Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant J ; 105(5): 1141-1164, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33484020

RESUMEN

Intra-specific variability is a cornerstone of evolutionary success of species. Acquiring genetic material from distant sources is an important adaptive mechanism in bacteria, but it can also play a role in eukaryotes. In this paper, we investigate the nature and evolution of a chromosomal segment of panicoid (Poaceae, Panicoideae) origin occurring in the nuclear genomes of species of the barley genus Hordeum (Pooideae). The segment, spanning over 440 kb in the Asian Hordeum bogdanii and 219 kb in the South American Hordeum pubiflorum, resides on a pair of nucleolar organizer region (NOR)-bearing chromosomes. Conserved synteny and micro-collinearity of the segment in both species indicate a common origin of the segment, which was acquired before the split of the respective barley lineages 5-1.7 million years ago. A major part of the foreign DNA consists of several approximately 68 kb long repeated blocks containing five stress-related protein-coding genes and transposable elements (TEs). Whereas outside these repeats, the locus was invaded by multiple TEs from the host genome, the repeated blocks are rather intact and appear to be preserved. The protein-coding genes remained partly functional, as indicated by conserved reading frames, a low amount of non-synonymous mutations, and expression of mRNA. A screen across Hordeum species targeting the panicoid protein-coding genes revealed the presence of the genes in all species of the section Stenostachys. In summary, our study shows that grass genomes can contain large genomic segments obtained from distantly related species. These segments usually remain undetected, but they may play an important role in the evolution and adaptation of species.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Hordeum/genética , Panicum/genética , Elementos Transponibles de ADN/genética , Transferencia de Gen Horizontal/genética , Hibridación Fluorescente in Situ
2.
Am J Bot ; 107(1): 66-90, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31903548

RESUMEN

PREMISE: The origin of allopolyploids is believed to shape their evolutionary potential, ecology, and geographical ranges. Morphologically distinct apomictic types sharing the same parental species belong to the most challenging groups of polyploids. We evaluated the origins and variation of two triploid taxa (Hieracium pallidiflorum, H. picroides) presumably derived from the same diploid parental pair (H. intybaceum, H. prenanthoides). METHODS: We used a suite of approaches ranging from morphological, phylogenetic (three unlinked molecular markers), and cytogenetic analyses (in situ hybridization) to genome size screening and genome skimming. RESULTS: Genotyping proved the expected parentage of all analyzed accessions of H. pallidiflorum and H. picroides and revealed that nearly all of them originated independently. Genome sizes and genome dosage largely corresponded to morphology, whereas the maternal origin of the allopolyploids had no discernable effect. Polyploid accessions of both parental species usually contained genetic material from other species. Given the phylogenetic distance of the parents, their chromosomes appeared only weakly differentiated in genomic in situ hybridization (GISH), as well as in overall comparisons of the repetitive fraction of their genomes. Furthermore, the repeatome of a phylogenetically more closely related species (H. umbellatum) differed significantly more. CONCLUSIONS: We proved (1) multiple origins of hybridogeneous apomicts from the same diploid parental taxa, and (2) allopolyploid origins of polyploid accessions of the parental species. We also showed that the evolutionary dynamics of very fast evolving markers such as satellite DNA or transposable elements does not necessarily follow patterns of speciation.


Asunto(s)
Evolución Biológica , Poliploidía , Diploidia , Genoma de Planta , Genómica , Humanos , Filogenia
3.
Proc Natl Acad Sci U S A ; 114(7): 1726-1731, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137844

RESUMEN

The movement of nuclear DNA from one vascular plant species to another in the absence of fertilization is thought to be rare. Here, nonnative rRNA gene [ribosomal DNA (rDNA)] copies were identified in a set of 16 diploid barley (Hordeum) species; their origin was traceable via their internal transcribed spacer (ITS) sequence to five distinct Panicoideae genera, a lineage that split from the Pooideae about 60 Mya. Phylogenetic, cytogenetic, and genomic analyses implied that the nonnative sequences were acquired between 1 and 5 Mya after a series of multiple events, with the result that some current Hordeum sp. individuals harbor up to five different panicoid rDNA units in addition to the native Hordeum rDNA copies. There was no evidence that any of the nonnative rDNA units were transcribed; some showed indications of having been silenced via pseudogenization. A single copy of a Panicum sp. rDNA unit present in H. bogdanii had been interrupted by a native transposable element and was surrounded by about 70 kbp of mostly noncoding sequence of panicoid origin. The data suggest that horizontal gene transfer between vascular plants is not a rare event, that it is not necessarily restricted to one or a few genes only, and that it can be selectively neutral.


Asunto(s)
Núcleo Celular/genética , ADN Ribosómico/genética , Transferencia de Gen Horizontal , Filogenia , Poaceae/genética , ADN de Plantas/química , ADN de Plantas/genética , ADN Ribosómico/química , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Diploidia , Evolución Molecular , Genes de Plantas/genética , Hordeum/clasificación , Hordeum/genética , Poaceae/clasificación , Análisis de Secuencia de ADN
4.
Mycorrhiza ; 27(2): 147-163, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27778093

RESUMEN

Ericoid mycorrhiza is arguably the least investigated mycorrhizal type, particularly when related to the number of potential hosts and the ecosystems they inhabit. Little is known about the global distribution of ericoid mycorrhizal (ErM) fungi, and this holds true even for the prominent ErM mycobiont Rhizoscyphus ericae. Earlier studies suggested R. ericae might be low in abundance or absent in the roots of Southern Hemisphere's Ericaceae, and our previous investigations in two Argentine Patagonian forests supported this view. Here, we revisited the formerly investigated area, albeit at a higher altitude, and screened fungi inhabiting hair roots of Gaultheria caespitosa and Gaultheria pumila at a treeless alpine site using the same methods as previously. We obtained 234 isolates, most of them belonging to Ascomycota. In contrast to previous findings, however, among 37 detected operational taxonomic units (OTUs), OTU 1 (=R. ericae s. str.) comprised the highest number of isolates (87, ∼37 %). Most of the OTUs and isolates belonged to the Helotiales, and 82.5 % of isolates belonged to OTUs shared between both Gaultheria species. At the alpine site, ericoid mycorrhizal fungi dominated, followed by dark septate endophytes and aquatic hyphomycetes probably acting as root endophytes. Our results suggest that the distribution of R. ericae is influenced, among others, by factors related to altitude such as soil type and presence/absence and type of the neighboring vegetation. Our study is the first report on R. ericae colonizing Ericaceae roots in the Southern Hemisphere and extends the known range of this prominent ErM species to NW Patagonia.


Asunto(s)
Ericaceae/microbiología , Glomeromycota/aislamiento & purificación , Micorrizas/fisiología , Argentina , Glomeromycota/clasificación , Glomeromycota/genética , Filogenia , Raíces de Plantas/microbiología
5.
Am J Bot ; 103(9): 1567-74, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27620180

RESUMEN

PREMISE OF THE STUDY: The phenotype of an individual can be modified by the environment experienced by its predecessors, a phenomenon called transgenerational or maternal effects. These effects are studied mostly across sexual generations and are thought to be mediated also by epigenetic variation. However, we do not know how important transgenerational effects are across asexual generations of clonal plants. METHODS: We investigated the role of different drought intensities and durations experienced by parental plants of Trifolium repens on the growth of offspring ramets after transplantation of clonal cuttings to control conditions. We also treated half of the plants with 5-azacytidine, which is a demethylating agent, to test the potential role of DNA methylation on transgenerational effects. KEY RESULTS: Transgenerational effects were manifested as increased biomass of offspring ramets if parental plants experienced medium drought applied for a short period and decreased biomass of offspring ramets if parental plants experienced intense drought for a short period. These transgenerational effects were not observed for offspring of parents from the same treatments if these were treated with 5-azacytidine, whose application significantly decreased the amount of 5-methyl-2'-deoxycytidine in plants. CONCLUSIONS: Transgenerational effects might play an important role in the clonal plant Trifolium repens and are probably mediated by epigenetic variation. The growth and behavior of clonal plants might be affected not only by the ambient environment but also by environments that are no longer present at the time of clonal reproduction. This phenomenon can have yet unacknowledged ecological and evolutionary implications for clonal plants.


Asunto(s)
Sequías , Reproducción Asexuada , Estrés Fisiológico , Trifolium/fisiología , Biomasa , Fenotipo , Trifolium/crecimiento & desarrollo
6.
Mycorrhiza ; 26(8): 831-846, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27323713

RESUMEN

The Sebacinales are a monophyletic group of ubiquitous hymenomycetous mycobionts which form ericoid and orchid mycorrhizae, ecto- and ectendomycorrhizae, and nonspecific root endophytic associations with a wide spectrum of plants. However, due to the complete lack of fungal isolates derived from Ericaceae roots, the Sebacinales ericoid mycorrhizal (ErM) potential has not yet been tested experimentally. Here, we report for the first time isolation of a serendipitoid (formerly Sebacinales Group B) mycobiont from Ericaceae which survived in pure culture for several years. This allowed us to test its ability to form ericoid mycorrhizae with an Ericaceae host in vitro, to describe its development and colonization pattern in host roots over time, and to compare its performance with typical ErM fungi and other serendipitoids derived from non-Ericaceae hosts. Out of ten serendipitoid isolates tested, eight intracellularly colonized Vaccinium hair roots, but only the Ericaceae-derived isolate repeatedly formed typical ericoid mycorrhiza morphologically identical to ericoid mycorrhiza commonly found in naturally colonized Ericaceae, but yet different from ericoid mycorrhiza formed in vitro by the prominent ascomycetous ErM fungus Rhizoscyphus ericae. One Orchidaceae-derived isolate repeatedly formed abundant hyaline intracellular microsclerotia morphologically identical to those occasionally found in naturally colonized Ericaceae, and an isolate of Serendipita (= Piriformospora) indica produced abundant intracellular chlamydospores typical of this species. Our results confirm for the first time experimentally that some Sebacinales can form ericoid mycorrhiza, point to their broad endophytic potential in Ericaceae hosts, and suggest possible ericoid mycorrhizal specificity in Serendipitaceae.


Asunto(s)
Basidiomycota/fisiología , Ericaceae/microbiología , Micorrizas/fisiología , Basidiomycota/clasificación , Basidiomycota/genética , Filogenia , Raíces de Plantas/microbiología , Plantones/crecimiento & desarrollo , Plantones/microbiología
7.
Plant J ; 66(5): 890-902, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21418351

RESUMEN

Asexual seed formation, or apomixis, in the Hieracium subgenus Pilosella is controlled by two dominant independent genetic loci, LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP). We examined apomixis mutants that had lost function in one or both loci to establish their developmental roles during seed formation. In apomicts, sexual reproduction is initiated first. Somatic aposporous initial (AI) cells differentiate near meiotic cells, and the sexual pathway is terminated as AI cells undergo mitotic embryo sac formation. Seed initiation is fertilization-independent. Using a partially penetrant cytotoxic reporter to inhibit meioisis, we showed that developmental events leading to the completion of meiotic tetrad formation are required for AI cell formation. Sexual initiation may therefore stimulate activity of the LOA locus, which was found to be required for AI cell formation and subsequent suppression of the sexual pathway. AI cells undergo nuclear division to form embryo sacs, in which LOP functions gametophytically to stimulate fertilization-independent embryo and endosperm formation. Loss of function in either locus results in partial reversion to sexual reproduction, and loss of function in both loci results in total reversion to sexual reproduction. Therefore, in these apomicts, sexual reproduction is the default reproductive mode upon which apomixis is superimposed. These loci are unlikely to encode genes essential for sexual reproduction, but may function to recruit the sexual machinery at specific time points to enable apomixis.


Asunto(s)
Asteraceae/genética , Genes de Plantas , Sitios Genéticos , Óvulo Vegetal/citología , Reproducción Asexuada , Semillas/citología , Asteraceae/citología , Asteraceae/crecimiento & desarrollo , Asteraceae/efectos de la radiación , Segregación Cromosómica , Cruzamientos Genéticos , Gametogénesis en la Planta , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación , Meiosis , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/efectos de la radiación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Polinización , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Tetraploidía
8.
Am J Bot ; 99(2): e74-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22301891

RESUMEN

PREMISE OF THE STUDY: The development of three low-copy nuclear markers for low taxonomic level phylogenies in Asteraceae with emphasis on the subtribe Hieraciinae is reported. METHODS AND RESULTS: Marker candidates were selected by comparing a Lactuca complementary DNA (cDNA) library with public DNA sequence databases. Interspecific variation and phylogenetic signal of the selected genes were investigated for diploid taxa from the subtribe Hieraciinae and compared to a reference phylogeny. Their ability to cross-amplify was assessed for other Asteraceae tribes. All three markers had higher variation (2.1-4.5 times) than the internal transcribed spacer (ITS) in Hieraciinae. Cross-amplification was successful in at least seven other tribes of the Asteraceae. Only three cases indicating the presence of paralogs or pseudogenes were detected. CONCLUSIONS: The results demonstrate the potential of these markers for phylogeny reconstruction in the Hieraciinae as well as in other Asteraceae tribes, especially for very closely related species.


Asunto(s)
Asteraceae/genética , Núcleo Celular/genética , Genes de Plantas , Asteraceae/clasificación , Secuencia de Bases , Cromosomas de las Plantas/genética , Biología Computacional , Cartilla de ADN/genética , ADN Intergénico/genética , ADN de Plantas/genética , Diploidia , Dosificación de Gen , Biblioteca de Genes , Marcadores Genéticos , Variación Genética , Filogenia , Seudogenes , Análisis de Secuencia de ADN
9.
Mycorrhiza ; 22(1): 69-80, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21526402

RESUMEN

During the last decade, the application of arbuscular mycorrhizal fungi (AMF) as bioenhancers has increased significantly. However, until now, it has been difficult to verify the inoculation success in terms of fungal symbiont establishment in roots of inoculated plants because specific fungal strains could not be detected within colonized roots. Using mitochondrial large subunit ribosomal DNA, we show that Rhizophagus irregularis (formerly known as Glomus intraradices) isolate BEG140 consists of two different haplotypes. We developed nested PCR assays to specifically trace each of the two haplotypes in the roots of Phalaris arundinacea from a field experiment in a spoil bank of a former coal mine, where BEG140 was used as inoculant. We revealed that despite the relatively high diversity of native R. irregularis strains, R. irregularis BEG140 survived and proliferated successfully in the field experiment and was found significantly more often in the inoculated than control plots. This work is the first one to show tracing of an inoculated AMF isolate in the roots of target plants and to verify its survival and propagation in the field. These results will have implications for basic research on the ecology of AMF at the intraspecific level as well as for commercial users of mycorrhizal inoculation.


Asunto(s)
ADN Ribosómico/genética , Glomeromycota/genética , Mitocondrias/genética , Micorrizas/aislamiento & purificación , Phalaris/microbiología , Secuencia de Bases , Minas de Carbón , República Checa , ADN de Hongos/genética , ADN Mitocondrial/genética , Marcadores Genéticos , Glomeromycota/aislamiento & purificación , Glomeromycota/fisiología , Haplotipos , Datos de Secuencia Molecular , Micorrizas/genética , Micorrizas/fisiología , Phalaris/fisiología , Filogenia , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa/métodos , Alineación de Secuencia , Análisis de Secuencia de ADN , Microbiología del Suelo , Simbiosis
10.
Plants (Basel) ; 11(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36235450

RESUMEN

Native American hawkweeds are mainly mountainous species that are distributed all over the New World. They are severely understudied with respect to their origin, colonization of the vast distribution area, and species relationships. Here, we attempt to reconstruct the evolutionary history of the group by applying seven molecular markers (plastid, nuclear ribosomal and low-copy genes). Phylogenetic analyses revealed that Chionoracium is a subgenus of the mainly Eurasian genus Hieracium, which originated from eastern European hawkweeds about 1.58-2.24 million years ago. Plastid DNA suggested a single origin of all Chionoracium species. They colonized the New World via Beringia and formed several distinct lineages in North America. Via one Central American lineage, the group colonized South America and radiated into more than a hundred species within about 0.8 million years, long after the closure of the Isthmus of Panama and the most recent uplift of the Andes. Despite some incongruences shown by different markers, most of them revealed the same crown groups of closely related taxa, which were, however, largely in conflict with traditional sectional classifications. We provide a basic framework for further elucidation of speciation patterns. A thorough taxonomic revision of Hieracium subgen. Chionoracium is recommended.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA