Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Physiol Genomics ; 30(2): 111-22, 2007 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-17374843

RESUMEN

The zebrafish (Danio rerio) is used extensively as a model species for studies on vertebrate development and for assessing chemical effects on reproduction. Despite this, the molecular mechanisms controlling zebrafish reproduction are poorly understood. We analyzed the transcriptomic profiles of the gonads of individual zebrafish, using a 17k oligonucleotide microarray, to define the molecular basis of sex and reproductive status in sexually mature fish. The gonadal transcriptome differed substantially between sexes. Among the genes overexpressed in females, 11 biological processes were overrepresented including mitochondrion organization and biogenesis, and cell growth and/or maintenance. Among the genes overexpressed in males, six biological processes were overrepresented including protein biosynthesis and protein metabolism. Analysis of the expression of gene families known to be involved in reproduction identified a number of genes differentially expressed between ovaries and testes including a number of sox genes and genes belonging to the insulin-like growth factor and the activin-inhibin pathways. Real-time quantitative PCR confirmed the expression profiles for nine of the most differentially expressed genes and indicated that many transcripts are likely to be switched off in one of the sexes in the gonads of adult fish. Significant differences were seen between the gonad transcriptomes of individual reproductively active females reflecting their stage of maturation, whereas the testis transcriptomes were remarkably similar between individuals. In summary, we have identified molecular processes associated with (gonadal) sex specificity in breeding zebrafish and established a strong relationship between individual ovarian transcriptomes and reproductive status in females.


Asunto(s)
Reproducción , Factores Sexuales , Pez Cebra/genética , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Ovario/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , Testículo/metabolismo , Pez Cebra/fisiología
2.
Biol Reprod ; 73(4): 648-62, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15930325

RESUMEN

There are two estrogen receptor (ER) subtypes in fish, Esr1 and Esr2 (formerly ERalpha and ERbeta), and in some species the Esr2 subtype has two forms, Esr2b (formerly ERbeta1) and Esr2a (formerly ERbeta2 or ERgamma). There is little information, however, on the different characteristics and functional significance of the two receptor subtypes in fish, and this is especially relevant for understanding the disruption of ER signaling by chemicals with estrogenic activity. In this study, the full-length cDNAs for esr1 (3167 base pairs [bp]) and esr2b (2318 bp), and a partial-length (267 bp) cDNA for esr2a, were cloned and characterized in fathead minnow (fhm; Pimephales promelas), and their patterns of expression established during development and in adults. Real-time polymerase chain reaction revealed some clear distinctions in the ontogenic and tissue expression of fhm esr1, esr2b, and esr2a, suggesting different functions for each ER subtype. Fhm ERs were expressed in brain, pituitary, liver, gonad, intestine, and gill of male and female fish, esr2b and esr2a were also expressed in muscle. Fhm esr1 and esr2b were expressed predominantly in the liver, whereas fhm esr2a was expressed predominantly in intestine and was lowest expressed in liver. Responses of the different hepatic ERs in male fathead minnow exposed to 100 ng estradiol/L differed, with a significant induction (5-fold) of fhm esr1 but no effect on esr2b or esr2a expression, suggesting different mechanisms of regulation for the different ERs. The detailed characterization of ERs in fathead minnow provides the foundation for understanding the molecular basis of estrogenic disruption in fish.


Asunto(s)
Cyprinidae/genética , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Cyprinidae/crecimiento & desarrollo , ADN Complementario , Estradiol/farmacología , Receptor alfa de Estrógeno/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/efectos de los fármacos , Receptor beta de Estrógeno/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa/métodos , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA