Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 19(2): 231-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35145320

RESUMEN

Orexins (also called hypocretins) are hypothalamic neuropeptides that carry out essential functions in the central nervous system; however, little is known about their release and range of action in vivo owing to the limited resolution of current detection technologies. Here we developed a genetically encoded orexin sensor (OxLight1) based on the engineering of circularly permutated green fluorescent protein into the human type-2 orexin receptor. In mice OxLight1 detects optogenetically evoked release of endogenous orexins in vivo with high sensitivity. Photometry recordings of OxLight1 in mice show rapid orexin release associated with spontaneous running behavior, acute stress and sleep-to-wake transitions in different brain areas. Moreover, two-photon imaging of OxLight1 reveals orexin release in layer 2/3 of the mouse somatosensory cortex during emergence from anesthesia. Thus, OxLight1 enables sensitive and direct optical detection of orexin neuropeptides with high spatiotemporal resolution in living animals.


Asunto(s)
Encéfalo/metabolismo , Imagen Molecular/métodos , Receptores de Orexina/genética , Orexinas/análisis , Proteínas Recombinantes/metabolismo , Animales , Conducta Animal , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Receptores de Orexina/metabolismo , Orexinas/genética , Orexinas/farmacología , Fotones , Proteínas Recombinantes/genética , Reproducibilidad de los Resultados , Sueño/fisiología
2.
J Biol Chem ; 298(5): 101840, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35307349

RESUMEN

Posttranslational addition of a small ubiquitin-like modifier (SUMO) moiety (SUMOylation) has been implicated in pathologies such as brain ischemia, diabetic peripheral neuropathy, and neurodegeneration. However, nuclear enrichment of SUMO pathway proteins has made it difficult to ascertain how ion channels, proteins that are typically localized to and function at the plasma membrane, and mitochondria are SUMOylated. Here, we report that the trophic factor, brain-derived neurotrophic factor (BDNF) regulates SUMO proteins both spatially and temporally in neurons. We show that BDNF signaling via the receptor tropomyosin-related kinase B facilitates nuclear exodus of SUMO proteins and subsequent enrichment within dendrites. Of the various SUMO E3 ligases, we found that PIAS-3 dendrite enrichment in response to BDNF signaling specifically modulates subsequent ERK1/2 kinase pathway signaling. In addition, we found the PIAS-3 RING and Ser/Thr domains, albeit in opposing manners, functionally inhibit GABA-mediated inhibition. Finally, using oxygen-glucose deprivation as an in vitro model for ischemia, we show that BDNF-tropomyosin-related kinase B signaling negatively impairs clustering of the main scaffolding protein at GABAergic postsynapse, gephyrin, whereby reducing GABAergic neurotransmission postischemia. SUMOylation-defective gephyrin K148R/K724R mutant transgene expression reversed these ischemia-induced changes in gephyrin cluster density. Taken together, these data suggest that BDNF signaling facilitates the temporal relocation of nuclear-enriched SUMO proteins to dendrites to influence postsynaptic protein SUMOylation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ubiquitina-Proteína Ligasas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de la Membrana , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación , Tropomiosina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
3.
Pflugers Arch ; 473(8): 1229-1246, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34228176

RESUMEN

The ATP6ap2 (Pro)renin receptor protein associates with H+-ATPases which regulate organellar, cellular, and systemic acid-base homeostasis. In the kidney, ATP6ap2 colocalizes with H+-ATPases in various cell types including the cells of the proximal tubule. There, H+-ATPases are involved in receptor-mediated endocytosis of low molecular weight proteins via the megalin/cubilin receptors. To study ATP6ap2 function in the proximal tubule, we used an inducible shRNA Atp6ap2 knockdown rat model (Kd) and an inducible kidney-specific Atp6ap2 knockout mouse model. Both animal lines showed higher proteinuria with elevated albumin, vitamin D binding protein, and procathepsin B in urine. Endocytosis of an injected fluid-phase marker (FITC- dextran, 10 kDa) was normal whereas processing of recombinant transferrin, a marker for receptor-mediated endocytosis, to lysosomes was delayed. While megalin and cubilin expression was unchanged, abundance of several subunits of the H+-ATPase involved in receptor-mediated endocytosis was reduced. Lysosomal integrity and H+-ATPase function are associated with mTOR signaling. In ATP6ap2, KO mice mTOR and phospho-mTOR appeared normal but increased abundance of the LC3-B subunit of the autophagosome was observed suggesting a more generalized impairment of lysosomal function in the absence of ATP6ap2. Hence, our data suggests a role for ATP6ap2 for proximal tubule function in the kidney with a defect in receptor-mediated endocytosis in mice and rats.


Asunto(s)
Túbulos Renales Proximales/metabolismo , ATPasas de Translocación de Protón/metabolismo , Receptores de Superficie Celular/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Endocitosis , Femenino , Lisosomas/metabolismo , Masculino , Ratones Noqueados , Ratas Transgénicas
5.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796710

RESUMEN

The thymus generates central immune tolerance by producing self-restricted and self-tolerant T-cells as a result of interactions between the developing thymocytes and the stromal microenvironment, mainly formed by the thymic epithelial cells. The thymic epithelium derives from the endoderm of the pharyngeal pouches, embryonic structures that rely on environmental cues from the surrounding mesenchyme for its development. Here, we review the most recent advances in our understanding of the molecular mechanisms involved in early thymic organogenesis at stages preceding the expression of the transcription factor Foxn1, the early marker of thymic epithelial cells identity. Foxn1-independent developmental stages, such as the specification of the pharyngeal endoderm, patterning of the pouches, and thymus fate commitment are discussed, with a special focus on epithelial-mesenchymal interactions.


Asunto(s)
Organogénesis , Timo/crecimiento & desarrollo , Animales , Humanos , Transducción de Señal , Timo/embriología , Factores de Transcripción/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-35530257

RESUMEN

In this work we investigate the effects of the diffuse double layer thickness on the electrochemical Stark tuning and oxidation of carbon monoxide at Pt(111) surfaces in perchloric acid solution. The diffuse double layer thickness was modified by changing the concentration (ionic strength) of the supporting electrolyte. The Stark tuning slope of the adsorbed CO was evaluated with Fourier Transformed Infrared Spectroscopy, and the CO oxidation was monitored with cyclic voltammetry. The results show that both electrochemical Stark tuning and oxidation are independent of the HClO4 concentration of the supporting electrolyte, revealing the absence of diffuse layer effects on the aqueous Pt(111)/CO system. By comparison to previously reported theoretical calculations, we attribute this insensitivity to the special double layer structure of Pt(111)/CO, in which the potential drop occurs primarily between the terminating oxygen of the adsorbed CO adlayer and first water layer of the electrolyte, making the properties of adsorbed CO nearly independent of the ionic strength of the electrolyte.

7.
Dev Biol ; 418(2): 268-82, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27544844

RESUMEN

The avian thymus and parathyroids (T/PT) common primordium derives from the endoderm of the third and fourth pharyngeal pouches (3/4PP). The molecular mechanisms that govern T/PT development are not fully understood. Here we study the effects of Notch and Hedgehog (Hh) signalling modulation during common primordium development using in vitro, in vivo and in ovo approaches. The impairment of Notch activity reduced Foxn1/thymus-fated and Gcm2/Pth/parathyroid-fated domains in the 3/4PP and further compromised the development of the parathyroid glands. When Hh signalling was abolished, we observed a reduction in the Gata3/Gcm2- and Lfng-expression domains at the median/anterior and median/posterior territories of the pouches, respectively. In contrast, the Foxn1 expression-domain at the dorsal tip of the pouches expanded ventrally into the Lfng-expression domain. This study offers novel evidence on the role of Notch signalling in T/PT common primordium development, in an Hh-dependent manner.


Asunto(s)
Proteínas Aviares/fisiología , Proteínas Hedgehog/fisiología , Glándulas Paratiroides/embriología , Receptores Notch/fisiología , Timo/embriología , Animales , Proteínas Aviares/antagonistas & inhibidores , Proteínas Aviares/genética , Embrión de Pollo , Coturnix , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Inmunohistoquímica , Hibridación in Situ , Organogénesis/genética , Organogénesis/fisiología , Glándulas Paratiroides/fisiología , Receptor Cross-Talk/fisiología , Receptores Notch/antagonistas & inhibidores , Receptores Notch/genética , Transducción de Señal , Timo/fisiología
8.
J Am Chem Soc ; 139(41): 14693-14698, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28929754

RESUMEN

In this work, we report a fundamental mechanistic study of the electrochemical oxidative carbonylation of methanol with CO for the synthesis of dimethyl carbonate on metallic electrodes at low overpotentials. For the first time, the reaction was shown to take place on the metallic catalysts without need of oxidized metals or additives. Moreover, in-situ spectroelectrochemical techniques were applied to this electrosynthesis reaction in order to reveal the reaction intermediates and to shed light into the reaction mechanism. Fourier transformed infrared spectroscopy was used with different electrode materials (Au, Pd, Pt, and Ag) to assess the effect of the electrode material on the reaction and the dependence of products and intermediates on the applied potentials. It was observed that the dimethyl carbonate is only formed when the electrode is able to decompose/oxidize MeOH to form (adsorbed) methoxy groups that can further react with CO to dimethyl carbonate. Furthermore, the electrode needs to adsorb CO not too strongly; otherwise, further reaction will be inhibited because of surface poisoning by CO.

9.
J Am Chem Soc ; 139(45): 16412-16419, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29064691

RESUMEN

The complexity of the electrocatalytic reduction of CO to CH4 and C2H4 on copper electrodes prevents a straightforward elucidation of the reaction mechanism and the design of new and better catalysts. Although structural and electrolyte effects have been separately studied, there are no reports on structure-sensitive cation effects on the catalyst's selectivity over a wide potential range. Therefore, we investigated CO reduction on Cu(100), Cu(111), and Cu(polycrystalline) electrodes in 0.1 M alkaline hydroxide electrolytes (LiOH, NaOH, KOH, RbOH, CsOH) between 0 and -1.5 V vs RHE. We used online electrochemical mass spectrometry and high-performance liquid chromatography to determine the product distribution as a function of electrode structure, cation size, and applied potential. First, cation effects are potential dependent, as larger cations increase the selectivity of all electrodes toward ethylene at E > -0.45 V vs RHE, but methane is favored at more negative potentials. Second, cation effects are structure-sensitive, as the onset potential for C2H4 formation depends on the electrode structure and cation size, whereas that for CH4 does not. Fourier Transform infrared spectroscopy (FTIR) and density functional theory help to understand how cations favor ethylene over methane at low overpotentials on Cu(100). The rate-determining step to methane and ethylene formation is CO hydrogenation, which is considerably easier in the presence of alkaline cations for a CO dimer compared to a CO monomer. For Li+ and Na+, the stabilization is such that hydrogenated dimers are observable with FTIR at low overpotentials. Thus, potential-dependent, structure-sensitive cation effects help steer the selectivity toward specific products.

10.
Langmuir ; 33(37): 9307-9313, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28453940

RESUMEN

Understanding the competition between hydrogen evolution and CO2 reduction is of fundamental importance to increase the faradaic efficiency for electrocatalytic CO2 reduction in aqueous electrolytes. Here, by using a copper rotating disc electrode, we find that the major hydrogen evolution pathway competing with CO2 reduction is water reduction, even in a relatively acidic electrolyte (pH 2.5). The mass-transport-limited reduction of protons takes place at potentials for which there is no significant competition with CO2 reduction. This selective inhibitory effect of CO2 on water reduction, as well as the difference in onset potential even after correction for local pH changes, highlights the importance of differentiating between water reduction and proton reduction pathways for hydrogen evolution. In-situ FTIR spectroscopy indicates that the adsorbed CO formed during CO2 reduction is the primary intermediate responsible for inhibiting the water reduction process, which may be one of the main mechanisms by which copper maintains a high faradaic efficiency for CO2 reduction in neutral media.

11.
Angew Chem Int Ed Engl ; 56(13): 3621-3624, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28230297

RESUMEN

Carbon dioxide and carbon monoxide can be electrochemically reduced to useful products such as ethylene and ethanol on copper electrocatalysts. The process is yet to be optimized and the exact mechanism and the corresponding reaction intermediates are under debate or unknown. In particular, it has been hypothesized that the C-C bond formation proceeds via CO dimerization and further hydrogenation. Although computational support for this hypothesis exists, direct experimental evidence has been elusive. In this work, we detect a hydrogenated dimer intermediate (OCCOH) using Fourier transform infrared spectroscopy at low overpotentials in LiOH solutions. Density functional theory calculations support our assignment of the observed vibrational bands. The formation of this intermediate is structure sensitive, as it is observed only during CO reduction on Cu(100) and not on Cu(111), in agreement with previous experimental and computational observations.

12.
Cureus ; 16(1): e52667, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38380209

RESUMEN

Introduction Wheezing is common in preschool-aged children, affecting about half of all children within their first six years of life. Children who have recurrent wheezing experience disease-related morbidity, including increased emergency visits and hospitalizations. Early-life lower respiratory tract viral infections are linked to recurrent wheezing and eventual asthma onset. Identifying high-risk children is crucial, with the frequency and severity of wheezing episodes being good predictors of long-term outcomes. Aim To identify predictors of severe exacerbations in children with recurrent wheezing. Methods We conducted a retrospective cohort study involving 168 pediatric patients with recurrent wheezing followed up at our outpatient clinic. The outcome of interest was the occurrence of a severe exacerbation, defined as any exacerbation requiring hospitalization and the need for supplemental oxygenation or ventilatory support. Results The median age of the first wheezing exacerbation was five months, with a predominance of the male gender. Approximately two-thirds of the patients had a family history of atopy. Comorbid allergic rhinitis and atopic dermatitis were present in 15.4% and 16.7% of patients, respectively. Twenty percent of patients had a severe wheezing exacerbation as the first form of presentation, and 30% presented at least one severe exacerbation from the first presentation to the last follow-up. Patients with severe exacerbations were younger at the first episode (median age 4 months, IQR 2-7, versus 7 months, IQR 4-12, p=0.027) and more frequently had a family history of atopy (71.7% versus 55.6%, p=0.050). In this cohort, patients who initially presented with a severe episode are at increased risk of incident severe exacerbations during follow-up, HR 2.24 (95%CI 1.01-4.95). Conclusions We know that the severity of exacerbations in children with recurrent wheezing correlates with the long-term outcomes of the disease. Therefore, preventing severe exacerbations can positively impact the prognosis of these patients. In this analysis, we found independent predictors of severe exacerbations to be the first clinical episode before the age of three months and a family history of atopy. We also found that patients whose initial presentation was severe have a higher risk of new severe exacerbations. Therefore, these subgroups of patients should be closely monitored by pediatricians.

13.
Front Public Health ; 12: 1390107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962774

RESUMEN

Early childhood is foundational for optimal and inclusive lifelong learning, health and well-being. Young children with disabilities face substantial risks of sub-optimal early childhood development (ECD), requiring targeted support to ensure equitable access to lifelong learning opportunities, especially in low- and middle-income countries. Although the Sustainable Development Goals, 2015-2030 (SDGs) emphasise inclusive education for children under 5 years with disabilities, there is no global strategy for achieving this goal since the launch of the SDGs. This paper explores a global ECD framework for children with disabilities based on a review of national ECD programmes from different world regions and relevant global ECD reports published since 2015. Available evidence suggests that any ECD strategy for young children with disabilities should consists of a twin-track approach, strong legislative support, guidelines for early intervention, family involvement, designated coordinating agencies, performance indicators, workforce recruitment and training, as well as explicit funding mechanisms and monitoring systems. This approach reinforces parental rights and liberty to choose appropriate support pathway for their children. We conclude that without a global disability-focussed ECD strategy that incorporates these key features under a dedicated global leadership, the SDGs vision and commitment for the world's children with disabilities are unlikely to be realised.


Asunto(s)
Desarrollo Infantil , Niños con Discapacidad , Humanos , Preescolar , Salud Global , Desarrollo Sostenible , Países en Desarrollo , Lactante , Niño , Intervención Educativa Precoz
14.
Commun Chem ; 6(1): 196, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704802

RESUMEN

Co-electrolysis of carbon oxides and nitrogen oxides promise to simultaneously help restore the balance of the C and N cycles while producing valuable chemicals such as urea. However, co-electrolysis processes are still largely inefficient and numerous knowledge voids persist. Here, we provide a solid thermodynamic basis for modelling urea production via co-electrolysis. First, we determine the energetics of aqueous urea produced under electrochemical conditions based on experimental data, which enables an accurate assessment of equilibrium potentials and overpotentials. Next, we use density functional theory (DFT) calculations to model various co-electrolysis reactions producing urea. The calculated reaction free energies deviate significantly from experimental values for well-known GGA, meta-GGA and hybrid functionals. These deviations stem from errors in the DFT-calculated energies of molecular reactants and products. In particular, the error for urea is approximately -0.25 ± 0.10 eV. Finally, we show that all these errors introduce large inconsistencies in the calculated free-energy diagrams of urea production via co-electrolysis, such that gas-phase corrections are strongly advised.

15.
Commun Chem ; 6(1): 199, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726395

RESUMEN

Urea is a commonly used nitrogen fertiliser synthesised from ammonia and carbon dioxide using thermal catalysis. This process results in high carbon dioxide emissions associated with the required amounts of ammonia. Electrocatalysis provides an alternative method to urea production with reduced carbon emissions while utilising waste products like nitrate. This manuscript reports on urea synthesis from the electroreduction of nitrate and carbon dioxide using CuOxZnOy electrodes under mild conditions. Catalysts with different ratios of CuO and ZnO, synthesised via flame spray pyrolysis, were explored for the reaction. The results revealed that all the CuOxZnOy electrocatalyst compositions produce urea, but the efficiency strongly depends on the metal ratio composition of the catalysts. The CuO50ZnO50 composition had the best performance in terms of selectivity (41% at -0.8 V vs RHE) and activity (0.27 mA/cm2 at -0.8 V vs RHE) towards urea production. Thus, this material is one of the most efficient electrocatalysts for urea production reported so far. This study systematically evaluates bimetallic catalysts with varying compositions for urea synthesis from carbon dioxide and nitrate.

16.
Chempluschem ; 88(4): e202300112, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37042441

RESUMEN

Electrocatalytic CO2 reduction processes are generally coupled with the oxidation of water. Process economics can greatly improve by replacing the water oxidation with a more valuable oxidation reaction, a process called paired electrolysis. Here we report the feasibility of pairing CO2 reduction with the oxidation of glycerol on Ni3 S2 /NF anodes to produce formate at both anode and cathode. Initially we optimized the oxidation of glycerol to maximize the Faraday efficiency to formate by using design of experiments. In flow cell electrolysis, excellent selectivity (up to 90 % Faraday efficiency) was achieved at high current density (150 mA/cm2 of geometric surface area). Then we successfully paired the reduction of CO2 with the oxidation of glycerol. A prerequisite for industrial application is to obtain reaction mixtures with a high concentration of formate to enable efficient downstream separation. We show that the anodic process is limited in formate concentration, as Faraday efficiency to formate greatly decreases when operating at 2.5 M formate (∼10 w%) in the reaction mixture due to over-oxidation of formate. We identify this as a major bottleneck for the industrial feasibility of this paired electrolysis process.

17.
Langmuir ; 28(11): 5286-94, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22369635

RESUMEN

The first part of this report studies the electrochemical properties of single-crystal platinum electrodes in acetonitrile electrolytes by means of cyclic voltammetry. Potential difference infrared spectroscopy in conjunction with linear voltammetry was used to obtain a molecular-level picture of this interface. The second part of this report studies the hydrogen evolution and the hydrogen oxidation reactions on the three low-index faces of Pt electrodes in acetonitrile electrolytes. The data (CVs and IR spectra) strongly suggest that acetonitrile and CN(-) molecules are adsorbed on single-crystal platinum electrodes in the range of -1.5 to 0.3 V versus Ag/AgCl. Those species block part of the adsorption sites for hydrogen adatoms, and they decompose on the surface in the presence of water. The nature of the cation and the presence of water strongly affect the onset of acetonitrile electrolysis and the kinetics and stability of the adsorbed species on the electrode. Finally, the hydrogen evolution and the hydrogen oxidation reactions on platinum single-crystal surfaces in acetonitrile electrolytes are strongly affected by the surface-energy state of Pt electrodes.

18.
Phys Chem Chem Phys ; 14(41): 14391-9, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23010819

RESUMEN

The first part of this communication studies the electrochemical properties of thin films of poly(3,4-ethylenedioxythiophene) (PEDOT) grown on the three basal plane platinum electrodes via cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy and in situ FTIR spectroelectrochemistry. In the second part of this work the redox reaction of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) at these platinum modified electrodes is investigated via cyclic voltammetry and electrochemical impedance spectroscopy in order to elucidate the effect of some polymer properties on its electrocatalytic behavior, such as the ionic resistance, nature of the doping ion and the structure. First of all, it was found that the ionic resistance of the PEDOT films electrochemically synthesized on platinum electrodes increases in the order Pt(100) < Pt(110) < Pt(111) and the advantages of using single crystal platinum electrodes coated with PEDOT for the IR study of individual mobile species flux and the evolution of charge carriers during the reduction process of p-doped PEDOT were proven. On the other hand, it was found that compact, rigid and low resistance PEDOT films show higher standard charge transfer rates for the DMcT redox reaction than those that have a more porous structure and higher ionic resistance. Finally, PEDOT films doped with alkaline ions are more electrocatalytic for the oxidation process of the protonated form of DMcT.

19.
ACS Catal ; 12(24): 15146-15156, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36570083

RESUMEN

Bimetallic electrocatalysts have emerged as a viable strategy to tune the electrocatalytic CO2 reduction reaction (eCO2RR) for the selective production of valuable base chemicals and fuels. However, obtaining high product selectivity and catalyst stability remain challenging, which hinders the practical application of eCO2RR. In this work, it was found that a small doping concentration of tin (Sn) in copper oxide (CuO) has profound influence on the catalytic performance, boosting the Faradaic efficiency (FE) up to 98% for carbon monoxide (CO) at -0.75 V versus RHE, with prolonged stable performance (FE > 90%) for up to 15 h. Through a combination of ex situ and in situ characterization techniques, the in situ activation and reaction mechanism of the electrocatalyst at work was elucidated. In situ Raman spectroscopy measurements revealed that the binding energy of the crucial adsorbed *CO intermediate was lowered through Sn doping, thereby favoring gaseous CO desorption. This observation was confirmed by density functional theory, which further indicated that hydrogen adsorption and subsequent hydrogen evolution were hampered on the Sn-doped electrocatalysts, resulting in boosted CO formation. It was found that the pristine electrocatalysts consisted of CuO nanoparticles decorated with SnO2 domains, as characterized by ex situ high-resolution scanning transmission electron microscopy and X-ray photoelectron spectroscopy measurements. These pristine nanoparticles were subsequently in situ converted into a catalytically active bimetallic Sn-doped Cu phase. Our work sheds light on the intimate relationship between the bimetallic structure and catalytic behavior, resulting in stable and selective oxide-derived Sn-doped Cu electrocatalysts.

20.
ChemCatChem ; 14(18): e202200754, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36588984

RESUMEN

It remains a real challenge to control the selectivity of the electrocatalytic CO2 reduction (eCO2R) reaction to valuable chemicals and fuels. Most of the electrocatalysts are made of non-renewable metal resources, which hampers their large-scale implementation. Here, we report the preparation of bimetallic copper-lead (CuPb) electrocatalysts from industrial metallurgical waste. The metal ions were extracted from the metallurgical waste through simple chemical treatment with ammonium chloride, and CuxPby electrocatalysts with tunable compositions were fabricated through electrodeposition at varying cathodic potentials. X-ray spectroscopy techniques showed that the pristine electrocatalysts consist of Cu0, Cu1+ and Pb2+ domains, and no evidence for alloy formation was found. We found a volcano-shape relationship between eCO2R selectivity toward two electron products, such as CO, and the elemental ratio of Cu and Pb. A maximum Faradaic efficiency towards CO was found for Cu9.00Pb1.00, which was four times higher than that of pure Cu, under the same electrocatalytic conditions. In situ Raman spectroscopy revealed that the optimal amount of Pb effectively improved the reducibility of the pristine Cu1+ and Pb2+ domains to metallic Cu and Pb, which boosted the selectivity towards CO by synergistic effects. This work provides a framework of thinking to design and tune the selectivity of bimetallic electrocatalysts for CO2 reduction through valorization of metallurgical waste.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA