Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239888

RESUMEN

Outer membrane vesicles (OMVs) are lipid-membrane-bounded nanoparticles that are released from Gram-negative bacteria via vesiculation of the outer membrane. They have vital roles in different biological processes and recently, they have received increasing attention as possible candidates for a broad variety of biomedical applications. In particular, OMVs have several characteristics that enable them to be promising candidates for immune modulation against pathogens, such as their ability to induce the host immune responses given their resemblance to the parental bacterial cell. Helicobacter pylori (H. pylori) is a common Gram-negative bacterium that infects half of the world's population and causes several gastrointestinal diseases such as peptic ulcer, gastritis, gastric lymphoma, and gastric carcinoma. The current H. pylori treatment/prevention regimens are poorly effective and have limited success. This review explores the current status and future prospects of OMVs in biomedicine with a special focus on their use as a potential candidate in immune modulation against H. pylori and its associated diseases. The emerging strategies that can be used to design OMVs as viable immunogenic candidates are discussed.


Asunto(s)
Vesículas Extracelulares , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/fisiología , Bacterias Gramnegativas , Infecciones por Helicobacter/microbiología
2.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502207

RESUMEN

The complexity of skeletal pathologies makes use of in vivo models essential to elucidate the pathogenesis of the diseases; nevertheless, chondrocyte and osteoblast cell lines provide relevant information on the underlying disease mechanisms. Due to the limitations of primary chondrocytes, immortalized cells represent a unique tool to overcome this problem since they grow very easily for several passages. However, in the immortalization procedure the cells might lose the original phenotype; thus, these cell lines should be deeply characterized before their use. We immortalized primary chondrocytes from a Cant1 knock-out mouse, an animal model of Desbuquois dysplasia type 1, with a plasmid expressing the SV40 large and small T antigen. This cell line, based on morphological and biochemical parameters, showed preservation of the chondrocyte phenotype. In addition reduced proteoglycan synthesis and oversulfation of glycosaminoglycan chains were demonstrated, as already observed in primary chondrocytes from the Cant1 knock-out mouse. In conclusion, immortalized Cant1 knock-out chondrocytes maintained the disease phenotype observed in primary cells validating the in vitro model and providing an additional tool to further study the proteoglycan biosynthesis defect. The same approach might be extended to other cartilage disorders.


Asunto(s)
Ácido Anhídrido Hidrolasas/fisiología , Condrocitos/patología , Anomalías Craneofaciales/patología , Enanismo/patología , Glicosaminoglicanos/metabolismo , Inestabilidad de la Articulación/patología , Osificación Heterotópica/patología , Fenotipo , Polidactilia/patología , Animales , Línea Celular Transformada , Condrocitos/metabolismo , Anomalías Craneofaciales/etiología , Anomalías Craneofaciales/metabolismo , Enanismo/etiología , Enanismo/metabolismo , Inestabilidad de la Articulación/etiología , Inestabilidad de la Articulación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osificación Heterotópica/etiología , Osificación Heterotópica/metabolismo , Polidactilia/etiología , Polidactilia/metabolismo
3.
Int J Mol Sci ; 22(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406681

RESUMEN

Osteogenesis imperfecta (OI) is a heritable disorder that mainly affects the skeleton. The inheritance is mostly autosomal dominant and associated to mutations in one of the two genes, COL1A1 and COL1A2, encoding for the type I collagen α chains. According to more than 1500 described mutation sites and to outcome spanning from very mild cases to perinatal-lethality, OI is characterized by a wide genotype/phenotype heterogeneity. In order to identify common affected molecular-pathways and disease biomarkers in OI probands with different mutations and lethal or surviving phenotypes, primary fibroblasts from dominant OI patients, carrying COL1A1 or COL1A2 defects, were investigated by applying a Tandem Mass Tag labeling-Liquid Chromatography-Tandem Mass Spectrometry (TMT LC-MS/MS) proteomics approach and bioinformatic tools for comparative protein-abundance profiling. While no difference in α1 or α2 abundance was detected among lethal (type II) and not-lethal (type III) OI patients, 17 proteins, with key effects on matrix structure and organization, cell signaling, and cell and tissue development and differentiation, were significantly different between type II and type III OI patients. Among them, some non-collagenous extracellular matrix (ECM) proteins (e.g., decorin and fibrillin-1) and proteins modulating cytoskeleton (e.g., nestin and palladin) directly correlate to the severity of the disease. Their defective presence may define proband-failure in balancing aberrances related to mutant collagen.


Asunto(s)
Biomarcadores/metabolismo , Cromatografía Liquida/métodos , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Proteoma/análisis , Espectrometría de Masas en Tándem/métodos , Preescolar , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Osteogénesis Imperfecta/genética , Proteoma/metabolismo
4.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751494

RESUMEN

Dietary phosphorus (P) is essential for bone mineralisation in vertebrates. P deficiency can cause growth retardation, osteomalacia and bone deformities, both in teleosts and in mammals. Conversely, excess P supply can trigger soft tissue calcification and bone hypermineralisation. This study uses a wide range of complementary techniques (X-rays, histology, TEM, synchrotron X-ray tomographic microscopy, nanoindentation) to describe in detail the effects of dietary P on the zebrafish skeleton, after two months of administering three different diets: 0.5% (low P, LP), 1.0% (regular P, RP), and 1.5% (high P, HP) total P content. LP zebrafish display growth retardation and hypomineralised bones, albeit without deformities. LP zebrafish increase production of non-mineralised bone matrix, and osteoblasts have enlarged endoplasmic reticulum cisternae, indicative for increased collagen synthesis. The HP diet promotes growth, high mineralisation, and stiffness but causes vertebral centra fusions. Structure and arrangement of bone matrix collagen fibres are not influenced by dietary P in all three groups. In conclusion, low dietary P content stimulates the formation of non-mineralised bone without inducing malformations. This indicates that bone formation and mineralisation are uncoupled. In contrast, high dietary P content promotes mineralisation and vertebral body fusions. This new zebrafish model is a useful tool to understand the mechanisms underlying osteomalacia and abnormal mineralisation, due to underlying variations in dietary P levels.


Asunto(s)
Huesos/química , Calcificación Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Fósforo Dietético , Animales , Fósforo Dietético/análisis , Fósforo Dietético/farmacología , Pez Cebra
5.
Hum Mol Genet ; 26(15): 2897-2911, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28475764

RESUMEN

Classical osteogenesis imperfecta (OI) is a bone disease caused by type I collagen mutations and characterized by bone fragility, frequent fractures in absence of trauma and growth deficiency. No definitive cure is available for OI and to develop novel drug therapies, taking advantage of a repositioning strategy, the small teleost zebrafish (Danio rerio) is a particularly appealing model. Its small size, high proliferative rate, embryo transparency and small amount of drug required make zebrafish the model of choice for drug screening studies, when a valid disease model is available. We performed a deep characterization of the zebrafish mutant Chihuahua, that carries a G574D (p.G736D) substitution in the α1 chain of type I collagen. We successfully validated it as a model for classical OI. Growth of mutants was delayed compared with WT. X-ray, µCT, alizarin red/alcian blue and calcein staining revealed severe skeletal deformity, presence of fractures and delayed mineralization. Type I collagen extracted from different tissues showed abnormal electrophoretic migration and low melting temperature. The presence of endoplasmic reticulum (ER) enlargement due to mutant collagen retention in osteoblasts and fibroblasts of mutant fish was shown by electron and confocal microscopy. Two chemical chaperones, 4PBA and TUDCA, were used to ameliorate the cellular stress and indeed 4PBA ameliorated bone mineralization in larvae and skeletal deformities in adult, mainly acting on reducing ER cisternae size and favoring collagen secretion. In conclusion, our data demonstrated that ER stress is a novel target to ameliorate OI phenotype; chemical chaperones such as 4PBA may be, alone or in combination, a new class of molecules to be further investigated for OI treatment.


Asunto(s)
Osteogénesis Imperfecta/genética , Fenilbutiratos/metabolismo , Animales , Calcificación Fisiológica , Células Cultivadas , Colágeno/genética , Colágeno Tipo I/genética , Fibroblastos , Modelos Animales , Chaperonas Moleculares/metabolismo , Mutación , Osteoblastos , Osteogénesis Imperfecta/metabolismo , Fenilbutiratos/uso terapéutico , Pliegue de Proteína , Ácido Tauroquenodesoxicólico/metabolismo , Pez Cebra/genética
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1642-1652, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29432813

RESUMEN

The clinical phenotype in osteogenesis imperfecta (OI) is attributed to the dominant negative function of mutant type I collagen molecules in the extracellular matrix, by altering its structure and function. Intracellular retention of mutant collagen has also been reported, but its effect on cellular homeostasis is less characterized. Using OI patient fibroblasts carrying mutations in the α1(I) and α2(I) chains we demonstrate that retained collagen molecules are responsible for endoplasmic reticulum (ER) enlargement and activation of the unfolded protein response (UPR) mainly through the eukaryotic translation initiation factor 2 alpha kinase 3 (PERK) branch. Cells carrying α1(I) mutations upregulate autophagy, while cells with α2(I) mutations only occasionally activate the autodegradative response. Despite the autophagy activation to face stress conditions, apoptosis occurs in all mutant fibroblasts. To reduce cellular stress, mutant fibroblasts were treated with the FDA-approved chemical chaperone 4-phenylbutyric acid. The drug rescues cell death by modulating UPR activation thanks to both its chaperone and histone deacetylase inhibitor abilities. As chaperone it increases general cellular protein secretion in all patients' cells as well as collagen secretion in cells with the most C-terminal mutation. As histone deacetylase inhibitor it enhances the expression of the autophagic gene Atg5 with a consequent stimulation of autophagy. These results demonstrate that the cellular response to ER stress can be a relevant target to ameliorate OI cell homeostasis.


Asunto(s)
Autofagia/efectos de los fármacos , Fibroblastos/metabolismo , Homeostasis/efectos de los fármacos , Osteogénesis Imperfecta/tratamiento farmacológico , Fenilbutiratos/farmacología , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fibroblastos/patología , Homeostasis/genética , Humanos , Mutación , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
7.
Calcif Tissue Int ; 103(6): 653-662, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30076439

RESUMEN

Osteogenesis imperfecta (OI) is a rare heritable skeletal dysplasia mainly caused by type I collagen abnormalities and characterized by bone fragility and susceptibility to fracture. Over 85% of the patients carry dominant mutations in the genes encoding for the collagen type I α1 and α2 chains. Failure of bone union and/or presence of hyperplastic callus formation after fracture were described in OI patients. Here we used the Col1a2+/G610C mouse, carrying in heterozygosis the α2(I)-G610C substitution, to investigate the healing process of an OI bone. Tibiae of 2-month-old Col1a2+/G610C and wild-type littermates were fractured and the healing process was followed at 2, 3, and 5 weeks after injury from fibrous cartilaginous tissue formation to its bone replacement by radiography, micro-computed tomography (µCT), histological and biochemical approaches. In presence of similar fracture types, in Col1a2+/G610C mice an impairment in the early phase of bone repair was detected compared to wild-type littermates. Smaller callus area, callus bone surface, and bone volume associated to higher percentage of cartilage and lower percentage of bone were evident in Col1a2+/G610C at 2 weeks post fracture (wpf) and no change by 3 wpf. Furthermore, the biochemical analysis of collagen extracted from callus 2 wpf revealed in mutants an increased amount of type II collagen, typical of cartilage, with respect to type I, characteristic of bone. This is the first report of a delay in OI bone fracture repair at the modeling phase.


Asunto(s)
Colágeno Tipo I/genética , Curación de Fractura/genética , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Animales , Modelos Animales de Enfermedad , Ratones , Mutación
8.
Hum Mol Genet ; 24(19): 5570-80, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26206888

RESUMEN

Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by mutations in SLC26A2, a cell membrane sulfate-chloride antiporter. Sulfate uptake impairment results in low cytosolic sulfate, leading to cartilage proteoglycan (PG) undersulfation. In this work, we used the dtd mouse model to study the role of N-acetyl-l-cysteine (NAC), a well-known drug with antioxidant properties, as an intracellular sulfate source for macromolecular sulfation. Because of the important pre-natal phase of skeletal development and growth, we administered 30 g/l NAC in the drinking water to pregnant mice to explore a possible transplacental effect on the fetuses. When cartilage PG sulfation was evaluated by high-performance liquid chromatography disaccharide analysis in dtd newborn mice, a marked increase in PG sulfation was observed in newborns from NAC-treated pregnancies when compared with the placebo group. Morphometric studies of the femur, tibia and ilium after skeletal staining with alcian blue and alizarin red indicated a partial rescue of abnormal bone morphology in dtd newborns from treated females, compared with pups from untreated females. The beneficial effect of increased macromolecular sulfation was confirmed by chondrocyte proliferation studies in cryosections of the tibial epiphysis by proliferating cell nuclear antigen immunohistochemistry: the percentage of proliferating cells, significantly reduced in the placebo group, reached normal values in dtd newborns from NAC-treated females. In conclusion, NAC is a useful source of sulfate for macromolecular sulfation in vivo when extracellular sulfate supply is reduced, confirming the potential of therapeutic approaches with thiol compounds to improve skeletal deformity and short stature in human DTD and related disorders.


Asunto(s)
Acetilcisteína/administración & dosificación , Antioxidantes/administración & dosificación , Huesos/efectos de los fármacos , Condrocitos/efectos de los fármacos , Enanismo/tratamiento farmacológico , Acetilcisteína/farmacología , Animales , Animales Recién Nacidos , Huesos/patología , Proliferación Celular/efectos de los fármacos , Condrocitos/citología , Modelos Animales de Enfermedad , Enanismo/patología , Embrión de Mamíferos/efectos de los fármacos , Femenino , Crecimiento y Desarrollo/efectos de los fármacos , Humanos , Masculino , Ratones , Embarazo , Proteoglicanos/metabolismo
9.
Hum Mol Genet ; 24(21): 6118-33, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26264579

RESUMEN

Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl(+/-) to investigate the molecular basis of OI phenotypic variability. Brtl(+/-) resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl(+/-) mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl(+/-) lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-ß signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment.


Asunto(s)
Citoesqueleto/metabolismo , Osteogénesis Imperfecta/patología , Proteínas 14-3-3/metabolismo , Animales , Huesos/metabolismo , Huesos/patología , Cofilina 1/metabolismo , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Genes Letales , Humanos , Integrinas/metabolismo , Ratones , Ratones Mutantes , Mutación , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Fenotipo , Transducción de Señal , Piel/metabolismo , Tomografía Computarizada por Rayos X , Vimentina/metabolismo
10.
Lancet ; 387(10028): 1657-71, 2016 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-26542481

RESUMEN

Osteogenesis imperfecta is a phenotypically and molecularly heterogeneous group of inherited connective tissue disorders that share similar skeletal abnormalities causing bone fragility and deformity. Previously, the disorder was thought to be an autosomal dominant bone dysplasia caused by defects in type I collagen, but in the past 10 years discoveries of novel (mainly recessive) causative genes have lent support to a predominantly collagen-related pathophysiology and have contributed to an improved understanding of normal bone development. Defects in proteins with very different functions, ranging from structural to enzymatic and from intracellular transport to chaperones, have been described in patients with osteogenesis imperfecta. Knowledge of the specific molecular basis of each form of the disorder will advance clinical diagnosis and potentially stimulate targeted therapeutic approaches. In this Seminar, together with diagnosis, management, and treatment, we describe the defects causing osteogenesis imperfecta and their mechanism and interrelations, and classify them into five groups on the basis of the metabolic pathway compromised, specifically those related to collagen synthesis, structure, and processing; post-translational modification; folding and cross-linking; mineralisation; and osteoblast differentiation.


Asunto(s)
Osteogénesis Imperfecta/diagnóstico , Osteogénesis Imperfecta/genética , Conservadores de la Densidad Ósea/uso terapéutico , Calcificación Fisiológica/genética , Diferenciación Celular/genética , Colágeno Tipo I/genética , Manejo de la Enfermedad , Predisposición Genética a la Enfermedad , Humanos , Mutación , Osteoblastos/patología , Osteogénesis/genética , Osteogénesis Imperfecta/terapia , Procesamiento Proteico-Postraduccional/genética
11.
N Engl J Med ; 370(11): 1019-28, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24571724

RESUMEN

BACKGROUND: Corticotropin-independent Cushing's syndrome is caused by tumors or hyperplasia of the adrenal cortex. The molecular pathogenesis of cortisol-producing adrenal adenomas is not well understood. METHODS: We performed exome sequencing of tumor-tissue specimens from 10 patients with cortisol-producing adrenal adenomas and evaluated recurrent mutations in candidate genes in an additional 171 patients with adrenocortical tumors. We also performed genomewide copy-number analysis in 35 patients with cortisol-secreting bilateral adrenal hyperplasias. We studied the effects of these genetic defects both clinically and in vitro. RESULTS: Exome sequencing revealed somatic mutations in PRKACA, which encodes the catalytic subunit of cyclic AMP-dependent protein kinase (protein kinase A [PKA]), in 8 of 10 adenomas (c.617A→C in 7 and c.595_596insCAC in 1). Overall, PRKACA somatic mutations were identified in 22 of 59 unilateral adenomas (37%) from patients with overt Cushing's syndrome; these mutations were not detectable in 40 patients with subclinical hypercortisolism or in 82 patients with other adrenal tumors. Among 35 patients with cortisol-producing hyperplasias, 5 (including 2 first-degree relatives) carried a germline copy-number gain (duplication) of the genomic region on chromosome 19 that includes PRKACA. In vitro studies showed impaired inhibition of both PKA catalytic subunit mutants by the PKA regulatory subunit, whereas cells from patients with germline chromosomal gains showed increased protein levels of the PKA catalytic subunit; in both instances, basal PKA activity was increased. CONCLUSIONS: Genetic alterations of the catalytic subunit of PKA were found to be associated with human disease. Germline duplications of this gene resulted in bilateral adrenal hyperplasias, whereas somatic PRKACA mutations resulted in unilateral cortisol-producing adrenal adenomas. (Funded by the European Commission Seventh Framework Program and others.).


Asunto(s)
Adenoma/genética , Neoplasias de las Glándulas Suprarrenales/genética , Hiperplasia Suprarrenal Congénita/genética , Síndrome de Cushing/etiología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Mutación de Línea Germinal , Adenoma/complicaciones , Adenoma/enzimología , Neoplasias de las Glándulas Suprarrenales/complicaciones , Neoplasias de las Glándulas Suprarrenales/enzimología , Adulto , Dominio Catalítico , Síndrome de Cushing/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Exoma , Humanos , Hidrocortisona/biosíntesis , Persona de Mediana Edad , Mutación , Conformación Proteica , Análisis de Secuencia de ADN
12.
Hum Mutat ; 36(5): 562-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25754594

RESUMEN

The diagnosis of VACTERL syndrome can be elusive, especially in the prenatal life, due to the presence of malformations that overlap those present in other genetic conditions, including the Fanconi anemia (FA). We report on three VACTERL cases within two families, where the two who arrived to be born died shortly after birth due to severe organs' malformations. The suspicion of VACTERL association was based on prenatal ultrasound assessment and postnatal features. Subsequent chromosome breakage analysis suggested the diagnosis of FA. Finally, by next-generation sequencing based on the analysis of the exome in one family and of a panel of Fanconi genes in the second one, we identified novel FANCL truncating mutations in both families. We used ectopic expression of wild-type FANCL to functionally correct the cellular FA phenotype for both mutations. Our study emphasizes that the diagnosis of FA should be considered when VACTERL association is suspected. Furthermore, we show that loss-of-function mutations in FANCL result in a severe clinical phenotype characterized by early postnatal death.


Asunto(s)
Canal Anal/anomalías , Esófago/anomalías , Proteína del Grupo de Complementación L de la Anemia de Fanconi/genética , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Riñón/anomalías , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Mutación , Fenotipo , Columna Vertebral/anomalías , Tráquea/anomalías , Aborto Inducido , Rotura Cromosómica , Diagnóstico Diferencial , Exoma , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Nacimiento Vivo , Masculino , Embarazo , Diagnóstico Prenatal , Índice de Severidad de la Enfermedad
13.
Neurol Sci ; 36(2): 323-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25213617

RESUMEN

Retinal vasculopathy with cerebral leukodystrophy (RVCL) is an adult-onset disorder caused by C-terminal heterozygous frameshift (fs) mutations in the human 3'-5' DNA exonuclease TREX1. Hereditary systemic angiopathy (HSA) is considered a variant of RVCL with systemic involvement of unknown genetic cause, described in a unique family so far. Here we describe the second case of RVCL with systemic involvement, characterized by cerebral calcifications and pseudotumoral lesions, retinopathy, osteonecrosis, renal and hepatic failure. The genetic screening of TREX1 in this patient revealed the novel heterozygous T270fs mutation on the C-terminal region. On the same gene, we found the V235fs mutation, formerly shown in RVCL, in one patient previously reported with HSA. These mutations lead to important alterations of the C-terminal of the protein, with the loss of the transmembrane helix (T270fs) and the insertion of a premature stop codon, resulting in a truncated protein (V235fs). Functional analysis of T270fs-mutated fibroblasts showed a prevalent localization of the protein in the cytosol, rather than in the perinuclear region. RVCL with systemic involvement is an extremely rare condition, whose diagnosis is complex due to multiorgan manifestations, unusual radiological and histopathological findings, not easily attributable to a single disease. It should be suspected in young adults with systemic microangiopathy involving retina, liver, kidney, bones and brain. Here we confirm the causative role played by TREX1 autosomal dominant fs mutations disrupting the C-terminal of the protein, providing a model for the study of stroke in young adults.


Asunto(s)
Exodesoxirribonucleasas/genética , Mutación del Sistema de Lectura , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Fosfoproteínas/genética , Enfermedades de la Retina/genética , Enfermedades Vasculares/genética , Adulto , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/patología , Citosol/metabolismo , Citosol/patología , Análisis Mutacional de ADN , Exodesoxirribonucleasas/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Estudios de Seguimiento , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/tratamiento farmacológico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Microscopía Confocal , Fosfoproteínas/metabolismo , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Tomografía Computarizada por Rayos X , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología
14.
Biochim Biophys Acta ; 1834(1): 197-204, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22999980

RESUMEN

Human prolidase, the enzyme responsible for the hydrolysis of the Xaa-Pro/Hyp peptide bonds, is a key player in the recycling of imino acids during the final stage of protein catabolism and extracellular matrix remodeling. Its metal active site composition corresponding to the maximal catalytic activity is still unknown, although prolidase function is of increasing interest due to the link with carcinogenesis and mutations in prolidase gene cause a severe connective tissue disorder. Here, using EPR and ICP-MS on human recombinant prolidase produced in Escherichia coli (hRecProl), the Mn(II) ion organized in a dinuclear Mn(II)-Mn(II) center was identified as the protein cofactor. Furthermore, thermal denaturation, CD/fluorescence spectroscopy and limited proteolysis revealed that the Mn(II) is required for the proper protein folding and that a protein conformational modification is needed in the transition from apo- to Mn(II)loaded-enzyme. The collected data provided a better knowledge of the human holo-prolidase and, although limited to the recombinant enzyme, the exact identity and organization of the metal cofactor as well as the conformational change required for activity were proven.


Asunto(s)
Dipeptidasas/química , Precursores Enzimáticos/química , Manganeso/química , Espectrometría de Fluorescencia , Catálisis , Dominio Catalítico , Dicroismo Circular , Dipeptidasas/metabolismo , Precursores Enzimáticos/metabolismo , Humanos , Hidrólisis , Manganeso/metabolismo , Desnaturalización Proteica , Pliegue de Proteína
15.
J Cell Biochem ; 115(10): 1779-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24820054

RESUMEN

In several skeletal dysplasias defects in extracellular matrix molecules affect not only the structural and mechanical properties of cartilage, but also the complex network of signaling pathways involved in cell proliferation and differentiation. Sulfated proteoglycans, besides playing an important structural role in cartilage, are crucial in modulating the transport, diffusion, and interactions of growth factors with their specific targets, taking part in the regulation of signaling pathways involved in skeletal development and growth. In this work, we investigated by real time PCR and Western blots of the microdissected growth plate and by immunohistochemistry the molecular basis of reduced chondrocyte proliferation in the growth plate of the dtd mouse, a chondrodysplastic model with defective chondroitin sulfate proteoglycan sulfation of articular and growth plate cartilage. We detected activation of the Wnt pathway, leading to an increase in the non-phosphorylated form of nuclear ß-catenin and subsequent up-regulation of cyclin D1 expression in the G1 phase of the cell cycle. ß-Catenin was further stabilized by up-regulation of Smad3 expression through TGF-ß pathway synergistic activation. We demonstrate that notwithstanding cyclin D1 expression increase, cell cycle progression is compromised in the G1 phase due to reduced phosphorylation of the pocket protein p130 leading to inhibition of transcription factors of the E2F family which are crucial for cell cycle progression and DNA replication. These data, together with altered Indian hedgehox signaling detected previously, explain at the molecular level the reduced chondrocyte proliferation rate of the dtd growth plate leading to reduced skeletal growth.


Asunto(s)
Desarrollo Óseo/genética , Condrocitos/metabolismo , Ciclina D1/biosíntesis , Factores de Transcripción E2F/antagonistas & inhibidores , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Animales , Enfermedades Óseas/genética , Huesos/metabolismo , Huesos/patología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Diferenciación Celular/genética , Proliferación Celular/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Matriz Extracelular/patología , Fase G1/genética , Técnicas de Sustitución del Gen , Placa de Crecimiento/metabolismo , Proteínas Hedgehog/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosforilación , Transducción de Señal/genética , Proteína smad3/biosíntesis , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
16.
J Cell Mol Med ; 17(1): 103-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23205553

RESUMEN

The pathogenesis of age-related macular degeneration (AMD) involves demise of the retinal pigment epithelium and death of photoreceptors. In this article, we investigated the response of human adult retinal pigmented epithelial (ARPE-19) cells to 5-(N,N-hexamethylene)amiloride (HMA), an inhibitor of Na(+) /H(+) exchangers. We observed that ARPE-19 cells treated with HMA are unable to activate 'classical' apoptosis but they succeed to activate autophagy. In the first 2 hrs of HMA exposure, autophagy is efficient in protecting cells from death. Thereafter, autophagy is impaired, as indicated by p62 accumulation, and this protective mechanism becomes the executioner of cell death. This switch in autophagy property as a function of time for a single stimulus is here shown for the first time. The activation of autophagy was observed, at a lesser extent, with etoposide, suggesting that this event might be a general response of ARPE cells to stress and the most important pathway involved in cell resistance to adverse conditions and toxic stimuli.


Asunto(s)
Células Epiteliales/metabolismo , Estrés Oxidativo , Epitelio Pigmentado de la Retina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Amilorida/análogos & derivados , Amilorida/farmacología , Apoptosis , Autofagia , Transporte Biológico Activo , Caspasas/genética , Caspasas/metabolismo , Recuento de Células , Línea Celular , Supervivencia Celular , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Etopósido/farmacología , Expresión Génica , Humanos , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Proteína Sequestosoma-1 , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/metabolismo , Inhibidores de Topoisomerasa/farmacología
17.
J Biol Chem ; 287(26): 22030-42, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22556422

RESUMEN

Diastrophic dysplasia (DTD) is an incurable recessive chondrodysplasia caused by mutations in the SLC26A2 transporter responsible for sulfate uptake by chondrocytes. The mutations cause undersulfation of glycosaminoglycans in cartilage. Studies of dtd mice with a knock-in Slc26a2 mutation showed an unusual progression of the disorder: net undersulfation is mild and normalizing with age, but the articular cartilage degrades with age and bones develop abnormally. To understand underlying mechanisms, we studied newborn dtd mice. We developed, verified and used high-definition infrared hyperspectral imaging of cartilage sections at physiological conditions, to quantify collagen and its orientation, noncollagenous proteins, and chondroitin chains, and their sulfation with 6-µm spatial resolution and without labeling. We found that chondroitin sulfation across the proximal femur cartilage varied dramatically in dtd, but not in the wild type. Corresponding undersulfation of dtd was mild in most regions, but strong in narrow articular and growth plate regions crucial for bone development. This undersulfation correlated with the chondroitin synthesis rate measured via radioactive sulfate incorporation, explaining the sulfation normalization with age. Collagen orientation was reduced, and the reduction correlated with chondroitin undersulfation. Such disorientation involved the layer of collagen covering the articular surface and protecting cartilage from degradation. Malformation of this layer may contribute to the degradation progression with age and to collagen and proteoglycan depletion from the articular region, which we observed in mice already at birth. The results provide clues to in vivo sulfation, DTD treatment, and cartilage growth.


Asunto(s)
Cartílago/metabolismo , Condrocitos/citología , Proteínas de Transporte de Membrana/química , Mutación , Azufre/química , Animales , Proteínas de Transporte de Anión/genética , Colágeno/química , Matriz Extracelular/metabolismo , Fémur/patología , Glicosaminoglicanos/metabolismo , Placa de Crecimiento/metabolismo , Ratones , Ratones Transgénicos , Modelos Estadísticos , Fenotipo , Espectrofotometría Infrarroja/métodos , Transportadores de Sulfato , Sulfatos/química
18.
Apoptosis ; 18(12): 1586-98, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23996609

RESUMEN

Amiloride derivatives are a class of new promising chemotherapeutic agents. A representative member of this family is the sodium-hydrogen antiporter inhibitor HMA (5-(N,N-hexamethylene amiloride), which has been demonstrated to induce cellular intracytosolic acidification and cell death through the apoptotic pathway(s). This work aims at characterizing drug response of human cancer cell lines to HMA. After a first screening revealing that HMA interferes with cancer cell survival, we focused our attention on SW613-B3 colon carcinoma cells, which are intrinsically resistant to a panel of drugs. Searching for the activation of canonical apoptosis, we found that this process was abortive, given that the final steps of this process, i.e. PARP-1 cleavage and DNA ladder, were not detectable. Thus, we addressed caspase-independent paradigms of cell death and we observed that HMA promotes the induction of the LEI/L-DNase II pathway as well as of parthanatos. Finally, we explored the possible impact of autophagy of cell response to HMA, providing the evidence that autophagy is activated in our experimental system. On the whole, our results defined the biochemical reactions triggered by HMA, and elucidated its multiple effects, thus adding further complexity to the intricate network leading to drug resistance.


Asunto(s)
Amilorida/análogos & derivados , Antineoplásicos/farmacología , Neoplasias del Colon/metabolismo , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/metabolismo , Amilorida/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/fisiopatología , Humanos , Intercambiadores de Sodio-Hidrógeno/genética
19.
Stem Cells ; 30(7): 1465-76, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22511244

RESUMEN

The molecular basis underlying the clinical phenotype in bone diseases is customarily associated with abnormal extracellular matrix structure and/or properties. More recently, cellular malfunction has been identified as a concomitant causative factor and increased attention has focused on stem cells differentiation. Classic osteogenesis imperfecta (OI) is a prototype for heritable bone dysplasias: it has dominant genetic transmission and is caused by mutations in the genes coding for collagen I, the most abundant protein in bone. Using the Brtl mouse, a well-characterized knockin model for moderately severe dominant OI, we demonstrated an impairment in the differentiation of bone marrow progenitor cells toward osteoblasts. In mutant mesenchymal stem cells (MSCs), the expression of early (Runx2 and Sp7) and late (Col1a1 and Ibsp) osteoblastic markers was significantly reduced with respect to wild type (WT). Conversely, mutant MSCs generated more colony-forming unit-adipocytes compared to WT, with more adipocytes per colony, and increased number and size of triglyceride drops per cell. Autophagy upregulation was also demonstrated in mutant adult MSCs differentiating toward osteogenic lineage as consequence of endoplasmic reticulum stress due to mutant collagen retention. Treatment of the Brtl mice with the proteasome inhibitor Bortezomib ameliorated both osteoblast differentiation in vitro and bone properties in vivo as demonstrated by colony-forming unit-osteoblasts assay and peripheral quantitative computed tomography analysis on long bones, respectively. This is the first report of impaired MSC differentiation to osteoblasts in OI, and it identifies a new potential target for the pharmacological treatment of the disorder.


Asunto(s)
Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis Imperfecta/metabolismo , Adipogénesis/efectos de los fármacos , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Autofagia/efectos de los fármacos , Western Blotting , Ácidos Borónicos/farmacología , Bortezomib , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citometría de Flujo , Inmunohistoquímica , Ratones , Osteogénesis/efectos de los fármacos , Osteogénesis Imperfecta/patología , Pirazinas/farmacología
20.
Matrix Biol ; 121: 105-126, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37336269

RESUMEN

Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1-/-, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1-/- was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1-/- by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.


Asunto(s)
Colágeno Tipo I , Osteogénesis Imperfecta , Animales , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Osteogénesis/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Colágeno/metabolismo , Chaperonas Moleculares/genética , Mutación , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA