Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(1): 17-43, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181740

RESUMEN

Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.


Asunto(s)
Microbiota , Factores Sociales , Simbiosis , Animales , Humanos , Enfermedades no Transmisibles , Virulencia
2.
Cell ; 180(2): 221-232, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978342

RESUMEN

Human diseases are increasingly linked with an altered or "dysbiotic" gut microbiota, but whether such changes are causal, consequential, or bystanders to disease is, for the most part, unresolved. Human microbiota-associated (HMA) rodents have become a cornerstone of microbiome science for addressing causal relationships between altered microbiomes and host pathology. In a systematic review, we found that 95% of published studies (36/38) on HMA rodents reported a transfer of pathological phenotypes to recipient animals, and many extrapolated the findings to make causal inferences to human diseases. We posit that this exceedingly high rate of inter-species transferable pathologies is implausible and overstates the role of the gut microbiome in human disease. We advocate for a more rigorous and critical approach for inferring causality to avoid false concepts and prevent unrealistic expectations that may undermine the credibility of microbiome science and delay its translation.


Asunto(s)
Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Roedores/microbiología , Animales , Enfermedad/etiología , Trasplante de Microbiota Fecal/métodos , Humanos , Ratones , Microbiota/fisiología , Modelos Animales , Ratas
3.
Immunity ; 52(2): 241-255, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075727

RESUMEN

Asthma is a common chronic respiratory disease affecting more than 300 million people worldwide. Clinical features of asthma and its immunological and molecular etiology vary significantly among patients. An understanding of the complexities of asthma has evolved to the point where precision medicine approaches, including microbiome analysis, are being increasingly recognized as an important part of disease management. Lung and gut microbiota play several important roles in the development, regulation, and maintenance of healthy immune responses. Dysbiosis and subsequent dysregulation of microbiota-related immunological processes affect the onset of the disease, its clinical characteristics, and responses to treatment. Bacteria and viruses are the most extensively studied microorganisms relating to asthma pathogenesis, but other microbes, including fungi and even archaea, can potently influence airway inflammation. This review focuses on recently discovered connections between lung and gut microbiota, including bacteria, fungi, viruses, and archaea, and their influence on asthma.


Asunto(s)
Asma/inmunología , Asma/microbiología , Tracto Gastrointestinal , Pulmón , Microbiota/inmunología , Animales , Asma/patología , Asma/fisiopatología , Disbiosis/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/parasitología , Tracto Gastrointestinal/virología , Humanos , Pulmón/inmunología , Pulmón/microbiología , Pulmón/parasitología , Pulmón/virología , Sistema Respiratorio/inmunología , Sistema Respiratorio/microbiología , Sistema Respiratorio/parasitología , Sistema Respiratorio/virología
4.
Cell ; 156(5): 1045-59, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24581500

RESUMEN

Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP:


Asunto(s)
Colon/inmunología , Células Caliciformes/inmunología , Inflamasomas/inmunología , Mucosa Intestinal/inmunología , Receptores de Superficie Celular/inmunología , Animales , Autofagia , Colitis/inmunología , Colitis/microbiología , Colon/microbiología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Caliciformes/citología , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Ratones , Moco/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(20): e2313971121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38662573

RESUMEN

There is increasing evidence that interactions between microbes and their hosts not only play a role in determining health and disease but also in emotions, thought, and behavior. Built environments greatly influence microbiome exposures because of their built-in highly specific microbiomes coproduced with myriad metaorganisms including humans, pets, plants, rodents, and insects. Seemingly static built structures host complex ecologies of microorganisms that are only starting to be mapped. These microbial ecologies of built environments are directly and interdependently affected by social, spatial, and technological norms. Advances in technology have made these organisms visible and forced the scientific community and architects to rethink gene-environment and microbe interactions respectively. Thus, built environment design must consider the microbiome, and research involving host-microbiome interaction must consider the built-environment. This paradigm shift becomes increasingly important as evidence grows that contemporary built environments are steadily reducing the microbial diversity essential for human health, well-being, and resilience while accelerating the symptoms of human chronic diseases including environmental allergies, and other more life-altering diseases. New models of design are required to balance maximizing exposure to microbial diversity while minimizing exposure to human-associated diseases. Sustained trans-disciplinary research across time (evolutionary, historical, and generational) and space (cultural and geographical) is needed to develop experimental design protocols that address multigenerational multispecies health and health equity in built environments.


Asunto(s)
Entorno Construido , Microbiota , Animales , Humanos , Microbiota/fisiología
6.
Trends Immunol ; 44(8): 644-661, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37438187

RESUMEN

Childhood allergy, including asthma, eczema, and food allergies, is a major global health burden, with prevalence increasing dramatically and novel interventions needed. Emerging research suggests that human milk oligosaccharides (HMOs), complex glycans found in breastmilk, have allergy-protective properties, indicating exciting therapeutic potential. This review evaluates current literature on the role of HMOs in allergy, assesses underlying immunological mechanisms, and discusses future research needed to translate findings into clinical implications. HMOs may mediate allergy risk through multiple structure-specific mechanisms, including microbiome modification, intestinal barrier maturation, immunomodulation, and gene regulation. Findings emphasize the importance of breastfeeding encouragement and HMO-supplemented formula milk for high allergy-risk infants. Although further investigation is necessary to determine the most efficacious structures against varying allergy phenotypes and their long-term efficacy, HMOs may represent a promising complementary tool for childhood allergy prevention.


Asunto(s)
Hipersensibilidad a los Alimentos , Leche Humana , Lactante , Femenino , Humanos , Niño , Fórmulas Infantiles/química , Hipersensibilidad a los Alimentos/prevención & control , Lactancia Materna , Oligosacáridos/uso terapéutico , Oligosacáridos/análisis
7.
Nat Immunol ; 14(7): 660-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23778793

RESUMEN

The mammalian intestinal tract harbors a diverse community of trillions of microorganisms, which have co-evolved with the host immune system for millions of years. Many of these microorganisms perform functions critical for host physiology, but the host must remain vigilant to control the microbial community so that the symbiotic nature of the relationship is maintained. To facilitate homeostasis, the immune system ensures that the diverse microbial load is tolerated and anatomically contained, while remaining responsive to microbial breaches and invasion. Although the microbiota is required for intestinal immune development, immune responses also regulate the structure and composition of the intestinal microbiota. Here we discuss recent advances in our understanding of these complex interactions and their implications for human health and disease.


Asunto(s)
Intestinos/microbiología , Metagenoma/inmunología , Animales , Homeostasis/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/inmunología , Intestinos/inmunología
8.
Proc Natl Acad Sci U S A ; 119(41): e2209589119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36197997

RESUMEN

Environmental enteric dysfunction (EED) is an inflammatory syndrome postulated to contribute to stunted child growth and to be associated with intestinal dysbiosis and nutrient malabsorption. However, the small intestinal contributions to EED remain poorly understood. This study aimed to assess changes in the proximal and distal intestinal microbiota in the context of stunting and EED and to test for a causal role of these bacterial isolates in the underlying pathophysiology. We performed a cross-sectional study in two African countries recruiting roughly 1,000 children aged 2 to 5 years and assessed the microbiota in the stomach, duodenum, and feces. Upper gastrointestinal samples were obtained from stunted children and stratified according to stunting severity. Fecal samples were collected. We then investigated the role of clinical isolates in EED pathophysiology using tissue culture and animal models. We find that small intestinal bacterial overgrowth (SIBO) is extremely common (>80%) in stunted children. SIBO is frequently characterized by an overgrowth of oral bacteria, leading to increased permeability and inflammation and to replacement of classical small intestinal strains. These duodenal bacterial isolates decrease lipid absorption in both cultured enterocytes and mice, providing a mechanism by which they may exacerbate EED and stunting. Further, we find a specific fecal signature associated with the EED markers fecal calprotectin and alpha-antitrypsin. Our study shows a causal implication of ectopic colonization of oral bacterial isolated from the small intestine in nutrient malabsorption and gut leakiness in vitro. These findings have important therapeutic implications for modulating the microbiota through microbiota-targeted interventions.


Asunto(s)
Microbioma Gastrointestinal , Trastornos del Crecimiento , Intestino Delgado , Lípidos , Boca , Animales , Bacterias , Preescolar , Estudios Transversales , Trastornos del Crecimiento/etiología , Humanos , Complejo de Antígeno L1 de Leucocito , Metabolismo de los Lípidos , Síndromes de Malabsorción , Ratones , Modelos Teóricos , Boca/microbiología
9.
J Nutr ; 154(2): 412-423, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38110179

RESUMEN

BACKGROUND: Nutrition plays a vital role in shaping the intestinal microbiome. However, many hospitalized children undergo periods of fasting during medical treatment. Changes to the small intestinal microbiota in early life in the setting of enteral deprivation have not been well described. OBJECTIVE: The aim of this study was to investigate the impact of enteral deprivation on the small intestinal mucosal microbiome and to identify factors that shape this interaction in infancy. METHODS: Intestinal biopsies were collected from proximal (fed) and distal (unfed) small bowel at the time of ostomy closure in children with a small intestinal enterostomy. Mucosal and luminal microbiome comparisons were performed including ß-diversity and differential abundance and correlations with clinical factors were analyzed. Host proteomics were compared between fed and unfed samples and correlated with microbiome parameters. Finally, microbial results were validated in another cohort of pediatric patients. RESULTS: Samples from 13 children (median age 84 d) were collected. Mucosal microbiome communities in the fed and unfed segments were strikingly similar [paired UniFrac distance (ß-diversity)], whereas luminal effluent differed significantly from fed samples (PERMANOVA, P = 0.003). Multivariate analysis revealed patient as the strongest predictor of the UniFrac distance. Environmental variables did not influence the intrapatient microbial dissimilarity. Host proteomics were similar intrapatient (paired fed-unfed Euclidian distance) and showed a correlation with the UniFrac distance (Spearman rho = 0.71, P < 0.001). Specific proteins and functional clusters were significantly different between paired samples, including lipid metabolism and intracellular trafficking, whereas no difference was seen in innate immune proteins. The microbiome results were validated in a different cohort with similar characteristics. CONCLUSION: We found the host to be the most dominant factor in the structure of the early life small intestinal mucosal microbiome. Nutrient deprivation was associated with specific changes in the host proteome. Further research is needed to better understand this host-microbe-nutrition interaction.


Asunto(s)
Microbiota , Proteoma , Humanos , Niño , Anciano de 80 o más Años , Mucosa Intestinal , Intestinos , Nutrientes
10.
Immunity ; 43(5): 840-2, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26588776

RESUMEN

Parasitic helminths are potent regulators of host immunity, including inhibition of allergic inflammation. In this issue of Immunity, Zaiss et al. (2015) reveal that microbiota compositional shifts during helminth infection contribute to the multifaceted ways that helminths modulate host immunity.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Helmintos/inmunología , Hipersensibilidad/inmunología , Inflamación/inmunología , Inflamación/parasitología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Animales , Femenino , Humanos , Masculino
11.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33472859

RESUMEN

The COVID-19 pandemic has the potential to affect the human microbiome in infected and uninfected individuals, having a substantial impact on human health over the long term. This pandemic intersects with a decades-long decline in microbial diversity and ancestral microbes due to hygiene, antibiotics, and urban living (the hygiene hypothesis). High-risk groups succumbing to COVID-19 include those with preexisting conditions, such as diabetes and obesity, which are also associated with microbiome abnormalities. Current pandemic control measures and practices will have broad, uneven, and potentially long-term effects for the human microbiome across the planet, given the implementation of physical separation, extensive hygiene, travel barriers, and other measures that influence overall microbial loss and inability for reinoculation. Although much remains uncertain or unknown about the virus and its consequences, implementing pandemic control practices could significantly affect the microbiome. In this Perspective, we explore many facets of COVID-19-induced societal changes and their possible effects on the microbiome, and discuss current and future challenges regarding the interplay between this pandemic and the microbiome. Recent recognition of the microbiome's influence on human health makes it critical to consider both how the microbiome, shaped by biosocial processes, affects susceptibility to the coronavirus and, conversely, how COVID-19 disease and prevention measures may affect the microbiome. This knowledge may prove key in prevention and treatment, and long-term biological and social outcomes of this pandemic.


Asunto(s)
COVID-19/microbiología , Hipótesis de la Higiene , Microbiota , Anciano , Antiinfecciosos/uso terapéutico , COVID-19/mortalidad , Ingestión de Alimentos , Femenino , Humanos , Lactante , Control de Infecciones/métodos , Masculino , Microbiota/efectos de los fármacos , Distanciamiento Físico , Embarazo
12.
Gastroenterology ; 162(7): 1858-1875.e2, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35248539

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a chronic condition affecting one quarter of the global population. Although primarily linked to obesity and metabolic syndrome, undernutrition and the altered (dysbiotic) gut microbiome influence NAFLD progression. Both undernutrition and NAFLD prevalence are predicted to considerably increase, but how the undernourished gut microbiome contributes to hepatic pathophysiology remains far less studied. Here, we present undernutrition conditions with fatty liver features, including kwashiorkor and micronutrient deficiency. We then review the gut microbiota-liver axis, highlighting key pathways linked to NAFLD progression within both overnutrition and undernutrition. To conclude, we identify challenges and collaborative possibilities of emerging multiomic research addressing the pathology and treatment of undernourished NAFLD.


Asunto(s)
Microbioma Gastrointestinal , Desnutrición , Enfermedad del Hígado Graso no Alcohólico , Disbiosis/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Hígado/patología , Desnutrición/epidemiología , Enfermedad del Hígado Graso no Alcohólico/patología
13.
Annu Rev Genet ; 48: 361-82, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25251855

RESUMEN

The gastrointestinal (GI) microbiota is a complex community of microorganisms residing within the mammalian gastrointestinal tract. The GI microbiota is vital to the development of the host immune system and plays a crucial role in human health and disease. The composition of the GI microbiota differs immensely among individuals yet specific shifts in composition and diversity have been linked to inflammatory bowel disease, obesity, atopy, and susceptibility to infection. In this review, we describe the GI microbiota and its role in enteric diseases caused by pathogenic Escherichia coli, Salmonella enterica, and Clostridium difficile. We discuss the central role of the GI microbiota in protective immunity, resistance to enteric pathogens, and resolution of enteric colitis.


Asunto(s)
Colitis/genética , Tracto Gastrointestinal/microbiología , Microbiota/genética , Animales , Clostridioides difficile/inmunología , Clostridioides difficile/patogenicidad , Colitis/inmunología , Colitis/microbiología , Escherichia coli/inmunología , Escherichia coli/patogenicidad , Tracto Gastrointestinal/inmunología , Humanos , Microbiota/inmunología , Salmonella enterica/inmunología , Salmonella enterica/patogenicidad
14.
Int J Obes (Lond) ; 46(7): 1351-1358, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35428865

RESUMEN

BACKGROUND/OBJECTIVE: The steep rise in childhood obesity has emerged as a worldwide public health problem. The first 4 years of life are a critical window where long-term developmental patterns of body mass index (BMI) are established and a critical period for microbiota maturation. Understanding how the early-life microbiota relate to preschool growth may be useful for identifying preventive interventions for childhood obesity. We aim to investigate whether longitudinal shifts within the bacterial community between 3 months and 1 year of life are associated with preschool BMI z-score trajectories. METHODS: BMI trajectories from birth to 5 years of age were identified using group-based trajectory modeling in 3059 children. Their association with familial and environmental factors were analyzed. Infant gut microbiota at 3 months and 1 year was defined by 16S RNA sequencing and changes in diversity and composition within each BMIz trajectory were analyzed. RESULTS: Four BMIz trajectories were identified: low stable, normative, high stable, and rapid growth. Infants in the rapid growth trajectory were less likely to have been breastfed, and gained less microbiota diversity in the first year of life. Relative abundance of Akkermansia increased with age in children with stable growth, but decreased in those with rapid growth, abundance of Ruminococcus and Clostridium at 1 year were elevated in children with rapid growth. Children who were breastfed at 6 months had increased levels of Sutterella, and decreased levels of Ruminococcus and Clostridium. CONCLUSION: This study provides new insights into the relationship between the gut microbiota in infancy and patterns of growth in a cohort of preschool Canadian children. We highlight that rapid growth since birth is associated with bacteria shown in animal models to have a causative role in weight gain. Our findings support a novel avenue of research targeted on tangible interventions to reduce childhood obesity.


Asunto(s)
Microbioma Gastrointestinal , Obesidad Infantil , Bacterias , Índice de Masa Corporal , Canadá , Niño , Preescolar , Humanos , Lactante , Obesidad Infantil/epidemiología , Obesidad Infantil/etiología , Obesidad Infantil/prevención & control , Aumento de Peso
15.
Pediatr Allergy Immunol ; 33(1): e13658, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467574

RESUMEN

BACKGROUND: The "old friends" hypothesis posits that reduced exposure to previously ubiquitous microorganisms is one factor involved in the increased rates of allergic diseases. Cytomegalovirus (CMV) may be one of the "old friends" hypothesized to help prevent allergic diseases. We sought to elucidate whether early-life CMV infection is associated with childhood atopy via perturbations of the gut microbiota. METHODS: Participants were recruited from a population-based birth cohort (CHILD study) and followed prospectively until age 5 years in four Canadian cities. A total of 928 participants provided stool microbiome data, urine for CMV testing, skin prick tests, and questionnaire-based detailed environmental exposures. Cytomegalovirus infection was assessed in the first year of life while the main outcome was defined by persistent sensitization to any allergen at ages 1, 3, and 5 years. RESULTS: Early CMV infection was associated with increased beta and decreased alpha diversity of the gut microbiota. Both changes in diversity measures and early CMV infection were associated with persistent allergic sensitization at age 5 years (aOR = 2.08; 95% CI: 1, 4.33). Mediation analysis demonstrated that perturbation of gut microbial composition explains 30% of the association. CONCLUSIONS: Early-life CMV infection is associated with an alteration in the intestinal microbiota, which mediates the effect of the infection on childhood atopy. This work indicates that preventing CMV infection would not put children at increased risk of developing atopy. Rather, a CMV vaccine, in addition to preventing CMV-associated morbidity and mortality, might reduce the risk of childhood allergic diseases.


Asunto(s)
Infecciones por Citomegalovirus , Microbioma Gastrointestinal , Hipersensibilidad Inmediata , Canadá/epidemiología , Preescolar , Citomegalovirus , Infecciones por Citomegalovirus/epidemiología , Humanos , Hipersensibilidad Inmediata/epidemiología , Lactante
16.
BMC Med ; 19(1): 31, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33504332

RESUMEN

BACKGROUND: It is estimated that the COVID-19 pandemic will drastically increase all forms of malnutrition. Of particular concern, yet understated, is the potential to increase the double burden of malnutrition (DBM) epidemic. This coexistence of undernutrition together with overweight and obesity, or diet-related non-communicable disease (NCD), within low- to middle-income countries (LMICs) is increasing rapidly. Although multiple factors contribute to the DBM, food insecurity (FI) and gut microbiota dysbiosis play a crucial role. Both under- and overnutrition have been shown to be a consequence of food insecurity. The gut microbiota has also been recently implicated in playing a role in under- and overnutrition, with altered community structure and function common to both. The pandemic has already caused significant shifts in food availability which has immediate effects on the gut microbiome. In this opinion paper, we discuss how COVID-19 may indirectly exacerbate the DBM through food insecurity and the gut microbiome. MAIN TEXT: The World Food Programme (WFP) estimates that 265 million people in LMICs will experience acute hunger in 2020 due to the pandemic, nearly doubling the original projection of 135 million. Global border closures to food trade, loss of food production, and stark decline in household income will exacerbate starvation while simultaneously necessitating that families resort to calorie-dense, nutrient-poor foods, thereby increasing obesity. While food insecurity, which is the persistent lack of consistent access to adequate and nutrient-rich foods, will primarily drive nutrition behavior, the gut microbiome is perhaps a key biological mechanism. Numerous human and animal studies describe low diversity and an increase in inflammatory species as characteristic features of the undernourished and overnourished gut microbiota. Indeed, fecal transplant studies show that microbiota transfer from undernourished and overnourished humans to germ-free mice lacking a microbiome transfers the physical and metabolic phenotype, suggesting a causal role for the microbiota in under- and overnutrition. The observed microbiome dysbiosis within severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coupled with the DBM presents a viscous cycle. CONCLUSION: Low- to mid-income countries will likely see an increase in the DBM epidemic. Providing access to nutritious foods and protecting individuals' gut microbiome to "flatten the curve" of the DBM trajectory should be prioritized.


Asunto(s)
COVID-19/epidemiología , Microbioma Gastrointestinal , Desnutrición/epidemiología , Pandemias , Animales , Países en Desarrollo , Dieta , Disbiosis , Inseguridad Alimentaria , Conductas Relacionadas con la Salud , Humanos , Renta , Ratones , Obesidad/epidemiología , Sobrepeso/epidemiología , Pobreza
17.
Mov Disord ; 36(4): 977-984, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33404118

RESUMEN

BACKGROUND: The MIND diet has been linked with prevention of Alzheimer's disease and cognitive decline but has not been fully assessed in the context of Parkinson's disease (PD). The objective of the present study was to determine whether MIND diet adherence is associated with the age of Parkinson's disease onset in a manner superior to that of the Mediterranean diet. METHODS: Food Frequency Questionnaires from 167 participants with PD and 119 controls were scored for MIND and 2 versions of Mediterranean diet adherence. Scores were compared between sex and disease subgroups, and PD diet adherence was correlated with age at onset using univariate and multivariate linear models. RESULTS: The female subgroup adhered more closely to the MIND diet than the male subgroup, and diet scores were not modified by disease status. Later age of onset correlated most strongly with MIND diet adherence in the female subgroup, corresponding to differences of up to 17.4 years (P < 0.001) between low and high dietary tertiles. Greek Mediterranean adherence was also significantly associated with later PD onset across all models (P = 0.05-0.03). Conversely, only Greek Mediterranean diet adherence remained correlated with later onset across all models in men, with differences of up to 8.4 years (P = 0.002). CONCLUSIONS: This cross-sectional study found a strong correlation between age of onset of PD and dietary habits, suggesting that nutritional strategies may be an effective tool to delay PD onset. Further studies may help to elucidate potential nutrition-related sex-specific pathophysiological mechanisms and differential prevalence rates in PD. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Disfunción Cognitiva , Dieta Mediterránea , Enfermedad de Parkinson , Estudios Transversales , Femenino , Grecia , Humanos , Masculino , Enfermedad de Parkinson/epidemiología
18.
Proc Natl Acad Sci U S A ; 115(36): E8489-E8498, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30126990

RESUMEN

Linear growth delay (stunting) affects roughly 155 million children under the age of 5 years worldwide. Treatment has been limited by a lack of understanding of the underlying pathophysiological mechanisms. Stunting is most likely associated with changes in the microbial community of the small intestine, a compartment vital for digestion and nutrient absorption. Efforts to better understand the pathophysiology have been hampered by difficulty of access to small intestinal fluids. Here, we describe the microbial community found in the upper gastrointestinal tract of stunted children aged 2-5 y living in sub-Saharan Africa. We studied 46 duodenal and 57 gastric samples from stunted children, as well as 404 fecal samples from stunted and nonstunted children living in Bangui, Central African Republic, and in Antananarivo, Madagascar, using 16S Illumina Amplicon sequencing and semiquantitative culture methods. The vast majority of the stunted children showed small intestinal bacterial overgrowth dominated by bacteria that normally reside in the oropharyngeal cavity. There was an overrepresentation of oral bacteria in fecal samples of stunted children, opening the way for developing noninvasive diagnostic markers. In addition, Escherichia coli/Shigella sp. and Campylobacter sp. were found to be more prevalent in stunted children, while Clostridia, well-known butyrate producers, were reduced. Our data suggest that stunting is associated with a microbiome "decompartmentalization" of the gastrointestinal tract characterized by an increased presence of oropharyngeal bacteria from the stomach to the colon, hence challenging the current view of stunting arising solely as a consequence of small intestine overstimulation through recurrent infections by enteric pathogens.


Asunto(s)
Campylobacter , Desarrollo Infantil , Clostridium , Escherichia coli , Microbioma Gastrointestinal , Trastornos del Crecimiento , Intestino Delgado , Shigella , Campylobacter/clasificación , Campylobacter/aislamiento & purificación , Campylobacter/metabolismo , Preescolar , Clostridium/clasificación , Clostridium/aislamiento & purificación , Clostridium/metabolismo , Escherichia coli/clasificación , Escherichia coli/aislamiento & purificación , Escherichia coli/metabolismo , Femenino , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/microbiología , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Masculino , Shigella/clasificación , Shigella/aislamiento & purificación , Shigella/metabolismo
19.
Mol Microbiol ; 111(3): 700-716, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30536519

RESUMEN

Envelope-localized proteins, such as adhesins and secretion systems, play critical roles in host infection by Gram-negative pathogens. As such, their folding is monitored by envelope stress response systems. Previous studies demonstrated that the Cpx envelope stress response is required for virulence of Citrobacter rodentium, a murine pathogen used to model infections by the human pathogens enteropathogenic and enterohemorrhagic Escherichia coli; however, the mechanisms by which the Cpx response promotes host infection were previously unknown. Here, we characterized the C. rodentium Cpx regulon in order to identify genes required for host infection. Using transcriptomic and proteomic approaches, we found that the Cpx response upregulates envelope-localized protein folding and degrading factors but downregulates pilus genes and type III secretion effectors. Mouse infections with C. rodentium strains lacking individual Cpx-regulated genes showed that the chaperone/protease DegP and the disulfide bond oxidoreductase DsbA were essential for infection, but Cpx regulation of these genes did not fully account for attenuation of C. rodentium ΔcpxRA. Both deletion of dsbA and treatment with the reducing agent dithiothreitol activated the C. rodentium Cpx response, suggesting that it may sense disruption of disulfide bonding. Our results highlight the importance of envelope protein folding in host infection by Gram-negative pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrobacter rodentium/crecimiento & desarrollo , Citrobacter rodentium/genética , Infecciones por Enterobacteriaceae/microbiología , Regulación Bacteriana de la Expresión Génica , Proteínas Quinasas/metabolismo , Regulón , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ratones , Proteoma/análisis
20.
Mov Disord ; 35(7): 1208-1217, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32357258

RESUMEN

BACKGROUND: Parkinson's disease is characterized by a high burden of gastrointestinal comorbidities, especially constipation and reduced colonic transit time, and by gut microbiota alterations. The diverse metabolites produced by the microbiota are broadly relevant to host health. How microbiota composition and metabolism relate to gastrointestinal function in Parkinson's disease is largely unknown. The objectives of the current study were to assesses associations between microbiota composition, stool consistency, constipation, and systemic microbial metabolites in Parkinson's disease to better understand how intestinal microbes contribute to gastrointestinal disturbances commonly observed in patients. METHODS: Three hundred participants (197 Parkinson's patients and 103 controls) were recruited for this cross-sectional cohort study. Participants supplied fecal samples for microbiota sequencing (n = 300) and serum for untargeted metabolomics (n = 125). Data were collected on motor and nonmotor Parkinson's symptoms, medications, diet, and demographics. RESULTS: Significant microbiota taxonomic differences were observed in Parkinson's patients, even when controlling for gastrointestinal function. Parkinson's microbiota was characterized by reduced carbohydrate fermentation and butyrate synthesis capacity and increased proteolytic fermentation and production of deleterious amino acid metabolites, including p-cresol and phenylacetylglutamine. Taxonomic shifts and elevated proteolytic metabolites were strongly associated with stool consistency (a proxy for colonic transit time) and constipation among patients. CONCLUSIONS: Compositional and metabolic alterations in the Parkinson's microbiota are highly associated with gut function, suggesting plausible mechanistic links between altered bacterial metabolism and reduced gut health in this disease. The systemic detection of elevated deleterious proteolytic microbial metabolites in Parkinson's serum suggests a mechanism whereby microbiota dysbiosis contributes to disease etiology and pathophysiology. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Estudios Transversales , Disbiosis , Tracto Gastrointestinal , Humanos , Enfermedad de Parkinson/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA