Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
Más filtros

Intervalo de año de publicación
1.
Magn Reson Med ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38817204

RESUMEN

PURPOSE: To compare MR axon radius estimation in human white matter using a multiband spiral sequence combined with field monitoring to the current state-of-the-art echo-planar imaging (EPI)-based approach. METHODS: A custom multiband spiral sequence was used for diffusion-weighted imaging at ultra-high b $$ b $$ -values. Field monitoring and higher order image reconstruction were employed to greatly reduce artifacts in spiral images. Diffusion weighting parameters were chosen to match a state-of-the art EPI-based axon radius mapping protocol. The spiral approach was compared to the EPI approach by comparing the image signal-to-noise ratio (SNR) and performing a test-retest study to assess the respective variability and repeatability of axon radius mapping. Effective axon radius estimates were compared over white matter voxels and along the left corticospinal tract. RESULTS: Increased SNR and reduced artifacts in spiral images led to reduced variability in resulting axon radius maps, especially in low-SNR regions. Test-retest variability was reduced by a factor of approximately 1.5 using the spiral approach. Reduced repeatability due to significant bias was found for some subjects in both spiral and EPI approaches, and attributed to scanner instability, pointing to a previously unknown limitation of the state-of-the-art approach. CONCLUSION: Combining spiral readouts with field monitoring improved mapping of the effective axon radius compared to the conventional EPI approach.

2.
Cerebellum ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363498

RESUMEN

Cerebellar atrophy is the neuropathological hallmark of most ataxias. Hence, quantifying the volume of the cerebellar grey and white matter is of great interest. In this study, we aim to identify volume differences in the cerebellum between spinocerebellar ataxia type 1 (SCA1), SCA3 and SCA6 as well as multiple system atrophy of cerebellar type (MSA-C). Our cross-sectional data set comprised mutation carriers of SCA1 (N=12), SCA3 (N=62), SCA6 (N=14), as well as MSA-C patients (N=16). Cerebellar volumes were obtained from T1-weighted magnetic resonance images. To compare the different atrophy patterns, we performed a z-transformation and plotted the intercept of each patient group's model at the mean of 7 years of ataxia duration as well as at the mean ataxia severity of 14 points in the SARA sum score. In addition, we plotted the extrapolation at ataxia duration of 0 years as well as 0 points in the SARA sum score. Patients with MSA-C demonstrated the most pronounced volume loss, particularly in the cerebellar white matter, at the late time intercept. Patients with SCA6 showed a pronounced volume loss in cerebellar grey matter with increasing ataxia severity compared to all other patient groups. MSA-C, SCA1 and SCA3 showed a prominent atrophy of the cerebellar white matter. Our results (i) confirmed SCA6 being considered as a pure cerebellar grey matter disease, (ii) emphasise the involvement of cerebellar white matter in the neuropathology of SCA1, SCA3 and MSA-C, and (iii) reflect the rapid clinical progression in MSA-C.

3.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176045

RESUMEN

Envenomation by venomous fish, although not always fatal, is capable of causing damage to homeostasis by activating the inflammatory process, with the formation of edema, excruciating pain, necrosis that is difficult to heal, as well as hemodynamic and cardiorespiratory changes. Despite the wide variety of pharmacological treatments used to manage acute symptoms, none are effective in controlling envenomation. Knowing the essential role of neutralizing polyclonal antibodies in the treatment of envenoming for other species, such as snakes, this work aimed to produce a polyclonal antiserum in mice and test its ability to neutralize the main toxic effects induced by the venoms of the main venomous Brazilian fish. We found that the antiserum recognizes the main toxins present in the different venoms of Thalassophryne nattereri, Scorpaena plumieri, Potamotrygon gr. Orbignyi, and Cathorops spixii and was effective in pre-incubation trials. In an independent test, the antiserum applied immediately to the topical application of T. nattereri, P. gr orbygnyi, and C. spixii venoms completely abolished the toxic effects on the microcirculation, preventing alterations such as arteriolar contraction, slowing of blood flow in postcapillary venules, venular stasis, myofibrillar hypercontraction, and increased leukocyte rolling and adherence. The edematogenic and nociceptive activities induced by these venoms were also neutralized by the immediate application of the antiserum. Importantly, the antiserum prevented the acute inflammatory response in the lungs induced by the S. plumieri venom. The success of antiserum containing neutralizing polyclonal antibodies in controlling the toxic effects induced by different venoms offers a new strategy for the treatment of fish envenomation in Brazil.


Asunto(s)
Batrachoidiformes , Bagres , Venenos de los Peces , Perciformes , Ratones , Animales , Venenos de los Peces/toxicidad , Sueros Inmunes
4.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36982479

RESUMEN

Despite the obvious morphological differences in the visual system, zebrafish share a similar architecture and components of the same embryonic origin as humans. The zebrafish retina has the same layered structure and cell types with similar metabolic and phototransduction support as humans, and is functional 72 h after fertilization, allowing tests of visual function to be performed. The zebrafish genomic database supports genetic mapping studies as well as gene editing, both of which are useful in the ophthalmological field. It is possible to model ocular disorders in zebrafish, as well as inherited retinal diseases or congenital or acquired malformations. Several approaches allow the evaluation of local pathological processes derived from systemic disorders, such as chemical exposure to produce retinal hypoxia or glucose exposure to produce hyperglycemia, mimicking retinopathy of prematurity or diabetic retinopathy, respectively. The pathogenesis of ocular infections, autoimmune diseases, or aging can also be assessed in zebrafish larvae, and the preserved cellular and molecular immune mechanisms can be assessed. Finally, the zebrafish model for the study of the pathologies of the visual system complements certain deficiencies in experimental models of mammals since the regeneration of the zebrafish retina is a valuable tool for the study of degenerative processes and the discovery of new drugs and therapies.


Asunto(s)
Retinopatía Diabética , Pez Cebra , Animales , Humanos , Recién Nacido , Larva/metabolismo , Retina/metabolismo , Visión Ocular , Retinopatía Diabética/metabolismo , Mamíferos
5.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176162

RESUMEN

Thalassophryne nattereri toadfish (niquim) envenomation, common in the hands and feet of bathers and fishermen in the north and northeast regions of Brazil, is characterized by local symptoms such as immediate edema and intense pain. These symptoms progress to necrosis that lasts for an extended period of time, with delayed healing. Wound healing is a complex process characterized by the interdependent role of keratinocytes, fibroblasts, and endothelial and innate cells such as neutrophils and macrophages. Macrophages and neutrophils are actively recruited to clear debris during the inflammatory phase of wound repair, promoting the production of pro-inflammatory mediators, and in the late stage, macrophages promote tissue repair. Our hypothesis is that injury caused by T. nattereri venom (VTn) leads to senescent wounds. In this study, we provide valuable information about the mechanism(s) behind the dysregulated inflammation in wound healing induced by VTn. We demonstrate in mouse paws injected with the venom the installation of γH2AX/p16Ink4a-dependent senescence with persistent neutrophilic inflammation in the proliferation and remodeling phases. VTn induced an imbalance of M1/M2 macrophages by maintaining a high number of TNF-α-producing M1 macrophages in the wound but without the ability to eliminate the persistent neutrophils. Chronic neutrophilic inflammation and senescence were mediated by cytokines such as IL-1α and IL-1ß in a caspase-1- and caspase-11-dependent manner. In addition, previous blocking with anti-IL-1α and anti-IL-ß neutralizing antibodies and caspase-1 (Ac YVAD-CMK) and caspase-11 (Wedelolactone) inhibitors was essential to control the pro-inflammatory activity of M1 macrophages induced by VTn injection, skewing towards an anti-inflammatory state, and was sufficient to block neutrophil recruitment and senescence.


Asunto(s)
Venenos de los Peces , Ponzoñas , Ratones , Animales , Venenos de los Peces/farmacología , Inflamasomas , Inflamación/inducido químicamente , Neutrófilos , Caspasa 1
6.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685886

RESUMEN

Visual impairment and blindness are a growing public health problem as they reduce the life quality of millions of people. The management and treatment of these diseases represent scientific and therapeutic challenges because different cellular and molecular actors involved in the pathophysiology are still being identified. Visual system components, particularly retinal cells, are extremely sensitive to genetic or metabolic alterations, and immune responses activated by local insults contribute to biological events, culminating in vision loss and irreversible blindness. Several ocular diseases are linked to retinal cell loss, and some of them, such as retinitis pigmentosa, age-related macular degeneration, glaucoma, and diabetic retinopathy, are characterized by pathophysiological hallmarks that represent possibilities to study and develop novel treatments for retinal cell degeneration. Here, we present a compilation of revisited information on retinal degeneration, including pathophysiological and molecular features and biochemical hallmarks, and possible research directions for novel treatments to assist as a guide for innovative research. The knowledge expansion upon the mechanistic bases of the pathobiology of eye diseases, including information on complex interactions of genetic predisposition, chronic inflammation, and environmental and aging-related factors, will prompt the identification of new therapeutic strategies.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Retinitis Pigmentosa , Humanos , Degeneración Retiniana/terapia , Degeneración Macular/terapia , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Biomarcadores , Ceguera , Retina
7.
BMC Genomics ; 23(1): 123, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35151271

RESUMEN

BACKGROUND: The Natterin protein family was first discovered in the venom of the medically significant fish Thalassophryne nattereri, and over the last decade natterin-like genes have been identified in various organisms, notably performing immune-related functions. Previous findings support natterin-like genes as effector defense molecules able to activate multiprotein complexes driving the host innate immune response, notably due to the pore-forming function of the aerolysin superfamily members. Herein, employing a combination of the CRISPR/Cas9 depletion system, phenotype-based screening, and morphometric methods, we evaluated the role of one family member, LOC795232, in the embryonic development of zebrafish since it might be implicated in multiple roles and characterization of the null mutant is central for analysis of gene activity. RESULTS: Multiple sequence alignment revealed that the candidate natterin-like has the highest similarity to zebrafish aep1, a putative and better characterized fish-specific defense molecule from the same family. Compared to other species, zebrafish have many natterin-like copies. Whole-mount in situ hybridization confirmed the knockout and mutant embryos exhibited epiboly delay, growth retardation, yolk sac and heart edema, absent or diminished swim bladder, spinal defects, small eyes and head, heart dysfunction, and behavioral impairment. As previously demonstrated, ribonucleoproteins composed of Cas9 and duplex guide RNAs are effective at inducing mutations in the F0 zebrafish. CONCLUSIONS: The considerably high natterin-like copies in zebrafish compared to other species might be due to the teleost-specific whole genome duplication and followed by subfunctionalization or neofunctionalization. In the present work, we described some of the natterin-like features in the zebrafish development and infer that natterin-like proteins potentially contribute to the embryonary development and immune response.


Asunto(s)
Venenos de los Peces , Pez Cebra , Animales , Sistemas CRISPR-Cas , Desarrollo Embrionario/genética , Proteínas Citotóxicas Formadoras de Poros , Pez Cebra/genética , Proteínas de Pez Cebra/genética
8.
Blood ; 135(18): 1548-1559, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32181816

RESUMEN

Clonal hematopoiesis (CH) is associated with age and an increased risk of myeloid malignancies, cardiovascular risk, and all-cause mortality. We tested for CH in a setting where hematopoietic stem cells (HSCs) of the same individual are exposed to different degrees of proliferative stress and environments, ie, in long-term survivors of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and their respective related donors (n = 42 donor-recipient pairs). With a median follow-up time since allo-HSCT of 16 years (range, 10-32 years), we found a total of 35 mutations in 23 out of 84 (27.4%) study participants. Ten out of 42 donors (23.8%) and 13 out of 42 recipients (31%) had CH. CH was associated with older donor and recipient age. We identified 5 cases of donor-engrafted CH, with 1 case progressing into myelodysplastic syndrome in both donor and recipient. Four out of 5 cases showed increased clone size in recipients compared with donors. We further characterized the hematopoietic system in individuals with CH as follows: (1) CH was consistently present in myeloid cells but varied in penetrance in B and T cells; (2) colony-forming units (CFUs) revealed clonal evolution or multiple independent clones in individuals with multiple CH mutations; and (3) telomere shortening determined in granulocytes suggested ∼20 years of added proliferative history of HSCs in recipients compared with their donors, with telomere length in CH vs non-CH CFUs showing varying patterns. This study provides insight into the long-term behavior of the same human HSCs and respective CH development under different proliferative conditions.


Asunto(s)
Hematopoyesis Clonal , Trasplante de Células Madre Hematopoyéticas/mortalidad , Células Madre Hematopoyéticas/metabolismo , Donantes de Tejidos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Evolución Clonal/genética , Ensayo de Unidades Formadoras de Colonias , Análisis Mutacional de ADN , Femenino , Células Madre Hematopoyéticas/citología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Telómero , Receptores de Trasplantes , Trasplante Homólogo , Resultado del Tratamiento , Adulto Joven
9.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35743088

RESUMEN

To discover new molecules or review the biological activity and toxicity of therapeutic substances, drug development, and research relies on robust biological systems to obtain reliable results. Phenotype-based screenings can transpose the organism's compensatory pathways by adopting multi-target strategies for treating complex diseases, and zebrafish emerged as an important model for biomedical research and drug screenings. Zebrafish's clear correlation between neuro-anatomical and physiological features and behavior is very similar to that verified in mammals, enabling the construction of reliable and relevant experimental models for neurological disorders research. Zebrafish presents highly conserved physiological pathways that are found in higher vertebrates, including mammals, along with a robust behavioral repertoire. Moreover, it is very sensitive to pharmacological/environmental manipulations, and these behavioral phenotypes are detected in both larvae and adults. These advantages align with the 3Rs concept and qualify the zebrafish as a powerful tool for drug screenings and pre-clinical trials. This review highlights important behavioral domains studied in zebrafish larvae and their neurotransmitter systems and summarizes currently used techniques to evaluate and quantify zebrafish larvae behavior in laboratory studies.


Asunto(s)
Neurotransmisores , Pez Cebra , Animales , Conducta Animal/fisiología , Evaluación Preclínica de Medicamentos/métodos , Larva/fisiología , Mamíferos , Fenotipo , Pez Cebra/genética
10.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36293259

RESUMEN

The environmental and occupational risk we confront from agricultural chemicals increases as their presence in natural habitats rises to hazardous levels, building a major part of the exposome. This is of particular concern in low- and middle-income countries, such as Brazil, known as a leading producer of agricultural commodities and consumer of pesticides. As long as public policies continue to encourage the indiscriminate use of pesticides and governments continue to support this strategy instead of endorsing sustainable agricultural alternatives, the environmental burden that damages epithelial barriers will continue to grow. Chronic exposure to environmental contaminants in early life can affect crucial barrier tissue, such as skin epithelium, airways, and intestine, causing increased permeability, leaking, dysbiosis, and inflammation, with serious implications for metabolism and homeostasis. This vicious cycle of exposure to environmental factors and the consequent damage to the epithelial barrier has been associated with an increase in immune-mediated chronic inflammatory diseases. Understanding how the harmful effects of pesticides on the epithelial barrier impact cellular interactions mediated by endogenous sensors that coordinate a successful immune system represents a crucial challenge. In line with the epithelial barrier hypothesis, this narrative review reports the available evidence on the effects of pesticides on epithelial barrier integrity, dysbiosis, AhR signaling, and the consequent development of immune-mediated inflammatory diseases.


Asunto(s)
Disbiosis , Plaguicidas , Humanos , Disbiosis/inducido químicamente , Plaguicidas/toxicidad , Epitelio , Intestinos , Transducción de Señal , Mucosa Intestinal
11.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408954

RESUMEN

Natterin is a potent pro-inflammatory fish molecule, inducing local and systemic IL-1ß/IL-1R1-dependent neutrophilia mediated by non-canonical NLRP6 and NLRC4 inflammasome activation in mice, independent of NLRP3. In this work, we investigated whether Natterin activates mitochondrial damage, resulting in self-DNA leaks into the cytosol, and whether the DNA sensor cGAS and STING pathway participate in triggering the innate immune response. Employing a peritonitis mouse model, we found that the deficiency of the tlr2/tlr4, myd88 and trif results in decreased neutrophil influx to peritoneal cavities of mice, indicative that in addition to MyD88, TRIF contributes to neutrophilia triggered by TLR4 engagement by Natterin. Next, we demonstrated that gpcr91 deficiency in mice abolished the neutrophil recruitment after Natterin injection, but mice pre-treated with 2-deoxy-d-glucose that blocks glycolysis presented similar infiltration than WT Natterin-injected mice. In addition, we observed that, compared with the WT Natterin-injected mice, DPI and cyclosporin A treated mice had a lower number of neutrophils in the peritoneal exudate. The levels of dsDNA in the supernatant of the peritoneal exudate and processed IL-33 in the supernatant of the peritoneal exudate or cytoplasmic supernatant of the peritoneal cell lysate of WT Natterin-injected mice were several folds higher than those of the control mice. The recruitment of neutrophils to peritoneal cavity 2 h post-Natterin injection was intensely impaired in ifnar KO mice and partially in il-28r KO mice, but not in ifnγr KO mice. Finally, using cgas KO, sting KO, or irf3 KO mice we found that recruitment of neutrophils to peritoneal cavities was virtually abolished in response to Natterin. These findings reveal cytosolic DNA sensors as critical regulators for Natterin-induced neutrophilia.


Asunto(s)
Factor 88 de Diferenciación Mieloide , Receptor Toll-Like 4 , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , ADN , Venenos de los Peces , Proteínas de la Membrana/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas Citotóxicas Formadoras de Poros , Transducción de Señal , Receptor Toll-Like 4/metabolismo
12.
Br J Haematol ; 193(3): 669-673, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32744739

RESUMEN

Dyskeratosis Congenita (DKC) is a systemic disorder caused by mutations resulting in impaired telomere maintenance. Clinical features include bone marrow failure and an increased risk of developing hematological malignancies. There are conflicting data whether androgen derivatives (AD) can elongate telomeres in vivo and whether AD treatment enhances the risk of gaining myelodysplastic syndrome-related mutations. Seven TERC or TERT-mutated DKC patients underwent AD treatment. All patients revealed hematological response. Telomere length of lymphocytes and granulocytes increased significantly and no MDS-related mutations were detected. Pending longer follow-up, treatment with AD seems to represent an efficient and safe therapy for DKC patients.


Asunto(s)
Andrógenos/farmacología , Disqueratosis Congénita/sangre , Homeostasis del Telómero/efectos de los fármacos , Telómero/metabolismo , Adulto , Recuento de Células Sanguíneas , Disqueratosis Congénita/tratamiento farmacológico , Disqueratosis Congénita/genética , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Síndromes Mielodisplásicos/inducido químicamente , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , ARN/genética , ARN/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética
13.
Int J Exp Pathol ; 102(4-5): 182-191, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34747080

RESUMEN

A number of genetic factors have been linked to the development of diabetes, a condition that often requires implantable devices such as glucose sensors. In normoglycaemic individuals, this procedure induces a foreign body reaction (FBR) that is detrimental to bioimplant functionality. However, the influence of the genetic background on this reaction in diabetes has not been investigated. We examined the components of FBR (capsule thickness, collagen deposition, mast cell and foreign body giant cell number) in subcutaneous implants of polyether polyurethane (SIPP) in streptozotocin (STZ)-induced diabetes in Swiss, C57BL/6 and Balb/c mice. The fasting blood glucose levels before STZ injections were 133.5 ± 5.1 mg/dL, after the treatment increased 68.4% in Swiss mice, 62.4% in C57BL/6 and 30.9% in Balb/c mice. All FBR features were higher in implants of Swiss and C57BL/6 mice compared with those in implants of Balb/c. Likewise, the apoptotic index was higher in implants of diabetic Swiss and C57BL/6 mice whose glycaemic levels were the highest. Our findings show an association between the severity of hyperglycaemic levels and the intensity of the FBR to SIPP. These important strain-related differences in susceptibility to diabetes and the intensity of the FBR must be considered in management using implantable devices in diabetic individuals.


Asunto(s)
Diabetes Mellitus Experimental , Reacción a Cuerpo Extraño , Antecedentes Genéticos , Prótesis e Implantes , Animales , Materiales Biocompatibles , Diabetes Mellitus Experimental/inducido químicamente , Modelos Animales de Enfermedad , Fibrosis , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Poliuretanos
14.
Fish Shellfish Immunol ; 118: 34-50, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34464686

RESUMEN

Group B Streptococcus (GBS) causes meningitis in neonates and Nile tilapia (Oreochromis niloticus). The molecular mechanisms regulating the intracellular survival of this pathogen in the host cell are complex and crucial for the progression of infection. Thus, we propose the use of GBS-infected Nile tilapia microglia as an in vitro model system simulating infection caused by homologous bacteria in humans. We used this model to evaluate the phagocytic activity, as well as the functional aspects of the capsular proteins A, B, C, and D and the major redox enzymes, and the synergistic role of mechanisms/proteins involved in blocking phagocytic process. We observed that in the intracellular phase, GBS showed enhanced synthesis of the polysaccharide capsule and used superoxide dismutase, thioredoxin, NADH oxidase, and alkyl hydroperoxide reductase to scavenge reactive oxygen species and reactive nitrogen species produced by the host cell. Furthermore, although these virulence mechanisms were effective during the initial hours of infection, they were not able to subvert microglial responses, which partially neutralized the infection. Altogether, our findings provided important information regarding the intracellular survival mechanisms of GBS and perspectives for the production of new drugs and vaccines, through the druggability analysis of specific proteins. In conclusion, tilapia microglia serve as a potent in vitro experimental model for the study of meningitis.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Animales , Enfermedades de los Peces/microbiología , Microglía , Oxidación-Reducción , Proteómica , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae
15.
Fish Shellfish Immunol ; 114: 301-310, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33984485

RESUMEN

Our recent data show the valuable potential of TnP for the development of a new and safe anti-inflammatory drug due to its ability to control the traffic and activation of leukocytes in response to inflammation. Although there is considerable knowledge surrounding the cellular mechanisms of TnP, less is known about the mechanistic molecular role of TnP underlying its immunomodulatory functions. Here, we conducted investigations to identify whether miRNAs could be one of the molecular bases of the therapeutic effect of TnP. Using a zebrafish model of neutrophilic inflammation with a combination of genetic gain- and loss-of-function approaches, we showed that TnP treatment was followed by up-regulation of only four known miRNAs, and mature dre-miR-26a-1, herein referred just as miR-26a was the first most highly expressed. The knockdown of miR-26a ubiquitously resulted in a significant reduction of miR-26a in embryos, accompanied by impaired TnP immunomodulatory function observed by the loss of the control of the removal of neutrophils in response to inflammation, while the overexpression increased the inhibition of neutrophilic inflammation promoted by TnP. The striking importance of miR-26a was confirmed when rescue strategies were used (morpholino and mimic combination). Our results identified miR-26a as an essential molecular regulator of the therapeutic action of TnP, and suggest that miR-26a or its targets could be used as promising therapeutic candidates for enhancing the resolution of inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Trastornos Leucocíticos/veterinaria , MicroARNs/genética , Péptidos/farmacología , Animales , Antiinflamatorios/química , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Larva/efectos de los fármacos , Larva/genética , Trastornos Leucocíticos/tratamiento farmacológico , Conformación Proteica , Pez Cebra
16.
Chem Soc Rev ; 49(4): 1253-1321, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31998912

RESUMEN

Studies of nanosized forms of bismuth (Bi)-containing materials have recently expanded from optical, chemical, electronic, and engineering fields towards biomedicine, as a result of their safety, cost-effective fabrication processes, large surface area, high stability, and high versatility in terms of shape, size, and porosity. Bi, as a nontoxic and inexpensive diamagnetic heavy metal, has been used for the fabrication of various nanoparticles (NPs) with unique structural, physicochemical, and compositional features to combine various properties, such as a favourably high X-ray attenuation coefficient and near-infrared (NIR) absorbance, excellent light-to-heat conversion efficiency, and a long circulation half-life. These features have rendered bismuth-containing nanoparticles (BiNPs) with desirable performance for combined cancer therapy, photothermal and radiation therapy (RT), multimodal imaging, theranostics, drug delivery, biosensing, and tissue engineering. Bismuth oxyhalides (BiOx, where X is Cl, Br or I) and bismuth chalcogenides, including bismuth oxide, bismuth sulfide, bismuth selenide, and bismuth telluride, have been heavily investigated for therapeutic purposes. The pharmacokinetics of these BiNPs can be easily improved via the facile modification of their surfaces with biocompatible polymers and proteins, resulting in enhanced colloidal stability, extended blood circulation, and reduced toxicity. Desirable antibacterial effects, bone regeneration potential, and tumor growth suppression under NIR laser radiation are the main biomedical research areas involving BiNPs that have opened up a new paradigm for their future clinical translation. This review emphasizes the synthesis and state-of-the-art progress related to the biomedical applications of BiNPs with different structures, sizes, and compositions. Furthermore, a comprehensive discussion focusing on challenges and future opportunities is presented.


Asunto(s)
Bismuto/química , Nanopartículas del Metal/química , Nanomedicina Teranóstica , Técnicas Biosensibles , Regeneración Ósea , Medios de Contraste/síntesis química , Medios de Contraste/química , Humanos , Nanopartículas del Metal/uso terapéutico , Imagen Multimodal , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Fototerapia
17.
Altern Lab Anim ; 49(5): 175-181, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34818926

RESUMEN

The Butantan Institute is a pioneering Brazilian health sciences institution, which also houses a large science park with museums that contribute to ongoing science education for schools and the wider community. In recent years, as part of Butantan Institute's Plataforma Zebrafish™, zebrafish embryos have been used for the dissemination of scientific knowledge during on-site events and as part of outreach campaigns to non-scientific audiences, mostly children. The aim of this work is mainly to demystify the activities of the scientific researcher, highlight the role of science in the furthering of knowledge, and increase public interest and confidence in science. In this article, the Institute's 'Plataforma Zebrafish Open Doors' programme is described, which offered guided tours of the laboratory facilities. The tours gave visitors the opportunity to observe zebrafish research and embryo development, and to use the knowledge gained from this experience as a framework for understanding fundamental ethical issues. During the 2-day event, around 800 visitors (most of them school-age children) attended. Together with the guided tours, our experience of outreach offered meaningful opportunities to bring children and members of the public closer to science and 'real-life' scientists, hopefully inspiring and encouraging the next generation of scientists. It also gave the scientists an opportunity to engage more closely with wider society. We believe that these activities also substantially contribute to the wider dissemination of relevant experimental results that have been obtained with public funding and that impact society in general.


Asunto(s)
Instituciones Académicas , Pez Cebra , Animales , Brasil , Humanos , Investigadores
18.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281170

RESUMEN

miRNAs regulate gene expression post-transcriptionally in various processes, e.g., immunity, development, and diseases. Since their experimental analysis is complex, in silico target prediction is important for directing investigations. TnP is a candidate peptide for anti-inflammatory therapy, first discovered in the venom of Thalassophryne nattereri, which led to miRNAs overexpression in LPS-inflamed zebrafish post-treatment. This work aimed to predict miR-21, miR-122, miR-731, and miR-26 targets using overlapped results of DIANA microT-CDS and TargetScanFish software. This study described 513 miRNAs targets using highly specific thresholds. Using Gene Ontology over-representation analysis, we identified their main roles in regulating gene expression, neurogenesis, DNA-binding, transcription regulation, immune system process, and inflammatory response. miRNAs act in post-transcriptional regulation, but we revealed that their targets are strongly related to expression regulation at the transcriptional level, e.g., transcription factors proteins. A few predicted genes participated concomitantly in many biological processes and molecular functions, such as foxo3a, rbpjb, rxrbb, tyrobp, hes6, zic5, smad1, e2f7, and npas4a. Others were particularly involved in innate immunity regulation: il17a/f2, pik3r3b, and nlrc6. Together, these findings not only provide new insights into the miRNAs mode of action but also raise hope for TnP therapy and may direct future experimental investigations.


Asunto(s)
Antiinflamatorios/farmacología , Venenos de los Peces/farmacología , Expresión Génica/efectos de los fármacos , MicroARNs/genética , Péptidos/farmacología , Animales , Biología Computacional/métodos , Simulación por Computador , Proteínas de Unión al ADN/metabolismo , Ontología de Genes , Inmunidad Innata/genética , Lipopolisacáridos/farmacología , MicroARNs/biosíntesis , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Pez Cebra
19.
J Neurooncol ; 147(1): 1-14, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31960234

RESUMEN

PURPOSE: Isocitrate dehydrogenase 1 (IDH1) mutations are associated with improved survival in gliomas. Depending on the IDH1 status, TERT promoter mutations affect prognosis. IDH1 mutations are associated with alpha-thalassemia/mental retardation syndrome X-linked (ATRX) mutations and alternative lengthening of telomeres (ALT), suggesting an interaction between IDH1 and telomeres. However, little is known how IDH1 mutations affect telomere maintenance. METHODS: We analyzed cell-specific telomere length (CS-TL) on a single cell level in 46 astrocytoma samples (WHO II-IV) by modified immune-quantitative fluorescence in situ hybridization, using endothelial cells as internal reference. In the same samples, we determined IDH1/TERT promoter mutation status and ATRX expression. The interaction of IDH1R132H mutation and CS-TL was studied in vitro using an IDH1R132H doxycycline-inducible glioma cell line system. RESULTS: Virtually all ALTpositive astrocytomas had normal TERT promoter and lacked ATRX expression. Further, all ALTpositive samples had IDH1R132H mutations, resulting in a significantly longer CS-TL of IDH1R132H gliomas, when compared to their wildtype counterparts. Conversely, TERT promotor mutations were associated with IDHwildtype, ATRX expression, lack of ALT and short CS-TL. ALT, TERT promoter mutations, and CS-TL remained without prognostic significance, when correcting for IDH1 status. In vitro, overexpression of IDHR132H in the glioma cell line LN319 resulted in downregulation of ATRX and rapid TERT-independent telomere lengthening consistent with ALT. CONCLUSION: ALT is the major telomere maintenance mechanism in IDHR132H mutated astrocytomas, while TERT promoter mutations were associated with IDHwildtype glioma. IDH1R132H downregulates ATRX expression in vitro resulting in ALT, which may contribute to the strong association of IDH1R132H mutations, ATRX loss, and ALT.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Isocitrato Deshidrogenasa/genética , Telomerasa/genética , Homeostasis del Telómero/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Isocitrato Deshidrogenasa/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Análisis de la Célula Individual , Células Tumorales Cultivadas , Adulto Joven
20.
J Infect Dis ; 219(6): 996-1006, 2019 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-30299510

RESUMEN

BACKGROUND: Leptospirosis, caused by spirochetes of the genus Leptospira, is one of the most widespread zoonoses worldwide. Efficient diagnostic methods for early diagnosis of leptospirosis are still lacking, and acute disease presents with nonspecific symptomatology and is often misdiagnosed. The leptospires pathogenic processes and virulence mechanisms remain virtually unknown. In severe infections, hemostatic impairment is frequently observed, and pathophysiological complications often develop when the host response is modulated by the pathogen. The neutrophil heparin-binding protein (HBP) is an inflammatory mediator and potent inducer of vascular leakage. RESULTS: In this study, we found that leptospires and their secreted products induce the release of HBP from stimulated neutrophils through a controlled degranulation mechanism. We acknowledged 2 leptospiral proteins as able to induce HBP degranulation. These findings have clinical implications, as high levels of HBP were detected in serum from patients with leptospirosis, especially at the early phase of the disease. CONCLUSION: In conclusion, we describe a new mechanism by which the leptospirosis pathophysiological complications may arise, such as vascular leakage and edema formation. We also propose HBP as a new early screening biomarker for human leptospirosis.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/sangre , Proteínas Bacterianas/sangre , Leptospira/patogenicidad , Leptospirosis/sangre , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/farmacología , Biomarcadores/sangre , Proteínas Sanguíneas/farmacología , Interacciones Huésped-Patógeno , Humanos , Leptospira/metabolismo , Leptospirosis/diagnóstico , Leptospirosis/fisiopatología , Ratones Endogámicos BALB C , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA