Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.668
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 597(7877): 516-521, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471291

RESUMEN

Biodiversity contributes to the ecological and climatic stability of the Amazon Basin1,2, but is increasingly threatened by deforestation and fire3,4. Here we quantify these impacts over the past two decades using remote-sensing estimates of fire and deforestation and comprehensive range estimates of 11,514 plant species and 3,079 vertebrate species in the Amazon. Deforestation has led to large amounts of habitat loss, and fires further exacerbate this already substantial impact on Amazonian biodiversity. Since 2001, 103,079-189,755 km2 of Amazon rainforest has been impacted by fires, potentially impacting the ranges of 77.3-85.2% of species that are listed as threatened in this region5. The impacts of fire on the ranges of species in Amazonia could be as high as 64%, and greater impacts are typically associated with species that have restricted ranges. We find close associations between forest policy, fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest policies that were initiated in the mid-2000s corresponded to reduced rates of burning. However, relaxed enforcement of these policies in 2019 has seemingly begun to reverse this trend: approximately 4,253-10,343 km2 of forest has been impacted by fire, leading to some of the most severe potential impacts on biodiversity since 2009. These results highlight the critical role of policy enforcement in the preservation of biodiversity in the Amazon.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/legislación & jurisprudencia , Sequías , Agricultura Forestal/legislación & jurisprudencia , Bosque Lluvioso , Incendios Forestales/estadística & datos numéricos , Animales , Brasil , Cambio Climático/estadística & datos numéricos , Bosques , Mapeo Geográfico , Plantas , Árboles/fisiología , Vertebrados
2.
Proc Natl Acad Sci U S A ; 121(27): e2406884121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38935562

RESUMEN

Degeneracy and symmetry have a profound relation in quantum systems. Here, we report gate-tunable subband degeneracy in PbTe nanowires with a nearly symmetric cross-sectional shape. The degeneracy is revealed in electron transport by the absence of a quantized plateau. Utilizing a dual gate design, we can apply an electric field to lift the degeneracy, reflected as emergence of the plateau. This degeneracy and its tunable lifting were challenging to observe in previous nanowire experiments, possibly due to disorder. Numerical simulations can qualitatively capture our observation, shedding light on device parameters for future applications.

3.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507653

RESUMEN

Although gene loss is common in evolution, it remains unclear whether it is an adaptive process. In a survey of seven major mangrove clades that are woody plants in the intertidal zones of daily environmental perturbations, we noticed that they generally evolved reduced gene numbers. We then focused on the largest clade of Rhizophoreae and observed the continual gene set reduction in each of the eight species. A great majority of gene losses are concentrated on environmental interaction processes, presumably to cope with the constant fluctuations in the tidal environments. Genes of the general processes for woody plants are largely retained. In particular, fewer gene losses are found in physiological traits such as viviparous seeds, high salinity, and high tannin content. Given the broad and continual genome reductions, we propose the May-Wigner theory (MWT) of system stability as a possible mechanism. In MWT, the most effective solution for buffering continual perturbations is to reduce the size of the system (or to weaken the total genic interactions). Mangroves are unique as immovable inhabitants of the compound environments in the land-sea interface, where environmental gradients (such as salinity) fluctuate constantly, often drastically. Extending MWT to gene regulatory network (GRN), computer simulations and transcriptome analyses support the stabilizing effects of smaller gene sets in mangroves vis-à-vis inland plants. In summary, we show the adaptive significance of gene losses in mangrove plants, including the specific role of promoting phenotype innovation and a general role in stabilizing GRN in unstable environments as predicted by MWT.


Asunto(s)
Redes Reguladoras de Genes , Genoma , Perfilación de la Expresión Génica , Plantas
4.
Mol Biol Evol ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842255

RESUMEN

The origins and extreme morphological evolution of the modern dog breeds are poorly studied because the founder populations are extinct. Here, we analyse eight 100-200 years old dog fur samples obtained from traditional North Swedish clothing, to explore the origin and artificial selection of the modern Nordic Lapphund and Elkhound dog breeds. Population genomic analysis confirmed the Lapphund and Elkhound breeds to originate from the local dog population, and showed a distinct decrease in genetic diversity in agreement with intense breeding. We identified eleven genes under positive selection during the breed development. In particular, the MSRB3 gene, associated with breed-related ear morphology, was selected in all Lapphund and Elkhound breeds, and functional assays showed that a SNP mutation in the 3'UTR region suppresses its expression through miRNA regulation. Our findings demonstrate analysis of near-modern dog artifacts as an effective tool for interpreting the origin and artificial selection of the modern dog breeds.

5.
Nano Lett ; 24(15): 4658-4664, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563608

RESUMEN

Planar Josephson junctions are predicted to host Majorana zero modes. The material platforms in previous studies are two-dimensional electron gases (InAs, InSb, InAsSb, and HgTe) coupled to a superconductor such as Al or Nb. Here, we introduce a new material platform for planar JJs, the PbTe-Pb hybrid. The semiconductor, PbTe, was grown as a thin film via selective area epitaxy. The Josephson junction was defined by a shadow wall during the deposition of superconductor Pb. Scanning transmission electron microscopy reveals a sharp semiconductor-superconductor interface. Gate-tunable supercurrents and multiple Andreev reflections are observed. A perpendicular magnetic field causes interference patterns of the switching current, exhibiting Fraunhofer-like and SQUID-like behaviors. We further demonstrate a prototype device for Majorana detection wherein phase bias and tunneling spectroscopy are applicable.

6.
J Cell Mol Med ; 28(2): e18038, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38124399

RESUMEN

Junctional adhesion molecular 3 (JAM3) is downregulated by hypermethylation in cancers but is unclear in cholangiocarcinoma. The JAM3 expression level was checked in cholangiocarcinoma cell lines and tissues. Methylated JAM3 was detected in cell lines, tissues and plasma cell-free DNAs (cfDNA). The roles of JAM3 in cholangiocarcinoma were studied by transfection of siRNA and pCMV3-JAM3. The survival analysis was based on the Gene Set Cancer Analysis (GSCA) database. JAM3 was downregulated in HCCC-9810 and HuCCT1 cell lines and tissues by hypermethylation. Methylated JAM3 was detected in cfDNAs with 53.3% sensitivity and 96.6% specificity. Transfection of pCMV3-JAM3 into HCCC-9810 and HuCCT1 induced apoptosis and suppressed cell proliferation, migration and invasion. The depletion of JAM3 in RBE cells using siRNA decreased apoptosis and increased cell proliferation, migration and invasion. Hypermethylation of JAM3 was associated with tumour differentiation, metastasis and TNM stage. Downregulation and hypermethylation of JAM3 were related to poor progression-free survival. Junctional adhesion molecular 3 may function as a tumour suppressor in cholangiocarcinoma. Methylated JAM3 DNA may represent a non-invasive molecular marker for the early detection of cholangiocarcinoma and prognosis.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Regulación hacia Abajo/genética , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Biomarcadores , Proliferación Celular/genética , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo
7.
J Am Chem Soc ; 146(18): 12636-12644, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38676645

RESUMEN

Orbital hybridization to regulate the electronic structures and surface chemisorption properties of transition metals is of great importance for boosting the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). Herein, we developed a core-shell rambutan-like nanocarbon catalyst (FeAl-RNC) with atomically dispersed Fe-Al atom pairs from metal-organic framework (MOF) material. Experimental and theoretical results demonstrate that the strong p-d orbital hybridization between Al and Fe results in an asymmetric electron distribution with moderate adsorption strength of oxygen intermediates, rendering enhanced intrinsic ORR activity. Additionally, the core-shell rambutan-like structure of FeAl-RNC with abundant micropores and macropores can enhance the density of active sites, stability, and transport pathways in PEMFC. The FeAl-RNC-based PEMFC achieves excellent activity (68.4 mA cm-2 at 0.9 V), high peak power (1.05 W cm-2), and good stability with only 7% current loss after 100 h at 0.7 V under H2-O2 condition.

8.
J Am Chem Soc ; 146(2): 1572-1579, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38170986

RESUMEN

CO2 electroreduction holds great promise for addressing global energy and sustainability challenges. Copper (Cu) shows great potential for effective conversion of CO2 toward specific value-added and/or high-energy-density products. However, its limitation lies in relatively low product selectivity. Herein, we present that the CO2 reduction reaction (CO2RR) pathway on commercially available Cu can be rationally steered by modulating the microenvironment in the vicinity of the Cu surface with two-dimensional sulfonated covalent organic framework nanosheet (COF-NS)-based ionomers. Specifically, the selectivity toward methane (CH4) can be enhanced to more than 60% with the total current density up to 500 mA cm-2 in flow cells in both acidic (pH = 2) and alkaline (pH = 14) electrolytes. The COF-NS, characterized by abundant apertures, can promote the accumulation of CO2 and K+ near the catalyst surface, alter the adsorption energy and surface coverage of *CO, facilitate the dissociation of H2O, and finally modulate the reaction pathway for the CO2RR. Our approach demonstrates the rational modulation of reaction interfaces for the CO2RR utilizing porous open framework ionomers, showcasing their potential practical applications.

9.
J Am Chem Soc ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847772

RESUMEN

Despite the synthetic versatility of difluorocarbene, its high reactivity severely regulates widespread applications of difluorocarbene in organic synthesis. Here, we report a copper difluorocarbene-involved catalytic coupling, representing a new mode of the difluoromethylation reaction. This method allows difluoromethylation of a wide range of readily available allyl/propargyl electrophiles with NaBH3CN and low-cost difluorocarbene precursor BrCF2CO2K, featuring high cost-efficiency, high stereo- and regioselectivities, and high functional group tolerance, even with complex drug-like molecules. Applying the method led to the efficient synthesis of deuterated difluoromethylated compounds of medicinal interest. The resulting difluoromethylated allyl and allenyl products can serve as versatile synthons for diverse transformations, rendering the approach attractive for synthesizing complex fluorinated structures. Experimental mechanistic studies and computational calculations reveal that the formation of a difluoromethylcopper(I) intermediate through the nucleophilic attack of boron hydride on the copper(I) difluorocarbene is the key step in the reaction.

10.
Apoptosis ; 29(5-6): 757-767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38358580

RESUMEN

Autophagy has emerged as an important process of cell metabolism. With continuous in-depth research on autophagy, TFEB has been a key transcription factor regulating autophagy levels in recent years. Studies have established that TFEB regulates autophagy and apoptosis in various diseases. However, the relationship between TFEB and the pathogenesis of endometriosis remains unclear. This study aimed to investigate the effect of TFEB on the mechanism of endometriosis progression. The results showed that TFEB and autophagy-related protein LC3 are highly expressed in ectopic endometrium of patients with endometriosis, overexpression of TFEB in cultured human endometrial stromal cells (HESCs) by lentivirus not only promoted autophagy but also inhibited apoptosis. In addition, the migration and invasion ability of HESCs were enhanced by TFEB overexpression. Furthermore, inhibiting autophagy with specific inhibitors can attenuate migration and invasion of HESCs induced by TFEB. The rat models of endometriosis show that TFEB knockdown can suppress lesion growth in vivo. Our results suggest that autophagy may be involved in the progression mechanism of endometriosis, and the mechanism of autophagy disorder in endometriosis is probably related to TFEB. TFEB may be a key molecule in promoting endometriosis.


Asunto(s)
Apoptosis , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Movimiento Celular , Endometriosis , Endometrio , Adulto , Animales , Femenino , Humanos , Ratas , Apoptosis/genética , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Movimiento Celular/genética , Endometriosis/metabolismo , Endometriosis/patología , Endometriosis/genética , Endometrio/metabolismo , Endometrio/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Ratas Sprague-Dawley , Células del Estroma/metabolismo , Células del Estroma/patología
11.
Gastroenterology ; 164(3): 424-438, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36436593

RESUMEN

BACKGROUND & AIMS: In eukaryotes, the ubiquitin-proteasome system and the autophagy-lysosome pathway are essential for maintaining cellular proteostasis and associated with cancer progression. Our previous studies have demonstrated that phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, limits proteasome abundance and determines chemosensitivity to proteasome inhibitors in cholangiocarcinoma (CCA). However, whether PTEN regulates the lysosome pathway remains unclear. METHODS: We tested the effects of PTEN on lysosome biogenesis and exosome secretion using loss- and gain-of-function strategies in CCA cell lines. Using in vitro dephosphorylation assays, we explored the regulatory mechanism between PTEN and the key regulator of lysosome biogenesis, transcription factor EB (TFEB). Using the migration assays, invasion assays, and trans-splenic liver metastasis mouse models, we evaluated the function of PTEN deficiency, TFEB-mediated lysosome biogenesis, and exosome secretion on tumor metastasis. Moreover, we investigated the clinical significance of PTEN expression and exosome secretion by retrospective analysis. RESULTS: PTEN facilitated lysosome biogenesis and acidification through its protein phosphatase activity to dephosphorylate TFEB at Ser211. Notably, PTEN deficiency increased exosome secretion by reducing lysosome-mediated degradation of multi-vesicular bodies, which further facilitated the proliferation and invasion of CCA. TFEB agonist curcumin analog C1 restrained the metastatic phenotype caused by PTEN deficiency in mouse models, and we highlighted the correlation between PTEN deficiency and exosome secretion in clinical cohorts. CONCLUSIONS: In CCA, PTEN deficiency impairs lysosome biogenesis to facilitate exosome secretion and cancer metastasis in a TFEB phosphorylation-dependent manner.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Colangiocarcinoma , Exosomas , Fosfohidrolasa PTEN , Animales , Humanos , Ratones , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Colangiocarcinoma/metabolismo , Modelos Animales de Enfermedad , Exosomas/metabolismo , Lisosomas/fisiología , Complejo de la Endopetidasa Proteasomal , Fosfohidrolasa PTEN/metabolismo , Estudios Retrospectivos
12.
Small ; : e2400410, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721986

RESUMEN

The construction of defective sites is one of the effective strategies to create high-activity Metal-Organic frameworks (MOFs) catalysts. However, traditional synthesis methods usually suffer from cumbersome synthesis steps and disordered defect structures. Herein, a cluster-cluster co-nucleation (CCCN) strategy is presented that involves the in situ introduction of size-matched functional polyoxometalates (H6P2W18O62, {P2W18}) to intervene the nucleation process of cluster-based MOFs (UiO-66), achieving one-step inducement of exposed defective sites without redundant post-processing. POM-induced UiO-66 ({P2W18}-0.1@UiO-66) exhibits a classical reo topology for well-defined cluster defects. Moreover, the defective sites and the interaction between POM and skeletal cluster nodes are directly observed by Integrated Differential Phase Contrast in Scanning Transmission Electron Microscopy (iDPC-STEM). Owing to the molecular-level proximity between defective sites and POM in the same nano-reaction space, {P2W18}-0.1@UiO-66 exhibits efficient tandem catalysis in the preparation of γ-valerolactone (γ-GVL) from laevulinic acid (LA) by the combination of Lewis and Brønsted acids with 11 times higher performance than defective UiO-66 formed by conventional coordination modulation strategy. The CCCN strategy is applicable to different POM and has the potential to be extended to other cluster-based MOFs, which will pave a new way for the construction of functional MOFs with multi-centered synergistic catalysis.

13.
J Med Virol ; 96(5): e29627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38659381

RESUMEN

The immune mechanism underlying hepatitis B surface antigen (HBsAg) loss, particularly type I inflammatory response, during pegylated interferon-α (PEG-IFN) therapy remains unclear. In this study, we aimed to elucidate such immune mechanisms. Overall, 82 patients with chronic hepatitis B (CHB), including 41 with HBsAg loss (cured group) and 41 uncured patients, received nucleos(t)ide analogue and PEG-IFN treatments. Blood samples from all patients, liver tissues from 14 patients with CHB, and hepatic perfusate from 8 liver donors were collected for immune analysis. Jurkat, THP-1 and HepG2.2.15 cell lines were used in cell experiments. The proportion of IFN-γ+ Th1 cells was higher in the cured group than in the uncured group, which was linearly correlated with HBsAg decline and alanine aminotransferase (ALT) levels during treatment. However, CD8+ T cells were weakly associated with HBsAg loss. Serum and intrahepatic levels of Th1 cell-associated chemokines (C-X-C motif chemokine ligand [CXCL] 9, CXCL10, CXCL11, IFN-γ) were significantly lower in the cured patients than in patients with a higher HBsAg quantification during therapy. Serum from cured patients induced more M1 (CD68+CD86+ macrophage) cells than that from uncured patients. Patients with chronic HBV infection had significantly lower proportions of CD86+ M1 and CD206+ M2 macrophages in their livers than healthy controls. M1 polarization of intrahepatic Kupffer cells promoted HBsAg loss by upregulating the effector function of tissue-resident memory T cells with increased ALT levels. IFN-γ+ Th1 activates intrahepatic resident memory T cells to promote HBsAg loss by inducing M1 macrophage polarization.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica , Hígado , Macrófagos , Células T de Memoria , Células TH1 , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antivirales/uso terapéutico , Antivirales/farmacología , Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/tratamiento farmacológico , Interferón-alfa , Interferón gamma , Hígado/inmunología , Macrófagos/inmunología , Células T de Memoria/inmunología , Células TH1/inmunología
14.
Chemistry ; 30(14): e202303601, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38019117

RESUMEN

Covalent organic frameworks (COFs) with high porosity have garnered considerable interest for various applications owing to their robust and customizable structure. However, conventional COFs are hindered by their narrow pore size, which poses limitations for applications such as heterogeneous catalysis and guest delivery that typically involve large molecules. The development of hierarchically porous COF (HP-COF), featuring a multi-scale aperture distribution, offers a promising solution by significantly enhancing the diffusion capacity and mass transfer for larger molecules. This review focuses on the recent advances in the synthesis strategies of HP-COF materials, including topological structure design, in-situ templating, monolithic COF synthesis, defect engineering, and crystalline self-transformation. The specific operational principles and affecting factors in the synthesis process are summarized and discussed, along with the applications of HP-COFs in heterogeneous catalysis, toxic component treatment, optoelectronics, and the biomedical field. Overall, this review builds a bridge to understand HP-COFs and provides guidance for further development of them on synthesis strategies and applications.

15.
Cell Commun Signal ; 22(1): 245, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671456

RESUMEN

BACKGROUND: The alveolar epithelial type II cell (AT2) and its senescence play a pivotal role in alveolar damage and pulmonary fibrosis. Cell circadian rhythm is strongly associated with cell senescence. Differentiated embryonic chondrocyte expressed gene 1 (DEC1) is a very important circadian clock gene. However, the role of DEC1 in AT2 senescence and pulmonary fibrosis was still unclear. RESULTS: In this study, a circadian disruption model of light intervention was used. It was found that circadian disruption exacerbated pulmonary fibrosis in mice. To understand the underlying mechanism, DEC1 levels were investigated. Results showed that DEC1 levels increased in lung tissues of IPF patients and in bleomycin-induced mouse fibrotic lungs. In vitro study revealed that bleomycin and TGF-ß1 increased the expressions of DEC1, collagen-I, and fibronectin in AT2 cells. Inhibition of DEC1 mitigated bleomycin-induced fibrotic changes in vitro and in vivo. After that, cell senescence was observed in bleomycin-treated AT2 cells and mouse models, but these were prevented by DEC1 inhibition. At last, p21 was confirmed having circadian rhythm followed DEC1 in normal conditions. But bleomycin disrupted the circadian rhythm and increased DEC1 which promoted p21 expression, increased p21 mediated AT2 senescence and pulmonary fibrosis. CONCLUSIONS: Taken together, circadian clock protein DEC1 mediated pulmonary fibrosis via p21 and cell senescence in alveolar epithelial type II cells.


Asunto(s)
Bleomicina , Senescencia Celular , Ritmo Circadiano , Fibrosis Pulmonar , Animales , Humanos , Masculino , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ritmo Circadiano/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Ratones Endogámicos C57BL , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
16.
Neurochem Res ; 49(7): 1735-1750, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38530508

RESUMEN

The consumption of a high-fat diet (HFD) has been implicated in the etiology of obesity and various neuropsychiatric disturbances, including anxiety and depression. Compelling evidence suggests that far-infrared ray (FIR) possesses beneficial effects on emotional disorders. However, the efficacy of FIR therapy in addressing HFD-induced anxiety and the underlying mechanisms remain to be elucidated. Here, we postulate that FIR emitted from a graphene-based therapeutic device may mitigate HFD-induced anxiety behaviors. The graphene-FIR modify the gut microbiota in HFD-mice, particularly by an enriched abundance of beneficial bacteria Clostridiaceae and Erysipelotrichaceae, coupled with a diminution of harmful bacteria Lachnospiraceae, Anaerovoracaceae, Holdemania and Marvinbryantia. Graphene-FIR also improved intestinal barrier function, as evidenced by the augmented expression of the tight junction protein occludin and G protein-coupled receptor 43 (GPR43). In serum level, we observed the decreased free fatty acids (FFA), lipopolysaccharides (LPS), diamine oxidase (DAO) and D-lactate, and increased the glucagon-like peptide-2 (GLP-2) levels in graphene-FIR mice. Simultaneously, inflammatory cytokines IL-6, IL-1ß, and TNF-α manifested a decrease subsequent to graphene-FIR treatment in both peripheral and central system. Notably, graphene-FIR inhibited over expression of astrocytes and microglia. We further noticed that the elevated the BDNF and decreased TLR4 and NF-κB expression in graphene-FIR group. Overall, our study reveals that graphene-FIR rescued HFD-induced anxiety via improving the intestine permeability and the integrity of blood-brain barrier, and reduced inflammatory response by down regulating TLR4/NF-κB inflammatory pathway.


Asunto(s)
Ansiedad , Dieta Alta en Grasa , Microbioma Gastrointestinal , Grafito , Ratones Endogámicos C57BL , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Grafito/uso terapéutico , Grafito/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ansiedad/etiología , Ansiedad/metabolismo , Rayos Infrarrojos/uso terapéutico , Obesidad/metabolismo , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Ratones Obesos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos
17.
Langmuir ; 40(24): 12778-12791, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38843811

RESUMEN

In this work, cobalt-doped oxygen-vacancies-rich BiVO4 (Co/BiVO4-Vo) was successfully synthesized for the degradation of tetracycline (TC) by activated peroxymonosulfate (PMS) under visible light. The morphologies, microstructures, and optical properties of the photocatalysts were analyzed in detail. Co/BiVO4-Vo exhibited significantly enhanced degradation, removing 92.3% of TC within 10 min, which was greater than those of pure BiVO4 (62.2%) and oxygen-vacancies-rich BiVO4 (BiVO4-Vo) (72.0%), respectively. The photogenerated charge separation and transport properties were explored through surface photovoltage (SPV), photoluminescence spectrum (PL), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS) measurements. Additionally, an in-depth investigation was conducted on the photocatalytically assisted advanced oxidation processes based on SO4•- (SR-AOPs) for the degradation of organic pollutants. The experimental results showed that the introduction of oxygen vacancies and Co doping achieved an effective separation of photogenerated carriers, which could accelerate the cycling between Co3+ and Co2+ and further activate PMS. The results of free radical capture experiments and electron spin resonance (ESR) experiments showed that reactive oxygen species (ROSs) such as 1O2, •O2-, and SO4•- played a dominant role in the removal of pollutants. This work provides a novel insight into the further development of efficient and rapid PMS photoactivators for environmental remediation of water bodies.

18.
Heredity (Edinb) ; 133(1): 11-20, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38822132

RESUMEN

Genome-wide association study (GWAS) is a powerful tool to identify genomic loci underlying complex traits. However, the application in natural populations comes with challenges, especially power loss due to population stratification. Here, we introduce a bivariate analysis approach to a GWAS dataset of Arabidopsis thaliana. We demonstrate the efficiency of dual-phenotype analysis to uncover hidden genetic loci masked by population structure via a series of simulations. In real data analysis, a common allele, strongly confounded with population structure, is discovered to be associated with late flowering and slow maturation of the plant. The discovered genetic effect on flowering time is further replicated in independent datasets. Using Mendelian randomization analysis based on summary statistics from our GWAS and expression QTL scans, we predicted and replicated a candidate gene AT1G11560 that potentially causes this association. Further analysis indicates that this locus is co-selected with flowering-time-related genes. The discovered pleiotropic genotype-phenotype map provides new insights into understanding the genetic correlation of complex traits.


Asunto(s)
Arabidopsis , Flores , Estudio de Asociación del Genoma Completo , Fenotipo , Sitios de Carácter Cuantitativo , Arabidopsis/genética , Estudio de Asociación del Genoma Completo/métodos , Flores/genética , Polimorfismo de Nucleótido Simple , Genotipo , Modelos Genéticos , Genética de Población , Simulación por Computador , Alelos , Genoma de Planta , Análisis de la Aleatorización Mendeliana
19.
Pharmacol Res ; 200: 107060, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185210

RESUMEN

OBJECTIVE: To assess the efficacy and safety of FDA-approved KRASG12C inhibitors in patients with KRASG12C-mutated solid tumors. METHODS: We searched PubMed, EMBASE, Cochrane Library, and major international conferences for clinical trials published in English up to March 6, 2023. Clinical trials investigating sotorasib or adagrasib and reporting the clinical outcomes of the objective response rate (ORR), disease control rate (DCR), or incidence rate of grade ≥ 3 adverse events (AEs) were eligible. The primary endpoint was the ORR. Secondary endpoints included the DCR, incidence rate of grade ≥ 3 AEs, and odds ratio (OR) of the ORR between patients with or without co-mutation. The Random-effects model was applied for the outcomes of interest. RESULTS: 18 studies with 1224 patients were included in this meta-analysis. The pooled ORR, DCR, and incidence rate of grade ≥ 3 AEs were 31 % (95 % CI, 25-37 %), 86 % (95 % CI, 82-89 %), and 29 % (95 % CI, 23-36 %), respectively. KRASG12C-mutated NSCLC patients with a co-mutation of KEAP1 exhibited a worse ORR than those with wild-type KEAP1 (OR: 0.35, 95 % CI: 0.16-0.77). CONCLUSIONS: This study provided a comprehensive understanding of the efficacy and safety of KRASG12C inhibitors in treating solid tumors and identified KEAP1 mutation as a potential predictive biomarker of inferior response in patients treated with KRASG12C inhibitors. These findings may assist in the design of future clinical trials for identifying populations that may benefit from KRASG12C inhibitor treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Proteínas Proto-Oncogénicas p21(ras) , Factor 2 Relacionado con NF-E2 , Mutación
20.
Eur Radiol ; 34(1): 226-235, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37552260

RESUMEN

OBJECTIVES: To evaluate the early prevalence of anthracycline-induced cardiotoxicity (AIC) and anthracycline-induced liver injury (AILI) using T2 and T2* mapping and to explore their correlations. MATERIALS AND METHODS: The study included 17 cardiotoxic rabbits that received weekly injections of doxorubicin and magnetic resonance imaging (MRI) every 2 weeks for 10 weeks. Cardiac function and T2 and T2* values were measured on each period. Histopathological examinations for two to five rabbits were performed after each MRI scan. The earliest sensitive time and the threshold of MRI parameters for detecting AIC and AILI based on these MRI parameters were obtained. Moreover, the relationship between myocardial and liver damage was assessed. RESULTS: Early AIC could be detected by T2 mapping as early as the second week and focused on the 7th, 11th, and 12th segments of left ventricle. The cutoff value of 46.64 for the 7th segment had the best diagnostic value, with an area under the curve (of 0.767, sensitivity of 100%, and specificity of 52%. T2* mapping could detect the change in iron content for early AIC at the middle interventricular septum and AILI as early as the sixth week (p = 0.014, p = 0.027). The T2* values of the middle interventricular septum showed a significant positive association with the T2* values of the liver (r = 0.39, p = 0.002). CONCLUSION: T2 and T2* mapping showed value one-stop assessment of AIC and AILI and could obtain the earliest MRI diagnosis point and optimal parameter thresholds for these conditions. CLINICAL RELEVANCE STATEMENT: Anthracycline-induced cardiotoxicity could be detected by T2 mapping as earlier as the second week, mainly focusing on the 7th, 11th, and 12th segments of left ventricle. Combined with T2* mapping, hepatoxicity and supplementary cardiotoxicity were assessed by one-stop scan. KEY POINTS: • MRI screening time of cardiotoxicity was as early as the second week with focusing on T2 values of the 7th, 11th, and 12th segments of left ventricle. • T2* mapping could be used as a complement to T2 mapping to evaluate cardiotoxicity and as an effective index to detect iron change in the early stages of chemotherapy. • The T2* values of the middle interventricular septum showed a significant positive association with the T2* values of the liver, indicating that iron content in the liver and heart increased with an increase in the chemotherapeutic drugs.


Asunto(s)
Antraciclinas , Antibióticos Antineoplásicos , Cardiotoxicidad , Doxorrubicina , Animales , Conejos , Antraciclinas/efectos adversos , Antibióticos Antineoplásicos/efectos adversos , Cardiotoxicidad/diagnóstico por imagen , Cardiotoxicidad/tratamiento farmacológico , Hierro , Hígado/diagnóstico por imagen , Doxorrubicina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA