Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 66(4): 391-401, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982656

RESUMEN

Asthma is associated with chronic changes in the airway epithelium, a key target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many epithelial changes, including goblet cell metaplasia, are driven by the type 2 cytokine IL-13, but the effects of IL-13 on SARS-CoV-2 infection are unknown. We found that IL-13 stimulation of differentiated human bronchial epithelial cells (HBECs) cultured at air-liquid interface reduced viral RNA recovered from SARS-CoV-2-infected cells and decreased double-stranded RNA, a marker of viral replication, to below the limit of detection in our assay. An intact mucus gel reduced SARS-CoV-2 infection of unstimulated cells, but neither a mucus gel nor SPDEF, which is required for goblet cell metaplasia, were required for the antiviral effects of IL-13. Bulk RNA sequencing revealed that IL-13 regulated 41 of 332 (12%) mRNAs encoding SARS-CoV-2-associated proteins that were detected in HBECs (>1.5-fold change; false discovery rate < 0.05). Although both IL-13 and IFN-α each inhibit SARS-CoV-2 infection, their transcriptional effects differed markedly. Single-cell RNA sequencing revealed cell type-specific differences in SARS-CoV-2-associated gene expression and IL-13 responses. Many IL-13-induced gene expression changes were seen in airway epithelium from individuals with type 2 asthma and chronic obstructive pulmonary disease. IL-13 effects on airway epithelial cells may protect individuals with type 2 asthma from COVID-19 and could lead to identification of novel strategies for reducing SARS-CoV-2 infection.


Asunto(s)
Asma , COVID-19 , Células Cultivadas , Células Epiteliales , Epitelio , Humanos , Interleucina-13/farmacología , SARS-CoV-2
2.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L420-L437, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080188

RESUMEN

Organoids, which are self-organizing three-dimensional cultures, provide models that replicate specific cellular components of native tissues or facets of organ complexity. We describe a simple method to generate organoid cultures using isolated human tracheobronchial epithelial cells grown in mixed matrix components and supplemented at day 14 with the Wnt pathway agonist R-spondin 2 (RSPO2) and the bone morphogenic protein antagonist Noggin. In contrast to previous reports, our method produces differentiated tracheobronchospheres with externally orientated apical membranes without pretreatments, providing an epithelial model to study cilia formation and function, disease pathogenesis, and interaction of pathogens with the respiratory mucosa. Starting from 3 × 105 cells, organoid yield at day 28 was 1,720 ± 302. Immunocytochemistry confirmed the cellular localization of airway epithelial markers, including CFTR, Na+/K+ ATPase, acetylated-α-tubulin, E-cadherin, and ZO-1. Compared to native tissues, expression of genes related to bronchial differentiation and ion transport were similar in organoid and air-liquid interface (ALI) cultures. In matched primary cultures, mean organoid cilia length was 6.1 ± 0.2 µm, similar to that of 5.7 ± 0.1 µm in ALI cultures, and ciliary beating was vigorous and coordinated with frequencies of 7.7 ± 0.3 Hz in organoid cultures and 5.3 ± 0.8 Hz in ALI cultures. Functional measurement of osmotically induced volume changes in organoids showed low water permeability. The generation of numerous single testable units from minimal starting material complements prior techniques. This culture system may be useful for studying airway biology and pathophysiology, aiding diagnosis of ciliopathies, and potentially for high-throughput drug screening.


Asunto(s)
Organoides , Mucosa Respiratoria , Bronquios , Diferenciación Celular , Células Cultivadas , Células Epiteliales/metabolismo , Humanos , Organoides/metabolismo , Mucosa Respiratoria/metabolismo
3.
Am J Respir Cell Mol Biol ; 64(3): 308-317, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33196316

RESUMEN

The human airway epithelium is essential in homeostasis, and epithelial dysfunction contributes to chronic airway disease. Development of flow-cytometric methods to characterize subsets of airway epithelial cells will enable further dissection of airway epithelial biology. Leveraging single-cell RNA-sequencing data in combination with known cell type-specific markers, we developed panels of antibodies to characterize and isolate the major airway epithelial subsets (basal, ciliated, and secretory cells) from human bronchial epithelial-cell cultures. We also identified molecularly distinct subpopulations of secretory cells and demonstrated cell subset-specific expression of low-abundance transcripts and microRNAs that are challenging to analyze with current single-cell RNA-sequencing methods. These new tools will be valuable for analyzing and separating airway epithelial subsets and interrogating airway epithelial biology.


Asunto(s)
Separación Celular/métodos , Células Epiteliales/citología , Citometría de Flujo/métodos , Sistema Respiratorio/citología , Anticuerpos/metabolismo , Biomarcadores/metabolismo , Humanos
4.
Am J Respir Cell Mol Biol ; 62(3): 373-381, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31596609

RESUMEN

Primary human bronchial epithelial cell (HBEC) cultures are a useful model for studies of lung health and major airway diseases. However, mechanistic studies have been limited by our ability to selectively disrupt specific genes in these cells. Here we optimize methods for gene targeting in HBECs by direct delivery of single guide RNA (sgRNA) and rCas9 (recombinant Cas9) complexes by electroporation, without a requirement for plasmids, viruses, or antibiotic selection. Variations in the method of delivery, sgRNA and rCas9 concentrations, and sgRNA sequences all had effects on targeting efficiency, allowing for predictable control of the extent of gene targeting and for near-complete disruption of gene expression. To demonstrate the value of this system, we targeted SPDEF, which encodes a transcription factor previously shown to be essential for the differentiation of MUC5AC-producing goblet cells in mouse models of asthma. Targeting SPDEF led to proportional decreases in MUC5AC expression in HBECs stimulated with IL-13, a central mediator of allergic asthma. Near-complete targeting of SPDEF abolished IL-13-induced MUC5AC expression and goblet cell differentiation. In addition, targeting of SPDEF prevented IL-13-induced impairment of mucociliary clearance, which is likely to be an important contributor to airway obstruction, morbidity, and mortality in asthma. We conclude that direct delivery of sgRNA and rCas9 complexes allows for predictable and efficient gene targeting and enables mechanistic studies of disease-relevant pathways in primary HBECs.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Marcación de Gen/métodos , Interleucina-13/fisiología , Depuración Mucociliar/fisiología , Proteínas Proto-Oncogénicas c-ets/fisiología , Ribonucleoproteínas/genética , Bronquios/citología , Sistemas CRISPR-Cas , Células Cultivadas , Regulación hacia Abajo , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Células Caliciformes/metabolismo , Humanos , Metaplasia , Mucina 5AC/biosíntesis , Mucina 5AC/genética , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-ets/deficiencia , Proteínas Proto-Oncogénicas c-ets/genética , ARN Guía de Kinetoplastida/genética , Ribonucleoproteínas/administración & dosificación , Transcriptoma
5.
J Biol Chem ; 292(3): 771-785, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27895116

RESUMEN

W1282X is the fifth most common cystic fibrosis transmembrane regulator (CFTR) mutation that causes cystic fibrosis. Here, we investigated the utility of a small molecule corrector/potentiator strategy, as used for ΔF508-CFTR, to produce functional rescue of the truncated translation product of the W1282X mutation, CFTR1281, without the need for read-through. In transfected cell systems, certain potentiators and correctors, including VX-809 and VX-770, increased CFTR1281 activity. To identify novel correctors and potentiators with potentially greater efficacy on CFTR1281, functional screens were done of ∼30,000 synthetic small molecules and drugs/nutraceuticals in CFTR1281-transfected cells. Corrector scaffolds of 1-arylpyrazole-4-arylsulfonyl-piperazine and spiro-piperidine-quinazolinone classes were identified with up to ∼5-fold greater efficacy than VX-809, some of which were selective for CFTR1281, whereas others also corrected ΔF508-CFTR. Several novel potentiator scaffolds were identified with efficacy comparable with VX-770; remarkably, a phenylsulfonamide-pyrrolopyridine acted synergistically with VX-770 to increase CFTR1281 function ∼8-fold over that of VX-770 alone, normalizing CFTR1281 channel activity to that of wild type CFTR. Corrector and potentiator combinations were tested in primary cultures and conditionally reprogrammed cells generated from nasal brushings from one W1282X homozygous subject. Although robust chloride conductance was seen with correctors and potentiators in homozygous ΔF508 cells, increased chloride conductance was not found in W1282X cells despite the presence of adequate transcript levels. Notwithstanding the negative data in W1282X cells from one human subject, we speculate that corrector and potentiator combinations may have therapeutic efficacy in cystic fibrosis caused by the W1282X mutation, although additional studies are needed on human cells from W1282X subjects.


Asunto(s)
Aminofenoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mutación Missense , Piperazinas/farmacología , Quinolonas/farmacología , Sustitución de Aminoácidos , Animales , Células Cultivadas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Ratas , Ratas Endogámicas F344
6.
Cells Tissues Organs ; 205(5-6): 279-292, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30300884

RESUMEN

Na+/H+ exchangers (NHEs) represent a highly conserved family of ion transporters that regulate pH homeostasis. NHEs as well as other proton transporters were previously linked to the regulation of the Wnt signaling pathway, cell polarity signaling, and mucociliary function. Furthermore, mutations in the gene SLC9A3 (encoding NHE3) were detected as additional risk factors for airway infections in cystic fibrosis patients. Here, we used the Xenopus embryonic mucociliary epidermis as well as human airway epithelial cells (HAECs) as models to investigate the functional roles of NHEs in mucociliary development and regeneration. In Xenopus embryos, NHEs 1-3 were expressed during epidermal development, and loss of NHE function impaired mucociliary clearance in tadpoles. Clearance defects were caused by reduced cilia formation, disrupted alignment of basal bodies in multiciliated cells (MCCs), and dysregulated mucociliary gene expression. These data also suggested that NHEs may contribute to the activation of Wnt signaling in mucociliary epithelia. In HAECs, pharmacological inhibition of NHE function also caused defective ciliation and regeneration in airway MCCs. Collectively, our data revealed a requirement for NHEs in vertebrate mucociliary epithelia and linked NHE activity to cilia formation and function in differentiating MCCs. Our results provide an entry point for the understanding of the contribution of NHEs to signaling, development, and pathogenesis in the human respiratory tract.


Asunto(s)
Epitelio/embriología , Epitelio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Células Cultivadas , Epitelio/ultraestructura , Humanos , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Vía de Señalización Wnt , Xenopus/embriología , Xenopus/metabolismo
7.
Am J Pathol ; 186(12): 3146-3159, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27765636

RESUMEN

Lung cancer is the leading cause of cancer-related death, and 87% of these deaths are directly attributable to smoking. Using three-dimensional cultures of primary human bronchial epithelial cells, we demonstrated that loss of adherens junction protein, epithelial cadherin, and the aberrant interaction of its adherens junction binding partner, p120-catenin (p120ctn), with the cytoplasmic tail of apical mucin-1 (MUC1-CT) represent initiating steps in the epithelial-to-mesenchymal transition. Smoke provoked the rapid nuclear entry of p120ctn in complex with MUC1-CT that was inhibited using the MUC1-CT inhibitory peptides, PMIP and GO-201. Nuclear entry of p120ctn promoted its interaction with transcriptional repressor kaiso and the rapid shuttling of kaiso to the cytoplasm. Nuclear exit of kaiso permitted the up-regulation of oncogenic transcription factors Fos/phospho-Ser32 Fos, FosB, Fra1/phospho-Ser265 Fra1, which was inhibited through suppression of p120ctn's nuclear export using leptomycin-B. These data indicated that smoke-induced nuclear-to-cytoplasmic translocation of kaiso depends on the nuclear import of p120ctn in complex with MUC1-CT and the nuclear export of kaiso in complex with p120ctn. The presence of MUC1-CT/p120ctn and p120ctn/kaiso complexes in lung squamous cell carcinoma and adenocarcinoma specimens from human patients confirms the clinical relevance of these events. Thus, enhancing kaiso's suppressor role of protumor genes by sequestering kaiso in the nucleus of a smoker's airway epithelium may represent a novel approach of treating lung cancer.


Asunto(s)
Cateninas/metabolismo , Neoplasias Pulmonares/etiología , Mucina-1/metabolismo , Fumar/efectos adversos , Factores de Transcripción/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/etiología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Anciano , Antígenos CD , Cadherinas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Movimiento Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mucina-1/efectos de los fármacos , Péptidos/farmacología , Transporte de Proteínas , Regulación hacia Arriba , Catenina delta
8.
FASEB J ; 30(6): 2187-97, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26932931

RESUMEN

Pendrin (SLC26A4) is a Cl(-)/anion exchanger expressed in the epithelium of inflamed airways where it is thought to facilitate Cl(-) absorption and HCO3 (-) secretion. Studies using pendrin knockout mice and airway epithelial cells from hearing-impaired subjects with pendrin loss of function suggest involvement of pendrin in inflammatory lung diseases, including cystic fibrosis (CF), perhaps by regulation of airway surface liquid (ASL) volume. Here we identified small-molecule pendrin inhibitors and demonstrated their efficacy in increasing ASL volume. A cell-based, functional high-throughput screen of ∼36,000 synthetic small molecules produced 3 chemical classes of inhibitors of human pendrin. After structure-activity studies, tetrahydropyrazolopyridine and pyrazolothiophenesulfonamide compounds reversibly inhibited pendrin-facilitated Cl(-) exchange with SCN(-), I(-), NO3 (-), and HCO3 (-) with drug concentration causing 50% inhibition down to ∼2.5 µM. In well-differentiated primary cultures of human airway epithelial cells from non-CF and CF subjects, treatment with IL-13, which causes inflammation with strong pendrin up-regulation, strongly increased Cl(-)/HCO3 (-) exchange and the increase was blocked by pendrin inhibition. Pendrin inhibition significantly increased ASL depth (by ∼8 µm) in IL-13-treated non-CF and CF cells but not in untreated cells. These studies implicate the involvement of pendrin-facilitated Cl(-)/HCO3 (-) in the regulation of ASL volume and suggest the utility of pendrin inhibitors in inflammatory lung diseases, including CF.-Haggie, P. M., Phuan, P.-W., Tan, J.-A., Zlock, L., Finkbeiner, W. E., Verkman, A. S. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis.


Asunto(s)
Antiportadores de Cloruro-Bicarbonato/metabolismo , Fibrosis Quística/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Piridinas/farmacología , Sulfonamidas/farmacología , Animales , Células Cultivadas , Antiportadores de Cloruro-Bicarbonato/antagonistas & inhibidores , Antiportadores de Cloruro-Bicarbonato/genética , Chlorocebus aethiops , Células Epiteliales/efectos de los fármacos , Humanos , Interleucina-13/farmacología , Proteínas de Transporte de Membrana/genética , Piridinas/química , Ratas , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo , Relación Estructura-Actividad , Transportadores de Sulfato , Sulfonamidas/química
9.
Mol Pharmacol ; 88(4): 791-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26245207

RESUMEN

Combination drug therapies under development for cystic fibrosis caused by the ∆F508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) include a "corrector" to improve its cellular processing and a "potentiator" to improve its chloride channel function. Recently, it was reported that the approved potentiator N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (Ivacaftor) reduces ∆F508-CFTR cellular stability and the efficacy of investigational correctors, including 3-(6-[([1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl) amino]-3-methyl-2-pyridinyl)-benzoic acid and 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-(1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(2-hydroxy-1,1-dimethylethyl)-1H-indol-5-yl), which might contribute to the modest reported efficacy of combination therapy in clinical trials. Here, we report the identification and characterization of potentiators that do not interfere with ∆F508-CFTR stability or corrector action. High-throughput screening and structure-activity analysis identified several classes of potentiators that do not impair corrector action, including tetrahydrobenzothiophenes, thiooxoaminothiazoles, and pyrazole-pyrrole-isoxazoles. The most potent compounds have an EC(50) for ∆F508-CFTR potentiation down to 18 nM and do not reduce corrector efficacy in heterologous ∆F508-CFTR-expressing cells or primary cultures of ∆F508/∆F508 human bronchial epithelia. The ΔF508-CFTR potentiators also activated wild-type and G551D CFTR, albeit weakly. The efficacy of combination therapy for cystic fibrosis caused by the ∆F508 mutation may be improved by replacement of Ivacaftor with a potentiator that does not interfere with corrector action.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Activación del Canal Iónico/fisiología , Aminopiridinas/química , Aminopiridinas/metabolismo , Aminopiridinas/farmacología , Animales , Benzodioxoles/química , Benzodioxoles/metabolismo , Benzodioxoles/farmacología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/agonistas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Ratas , Ratas Endogámicas F344 , Relación Estructura-Actividad
10.
FASEB J ; 28(2): 791-801, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24200884

RESUMEN

Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that impair its expression and/or chloride channel function. Here, we provide evidence that type 4 cyclic nucleotide phosphodiesterases (PDE4s) are critical regulators of the cAMP/PKA-dependent activation of CFTR in primary human bronchial epithelial cells. In non-CF cells, PDE4 inhibition increased CFTR activity under basal conditions (ΔISC 7.1 µA/cm(2)) and after isoproterenol stimulation (increased ΔISC from 13.9 to 21.0 µA/cm(2)) and slowed the return of stimulated CFTR activity to basal levels by >3-fold. In cells homozygous for ΔF508-CFTR, the most common mutation found in CF, PDE4 inhibition alone produced minimal channel activation. However, PDE4 inhibition strongly amplified the effects of CFTR correctors, drugs that increase expression and membrane localization of CFTR, and/or CFTR potentiators, drugs that increase channel gating, to reach ∼ 25% of the chloride conductance observed in non-CF cells. Biochemical studies indicate that PDE4s are anchored to CFTR and mediate a local regulation of channel function. Taken together, our results implicate PDE4 as an important determinant of CFTR activity in airway epithelia, and support the use of PDE4 inhibitors to potentiate the therapeutic benefits of CFTR correctors and potentiators.


Asunto(s)
Cloruros/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Epitelio/metabolismo , Amilorida/farmacología , Células Cultivadas , Epitelio/efectos de los fármacos , Humanos , Inmunoprecipitación , Quinolonas/farmacología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Rolipram/farmacología
11.
J Pathol ; 234(1): 60-73, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24838315

RESUMEN

Cigarette smoke increases the risk of lung cancer by 20-fold and accounts for 87% of lung cancer deaths. In the normal airway, heavily O-glycosylated mucin-1 (MUC1) and adherens junctions (AJs) establish a structural barrier that protects the airway from infectious, inflammatory and noxious stimuli. Smoke disrupts cell-cell adhesion via its damaging effects on the AJ protein epithelial cadherin (E-cad). Loss of E-cad is a major hallmark of epithelial-mesenchymal transition (EMT) and has been reported in lung cancer, where it is associated with invasion, metastasis and poor prognosis. Using organotypic cultures of primary human bronchial epithelial (HBE) cells treated with smoke-concentrated medium (Smk), we have demonstrated that E-cad loss is regulated through the aberrant interaction of its AJ binding partner, p120-catenin (p120ctn), and the C-terminus of MUC1 (MUC1-C). Here, we reported that even before MUC1-C became bound to p120ctn, smoke promoted the generation of a novel 400 kDa glycoform of MUC1's N-terminus (MUC1-N) differing from the 230 kDa and 150 kDa glycoforms in untreated control cells. The subsequent smoke-induced, time-dependent shedding of glycosylated MUC1-N exposed MUC1-C as a putative receptor for interactions with EGFR, Src and p120ctn. Smoke-induced MUC1-C glycosylation modulated MUC1-C tyrosine phosphorylation (TyrP) that was essential for MUC1-C/p120ctn interaction through dose-dependent bridging of Src/MUC1-C/galectin-3/EGFR signalosomes. Chemical deglycosylation of MUC1 using a mixture of N-glycosylation inhibitor tunicamycin and O-glycosylation inhibitor benzyl-α-GalNAc disrupted the Src/MUC1-C/galectin-3/EGFR complexes and thereby abolished smoke-induced MUC1-C-TyrP and MUC1-C/p120ctn interaction. Similarly, inhibition of smoke-induced MUC1-N glycosylation using adenoviral shRNA directed against N-acetyl-galactosaminyl transferase-6 (GALNT6, an enzyme that controls the initiating step of O-glycosylation) successfully suppressed MUC1-C/p120ctn interaction, prevented E-cad degradation and maintained cellular polarity in response to smoke. Thus, GALNT6 shRNA represents a potential therapeutic modality to prevent the initiation of events associated with EMT in the smoker's airway.


Asunto(s)
Uniones Adherentes/metabolismo , Neoplasias Pulmonares/patología , Mucina-1/metabolismo , Fumar/efectos adversos , Contaminación por Humo de Tabaco/efectos adversos , Proteínas Sanguíneas , Cadherinas/metabolismo , Cateninas/metabolismo , Células Cultivadas , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Galectina 3/metabolismo , Galectinas , Glicosilación , Humanos , Pulmón/patología , Modelos Biológicos , Mucina-1/genética , Fosforilación , Catenina delta
12.
Proc Natl Acad Sci U S A ; 109(40): 16354-9, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988107

RESUMEN

Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.


Asunto(s)
Canales de Cloruro/metabolismo , Mucinas/metabolismo , Contracción Muscular/fisiología , Músculo Liso/fisiología , Sistema Respiratorio/citología , Sistema Respiratorio/metabolismo , Animales , Anoctamina-1 , Células Cultivadas , Células Epiteliales/metabolismo , Humanos , Inmunohistoquímica , Ratones , Microscopía Fluorescente
13.
Mol Pharmacol ; 86(1): 42-51, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24737137

RESUMEN

The most prevalent cystic fibrosis transmembrane conductance regulator (CFTR) mutation causing cystic fibrosis, ΔF508, impairs folding of nucleotide binding domain (NBD) 1 and stability of the interface between NBD1 and the membrane-spanning domains. The interfacial stability defect can be partially corrected by the investigational drug VX-809 (3-[6-[[[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl]amino]-3-methyl-2-pyridinyl]-benzoic acid) or the R1070W mutation. Second-generation ΔF508-CFTR correctors are needed to improve on the modest efficacy of existing cystic fibrosis correctors. We postulated that a second corrector targeting a distinct folding/interfacial defect might act in synergy with VX-809 or the R1070W suppressor mutation. A biochemical screen for ΔF508-CFTR cell surface expression was developed in a human lung epithelium-derived cell line (CFBE41o(-)) by expressing chimeric CFTRs with a horseradish peroxidase (HRP) in the fourth exofacial loop in either the presence or absence of R1070W. Using a luminescence readout of HRP activity, screening of approximately 110,000 small molecules produced nine novel corrector scaffolds that increased cell surface ∆F508-CFTR expression by up to 200% in the presence versus absence of maximal VX-809. Further screening of 1006 analogs of compounds identified from the primary screen produced 15 correctors with an EC50 < 5 µM. Eight chemical scaffolds showed synergy with VX-809 in restoring chloride permeability in ∆F508-expressing A549 cells. An aminothiazole increased chloride conductance in human bronchial epithelial cells from a ΔF508 homozygous subject beyond that of maximal VX-809. Mechanistic studies suggested that NBD2 is required for the aminothiazole rescue. Our results provide proof of concept for synergy screening to identify second-generation correctors, which, when used in combination, may overcome the "therapeutic ceiling" of first-generation correctors.


Asunto(s)
Aminopiridinas/farmacología , Benzodioxoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Línea Celular , Cloruros/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Perros , Sinergismo Farmacológico , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Células de Riñón Canino Madin Darby , Mutación/efectos de los fármacos , Mutación/genética , Permeabilidad/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/genética , Mucosa Respiratoria/metabolismo , Relación Estructura-Actividad
14.
Am J Physiol Lung Cell Mol Physiol ; 307(4): L338-44, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24907055

RESUMEN

Alveolarization in humans and nonhuman primates begins during prenatal development. Advances in stereological counting techniques allow accurate assessment of alveolar number; however, these techniques have not been applied to the developing human lung. Based on the recent American Thoracic Society guidelines for stereology, lungs from human autopsies, ages 2 mo to 15 yr, were fractionated and isometric uniform randomly sampled to count the number of alveoli. The number of alveoli was compared with age, weight, and height as well as growth between right and left lungs. The number of alveoli in the human lung increased exponentially during the first 2 yr of life but continued to increase albeit at a reduced rate through adolescence. Alveolar numbers also correlated with the indirect radial alveolar count technique. Growth curves for human alveolarization were compared using historical data of nonhuman primates and rats. The alveolar growth rate in nonhuman primates was nearly identical to the human growth curve. Rats were significantly different, showing a more pronounced exponential growth during the first 20 days of life. This evidence indicates that the human lung may be more plastic than originally thought, with alveolarization occurring well into adolescence. The first 20 days of life in rats implies a growth curve that may relate more to prenatal growth in humans. The data suggest that nonhuman primates are a better laboratory model for studies of human postnatal lung growth than rats.


Asunto(s)
Alveolos Pulmonares/crecimiento & desarrollo , Adolescente , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Preescolar , Femenino , Humanos , Lactante , Masculino , Primates/crecimiento & desarrollo , Ratas
15.
Am J Pathol ; 182(6): 1986-95, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23562274

RESUMEN

The adherens junction protein p120-catenin (p120ctn) shuttles between E-cadherin-bound and cytoplasmic pools to regulate E-cadherin/catenin complex stability and cell migration, respectively. When released from the adherens junction, p120ctn promotes cell migration through modulation of the Rho GTPases Rac1, Cdc42, and RhoA. Accordingly, the down-regulation and cytoplasmic mislocalization of p120ctn has been reported in all subtypes of lung cancers and is associated with grave prognosis. Previously, we reported that cigarette smoke induced cytoplasmic translocation of p120ctn and cell migration, but the underlying mechanism was unclear. Using primary human bronchial epithelial cells exposed to smoke-concentrated medium (Smk), we observed the translocation of Rac1 and Cdc42, but not RhoA, to the leading edge of polarized and migrating human bronchial epithelial cells. Rac1 and Cdc42 were robustly activated by smoke, whereas RhoA was inhibited. Accordingly, siRNA knockdown of Rac1 or Cdc42 completely abolished Smk-induced cell migration, whereas knockdown of RhoA had no effect. p120ctn/Rac1 double knockdown completely abolished Smk-induced cell migration, whereas p120ctn/Cdc42 double knockdown did not. These data suggested that Rac1 and Cdc42 coactivation was essential to smoke-promoted cell migration in the presence of p120ctn, whereas migration proceeded via Rac1 alone in the absence of p120ctn. Thus, Rac1 may provide an omnipotent therapeutic target in reversing cell migration during the early (intact p120ctn) and late (loss of p120ctn) stages of lung carcinogenesis.


Asunto(s)
Bronquios/citología , Cateninas/fisiología , Humo , Proteína de Unión al GTP cdc42/fisiología , Proteína de Unión al GTP rac1/fisiología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Cateninas/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Transformación Celular Neoplásica/genética , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología , Nicotiana , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Catenina delta
16.
J Pathol ; 229(1): 74-86, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22833523

RESUMEN

Adherens junctions (AJs) containing epithelial cadherin (E-cad) bound to p120-catenin (p120ctn) and ß-catenin (ß-ctn) play a crucial role in regulating cell-cell adhesion. Cigarette smoke abrogates cell-cell adhesion between epithelial cells by disrupting E-cad, a hallmark of epithelial-mesenchymal transition (EMT), yet the underlying mechanism remains unknown. We used an organotypic culture of primary human bronchial epithelial (HBE) cells treated with smoke-concentrated medium (Smk) to establish an essential role for the interaction between p120ctn and the cytoplasmic tail of MUC1 (MUC1-CT) in regulating E-cad disruption. Within the first 4 h of smoke exposure, apical MUC1-CT repositioned to the basolateral membrane of pseudo-stratified HBE cells, where it interacted with p120ctn. A time-dependent increase in MUC1-CT/p120ctn complexes occurred in conjunction with a time-dependent dissociation of p120ctn/E-cad/ß-ctn complexes, as well as the coordinated degradation of p120ctn and E-cad. Interestingly, Smk induced a similar interaction between MUC1-CT and ß-ctn, but this occurred 44 h after MUC1-CT's initial interaction with p120ctn, and well after the AJs were destroyed. Blocking MUC1-CT's interaction with p120ctn using a MUC1-CT dominant-negative peptide, PMIP, successfully abolished Smk's disruptive effects on AJs and recovered apical-basolateral polarity of HBE cells. The MUC1-CT/p120ctn interaction was highly dependent on EGFR/Src/Jnk-mediated tyrosine phosphorylation (TyrP) of MUC1-CT. Accordingly, EGFR, Src or Jnk inhibitors (AG1478, PP2, SP600125, respectively) abrogated Smk-induced MUC1-CT-TyrP, MUC1-CT/p120ctn interaction, AJ disruption, and loss of cellular polarity. Our work identified MUC1-CT and p120ctn as important regulators of epithelial polarity and cell-cell adhesion during a smoke-induced EMT-like process. Novel therapeutics designed to inhibit MUC1-CT/p120ctn complex formation may prevent EMT in the smoker's airway.


Asunto(s)
Uniones Adherentes/efectos de los fármacos , Bronquios/efectos de los fármacos , Cateninas/metabolismo , Células Epiteliales/efectos de los fármacos , Mucina-1/metabolismo , Humo/efectos adversos , Fumar/efectos adversos , Uniones Adherentes/metabolismo , Uniones Adherentes/patología , Bronquios/metabolismo , Bronquios/patología , Cateninas/química , Adhesión Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Mucina-1/química , Fosforilación , Cultivo Primario de Células , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Tirosina , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo , Catenina delta
17.
Am J Respir Crit Care Med ; 186(10): 965-74, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22955319

RESUMEN

RATIONALE: Changes in airway epithelial cell differentiation, driven in part by IL-13, are important in asthma. Micro-RNAs (miRNAs) regulate cell differentiation in many systems and could contribute to epithelial abnormalities in asthma. OBJECTIVES: To determine whether airway epithelial miRNA expression is altered in asthma and identify IL-13-regulated miRNAs. METHODS: We used miRNA microarrays to analyze bronchial epithelial brushings from 16 steroid-naive subjects with asthma before and after inhaled corticosteroids, 19 steroid-using subjects with asthma, and 12 healthy control subjects, and the effects of IL-13 and corticosteroids on cultured bronchial epithelial cells. We used quantitative polymerase chain reaction to confirm selected microarray results. MEASUREMENTS AND MAIN RESULTS: Most (12 of 16) steroid-naive subjects with asthma had a markedly abnormal pattern of bronchial epithelial miRNA expression by microarray analysis. Compared with control subjects, 217 miRNAs were differentially expressed in steroid-naive subjects with asthma and 200 in steroid-using subjects with asthma (false discovery rate < 0.05). Treatment with inhaled corticosteroids had modest effects on miRNA expression in steroid-naive asthma, inducing a statistically significant (false discovery rate < 0.05) change for only nine miRNAs. qPCR analysis confirmed differential expression of 22 miRNAs that were highly differentially expressed by microarrays. IL-13 stimulation recapitulated changes in many differentially expressed miRNAs, including four members of the miR-34/449 family, and these changes in miR-34/449 family members were resistant to corticosteroids. CONCLUSIONS: Dramatic alterations of airway epithelial cell miRNA levels are a common feature of asthma. These alterations are only modestly corrected by inhaled corticosteroids. IL-13 effects may account for some of these alterations, including repression of miR-34/449 family members that have established roles in airway epithelial cell differentiation. Clinical trial registered with www.clinicaltrials.gov (NCT 00595153).


Asunto(s)
Asma/metabolismo , Bronquios/metabolismo , Células Epiteliales/metabolismo , MicroARNs/metabolismo , Administración por Inhalación , Adulto , Asma/tratamiento farmacológico , Asma/genética , Bronquios/efectos de los fármacos , Budesonida/administración & dosificación , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Femenino , Glucocorticoides/administración & dosificación , Humanos , Interleucina-13/farmacología , Masculino , MicroARNs/genética , MicroARNs/fisiología , Análisis por Micromatrices , Reacción en Cadena de la Polimerasa
18.
Cell Genom ; 3(1): 100229, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36777184

RESUMEN

Epithelial responses to the cytokine interleukin-13 (IL-13) cause airway obstruction in asthma. Here we utilized multiple genomic techniques to identify IL-13-responsive regulatory elements in bronchial epithelial cells and used these data to develop a CRISPR interference (CRISPRi)-based therapeutic approach to downregulate airway obstruction-inducing genes in a cell type- and IL-13-specific manner. Using single-cell RNA sequencing (scRNA-seq) and acetylated lysine 27 on histone 3 (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) in primary human bronchial epithelial cells, we identified IL-13-responsive genes and regulatory elements. These sequences were functionally validated and optimized via massively parallel reporter assays (MPRAs) for IL-13-inducible activity. The top secretory cell-selective sequence from the MPRA, a novel, distal enhancer of the sterile alpha motif pointed domain containing E-26 transformation-specific transcription factor (SPDEF) gene, was utilized to drive CRISPRi and knock down SPDEF or mucin 5AC (MUC5AC), both involved in pathologic mucus production in asthma. Our work provides a catalog of cell type-specific genes and regulatory elements involved in IL-13 bronchial epithelial response and showcases their use for therapeutic purposes.

19.
FASEB J ; 25(11): 4048-62, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21836025

RESUMEN

TMEM16A (ANO1) is a calcium-activated chloride channel (CaCC) expressed in secretory epithelia, smooth muscle, and other tissues. Cell-based functional screening of ∼110,000 compounds revealed compounds that activated TMEM16A CaCC conductance without increasing cytoplasmic Ca(2+). By patch-clamp, N-aroylaminothiazole "activators" (E(act)) strongly increased Cl(-) current at 0 Ca(2+), whereas tetrazolylbenzamide "potentiators" (F(act)) were not active at 0 Ca(2+) but reduced the EC(50) for Ca(2+)-dependent TMEM16A activation. Of 682 analogs tested, the most potent activator (E(act)) and potentiator (F(act)) produced large and more sustained CaCC Cl(-) currents than general agonists of Ca(2+) signaling, with EC(50) 3-6 µM and Cl(-) conductance comparable to that induced transiently by Ca(2+)-elevating purinergic agonists. Analogs of activators were identified that fully inhibited TMEM16A Cl(-) conductance, providing further evidence for direct TMEM16A binding. The TMEM16A activators increased CaCC conductance in human salivary and airway submucosal gland epithelial cells, and IL-4 treated bronchial cells, and stimulated submucosal gland secretion in human bronchi and smooth muscle contraction in mouse intestine. Small-molecule, TMEM16A-targeted activators may be useful for drug therapy of cystic fibrosis, dry mouth, and gastrointestinal hypomotility disorders, and for pharmacological dissection of TMEM16A function.


Asunto(s)
Agonistas de los Canales de Calcio/farmacología , Canales de Cloruro/efectos de los fármacos , Proteínas de Neoplasias/efectos de los fármacos , Animales , Anoctamina-1 , Células Cultivadas , Cloruros/metabolismo , Fibrosis Quística/fisiopatología , Motilidad Gastrointestinal/efectos de los fármacos , Humanos , Ratones , Contracción Muscular/efectos de los fármacos , Técnicas de Placa-Clamp
20.
FASEB J ; 25(7): 2325-32, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21427214

RESUMEN

Airway surface liquid (ASL) volume depletion and mucus accumulation occur in cystic fibrosis (CF). The ASL comprises a superficial mucus layer (ML) overlying a periciliary fluid layer (PCL) that contacts surface epithelial cells. We measured viscosity of the ML and PCL from the diffusion of FITC-dextran dissolved in the ASL of unperturbed, well-differentiated primary cultures of human bronchial epithelia grown at an air-liquid interface. Diffusion was measured by fluorescence recovery after photobleaching, using a perfluorocarbon immersion lens and confocal fluorescence detection. Bleaching of an in-plane 6-µm-wide region was done in which diffusion coefficients were computed using solution standards of specified viscosity and finite-element computations of 2-layer dye diffusion in 3 dimensions. We found remarkably elevated viscosity in both ML and PCL of CF vs. non-CF bronchial epithelial cell cultures. Relative viscosities (with saline=1) were in the range 7-10 in the non-CF ML and PCL, and 25-30 in both ML and PCL in CF, and greatly reduced by amiloride treatment or mucin washout. These data indicate that the CF airway surface epithelium, even without hyperviscous secretions from submucosal glands, produces an intrinsically hyperviscous PCL and ML, which likely contributes to CF lung disease by impairment of mucociliary clearance. Our results challenge the view that the PCL is a relatively watery, nonviscous fluid layer in contact with a more viscous ML, and offer an explanation for CF lung disease in the gland-free lower airways.


Asunto(s)
Bronquios/química , Fibrosis Quística/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Microscopía Confocal/métodos , Moco/química , Amilorida/farmacología , Bronquios/citología , Bronquios/metabolismo , Células Cultivadas , Cilios/química , Colforsina/farmacología , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Dextranos/química , Células Epiteliales/química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Bloqueadores del Canal de Sodio Epitelial , Canales Epiteliales de Sodio/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Humanos , Mucosa Respiratoria/química , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA