODS: Inferior vena cava stenosis model and FeCl3-induced saphenous vein thrombosis model were performed in a mouse xenograft models of human lung adenocarcinoma. RESULTS: We found that treatment with bevacizumab significantly increased the thrombotic response to inferior vena cava obstruction and femoral vein injury. Plasminogen activator inhibitor (PAI-1) expression in tumors, plasma, and thrombi was significantly increased by bevacizumab. However, bevacizumab did not enhance VTE in PAI-1-deficient mice, suggesting that PAI-1 is a major mediator of bevacizumab's prothrombotic effect. VEGF inhibited expression of PAI-1 by A549 cells, and this effect was neutralized by bevacizumab, suggesting that bevacizumab increases PAI-1 expression in vivo by blocking the inhibitory effect of VEGF on PAI-1 expression by tumor cells. Pharmacological inhibition of PAI-1 with PAI-039 blocked bevacizumab-induced venous thrombosis. CONCLUSION: Collectively, these findings indicate that PAI-1 plays a role in VTE associated with antiangiogenic therapy and the inhibition of PAI-1 shows efficacy as a therapeutic strategy for the prevention of bevacizumab-associated VTE.


Asunto(s)
Adenocarcinoma/patología , Bevacizumab/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Inhibidor 1 de Activador Plasminogénico/biosíntesis , Tromboembolia Venosa/patología , Adenocarcinoma/complicaciones , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma del Pulmón , Animales , Bevacizumab/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Inhibidor 1 de Activador Plasminogénico/genética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Tromboembolia Venosa/inducido químicamente , Tromboembolia Venosa/etiología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Blood ; 119(13): 2977-8, 2012 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-22461473

RESUMEN

The long-recognized connection between homocysteine and thrombosis is examined in this issue of Blood in a study conducted by Dayal and colleagues. The results challenge the proposed mechanisms by which disordered homocysteine metabolism triggers vascular disease.


Asunto(s)
Modelos Animales de Enfermedad , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/patología , Ratones , Trombosis/etiología , Animales , Femenino , Humanos , Masculino
18.
Mo Med ; 110(4): 339-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24003653

RESUMEN

3-Hydroxy-3-methyl-glutarylCoA reductase inhibitors, or statins, are a mainstay in the treatment of patients with established coronary artery disease (CAD) because of their proven efficacy in reducing cardiovascular death, myocardial infarction, and coronary revascularization procedures in this patient population. Statin therapy has also proven successful in the primary prevention of CAD. However, the absolute reduction in cardiovascular events is lower in primary prevention than in secondary prevention trials, and many of the primary prevention trials enrolled a significant number of patients with established cardiovascular disease and/or other high-risk features, such as diabetes mellitus. For these reasons we do not recommend widespread treatment of the general adult population with a statin. Rather, we advocate a strategy which involves collection of standard clinical data and the use of validated risk-prediction tools to stratify patient risk and limit initiation of a statin to those who are more likely to benefit from such therapy.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Prevención Primaria , Medición de Riesgo , Humanos , Persona de Mediana Edad , Selección de Paciente
19.
J Biomed Mater Res A ; 111(11): 1768-1780, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37465994

RESUMEN

In-stent restenosis and thrombosis remain to be long-term challenges in coronary stenting procedures. The objective of this study was to evaluate the in vitro biological responses of trimethylsilane (TMS) plasma nanocoatings modified with NH3 /O2 (2:1 molar ratio) plasma post-treatment (TMS + NH3 /O2 nanocoatings) on cobalt chromium (CoCr) alloy L605 coupons, L605 stents, and 316L stainless steel (SS) stents. Surface properties of the plasma nanocoatings with up to 2-year aging time were characterized by wettability assessment and x-ray photoelectron spectroscopy (XPS). It was found that TMS + NH3 /O2 nanocoatings had a surface composition of 41.21 ± 1.06 at% oxygen, 31.90 ± 1.08 at% silicon, and 24.12 ± 1.7 at% carbon, and very small but essential amount of 2.77 ± 0.18 at% nitrogen. Surface chemical stability of the plasma coatings was noted with persistent O/Si atomic ratio of 1.292-1.413 and N/Si atomic ratio of ~0.087 through 2 years. The in vitro biological responses of plasma nanocoatings were studied by evaluating the cell proliferation and migration of porcine coronary artery endothelial cells (PCAECs) and smooth muscle cells (PCASMCs). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay results revealed that, after 7-day incubation, TMS + NH3 /O2 nanocoatings maintained a similar level of PCAEC proliferation while showing a decrease in the viability of PCASMCs by 73 ± 19% as compared with uncoated L605 surfaces. Cell co-culture of PCAECs and PCASMCs results showed that, the cell ratio of PCAEC/PCASMC on TMS + NH3 /O2 nanocoating surfaces was 1.5-fold higher than that on uncoated L605 surfaces, indicating enhanced selectivity for promoting PCAEC growth. Migration test showed comparable PCAEC migration distance for uncoated L605 and TMS + NH3 /O2 nanocoatings. In contrast, PCASMC migration distance was reduced nearly 8.5-fold on TMS + NH3 /O2 nanocoating surfaces as compared to the uncoated L605 surfaces. Platelet adhesion test using porcine whole blood showed lower adhered platelets distribution (by 70 ± 16%), reduced clotting attachment (by 54 ± 12%), and less platelet activation on TMS + NH3 /O2 nanocoating surfaces as compared with the uncoated L605 controls. It was further found that, under shear stress conditions of simulated blood flow, TMS + NH3 /O2 nanocoating significantly inhibited platelet adhesion compared to the uncoated 316L SS stents and TMS nanocoated 316L SS stents. These results indicate that TMS + NH3 /O2 nanocoatings are very promising in preventing both restenosis and thrombosis for coronary stent applications.


Asunto(s)
Células Endoteliales , Trombosis , Animales , Porcinos , Stents , Plaquetas/metabolismo , Coagulación Sanguínea , Aleaciones de Cromo , Trombosis/prevención & control
20.
Blood ; 116(10): 1787-94, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20516367

RESUMEN

The antithrombotic surface of endothelium is regulated in a coordinated manner. Tissue factor pathway inhibitor (TFPI) localized at the endothelial cell surface regulates the production of FXa by inhibiting the TF/VIIa complex. Systemic homozygotic deletion of the first Kunitz (K1) domain of TFPI results in intrauterine lethality in mice. Here we define the cellular sources of TFPI and their role in development, hemostasis, and thrombosis using TFPI conditional knockout mice. We used a Cre-lox strategy and generated mice with a floxed exon 4 (TFPI(Flox)) which encodes for the TFPI-K1 domain. Mice bred into Tie2-Cre and LysM-Cre lines to delete TFPI-K1 in endothelial (TFPI(Tie2)) and myelomonocytic (TFPI(LysM)) cells resulted in viable and fertile offspring. Plasma TFPI activity was reduced in the TFPI(Tie2) (71% ± 0.9%, P < .001) and TFPI(LysM) (19% ± 0.6%, P < .001) compared with TFPI(Flox) littermate controls. Tail and cuticle bleeding were unaffected. However, TFPI(Tie2) mice but not TFPI(LysM) mice had increased ferric chloride-induced arterial thrombosis. Taken together, the data reveal distinct roles for endothelial- and myelomonocytic-derived TFPI.


Asunto(s)
Células Endoteliales/metabolismo , Hemostasis , Lipoproteínas/sangre , Trombosis/sangre , Animales , Arterias/metabolismo , Arterias/patología , Femenino , Estimación de Kaplan-Meier , Lipoproteínas/genética , Lipoproteínas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Monocitos/citología , Monocitos/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor TIE-2 , Trombosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA