Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(3): 1992-2004, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38221743

RESUMEN

Solid polymer electrolytes (SPEs) have emerged as promising candidates for sodium-based batteries due to their cost-effectiveness and excellent flexibility. However, achieving high ionic conductivity and desirable mechanical properties in SPEs remains a challenge. In this study, we investigated an AB diblock copolymer, PS-PEA(BuImTFSI), as a potential SPE for sodium batteries. We explored binary and ternary electrolyte systems by combining the polymer with salt and [C3mpyr][FSI] ionic liquid (IL) and analyzed their thermal and electrochemical properties. Differential scanning calorimetry revealed phase separation in the polymer systems. The addition of salt exhibited a plasticizing effect localized to the polyionic liquid (PIL) phase, resulting in an increased ionic conductivity in the binary electrolytes. Introducing the IL further enhanced the plasticizing effect, elevating the ionic conductivity in the ternary system. Spectroscopic analysis, for the first time, revealed that the incorporation of NaFSI and IL influences the conformation of TFSI- and weakens the interaction between TFSI- and the polymer. This establishes correlations between anions and Na+, ultimately enhancing the diffusivity of Na ions. The electrochemical properties of an optimized SPE in Na/Na symmetrical cells were investigated, showcasing stable Na plating/stripping at high current densities up to 0.7 mA cm-2, maintaining its integrity at 70 °C. Furthermore, we evaluated the performance of a Na|NaFePO4 cell cycled at different rates (C/10 and C/5) and temperatures (50 and 70 °C), revealing remarkable high-capacity retention and Coulombic efficiency. This study highlights the potential of solvent-free diblock copolymer electrolytes for high-performance sodium-based energy storage systems, contributing to advanced electrolyte materials.

2.
Small ; 20(1): e2304844, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653594

RESUMEN

Fabricating highly efficient and long-life redox bifunctional electrocatalysts is vital for oxygen-related renewable energy devices. To boost the bifunctional catalytic activity of Fe-N-C single-atom catalysts, it is imperative to fine-tune the coordination microenvironment of the Fe sites to optimize the adsorption/desorption energies of intermediates during oxygen reduction/evolution reactions (ORR/OER) and simultaneously avoid the aggregation of atomically dispersed metal sites. Herein, a strategy is developed for fabricating a free-standing electrocatalyst with atomically dispersed Fe sites (≈0.89 wt.%) supported on N, F, and S ternary-doped hollow carbon nanofibers (FeN4 -NFS-CNF). Both experimental and theoretical findings suggest that the incorporation of ternary heteroatoms modifies the charge distribution of Fe active centers and enhances defect density, thereby optimizing the bifunctional catalytic activities. The efficient regulation isolated Fe centers come from the dual confinement of zeolitic imidazole framework-8 (ZIF-8) and polymerized ionic liquid (PIL), while the precise formation of distinct hierarchical three-dimensional porous structure maximizes the exposure of low-doping Fe active sites and enriched heteroatoms. FeN4 -NFS-CNF achieves remarkable electrocatalytic activity with a high ORR half-wave potential (0.90 V) and a low OER overpotential (270 mV) in alkaline electrolyte, revealing the benefit of optimizing the microenvironment of low-doping iron single atoms in directing bifunctional catalytic activity.

3.
Small ; 20(10): e2305769, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875738

RESUMEN

Hybrid solid electrolytes (HSEs), namely mixtures of polymer and inorganic electrolytes, have supposedly improved properties with respect to inorganic and polymer electrolytes. In practice, HSEs often show ionic conductivity below expectations, as the high interface resistance limits the contribution of inorganic electrolyte particles to the charge transport process. In this study, the transport properties of a series of HSEs containing Li(1+ x ) Alx Ti(2- x ) (PO4 )3 (LATP) as Li+ -conducting filler are analyzed. The occurrence of Li+ exchange across the two phases is proved by isotope exchange experiment, coupled with 6 Li/7 Li nuclear magnetic resonance (NMR), and by 2D 6 Li exchange spectroscopy (EXSY), which gives a time constant for Li+ exchange of about 50 ms at 60 °C. Electrochemical impedance spectroscopy (EIS) distinguishes a short-range and a long-range conductivity, the latter decreasing with LATP concentration. LATP particles contribute to the overall conductivity only at high temperatures and at high LATP concentrations. Pulsed field gradient (PFG)-NMR suggests a selective decrease of the anions' diffusivity at high temperatures, translating into a marginal increase of the Li+ transference number. Although the transport properties are only marginally affected, addition of moderate amounts of LATP to polymer electrolytes enhances their mechanical properties, thus improving the plating/stripping performance and processability.

4.
Faraday Discuss ; 248(0): 29-47, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37814915

RESUMEN

Sodium-air batteries (SABs) are receiving considerable attention for the development of next generation battery alternatives due to their high theoretical energy density (up to 1105 W h kg-1). However, most of the studies on this technology are still based on organic solvents; in particular, diglyme, which is highly flammable and toxic for the unborn child. To overcome these safety issues, this research investigates the first use of a branched ether solvent 1,2,3-trimethoxypropane (TMP) as an alternative electrolyte to diglyme for SABs. Through this work, the reactivity of the central tertiary carbon in TMP towards bare sodium metal was identified, while the addition of N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C4mpyr][TFSI]) as a co-solvent proved to be an effective strategy to limit the reactivity. Moreover, a Na-ß-alumina disk was employed for anode protection, to separate the TMP-based electrolyte from the sodium metal. The new cell design resulted in improved cell performance: discharge capacities of up to 1.92 and 2.31 mA h cm-2 were achieved for the 16.6 mol% NaTFSI in TMP and 16.6 mol% NaTFSI in TMP/[C4mpyr][TFSI] compositions, respectively. By means of SEM, Raman and 23Na NMR techniques, NaO2 cubes were identified to be the major discharge product for both electrolyte compositions. Moreover, the hybrid electrolyte was shown to hinder the formation of side-products during discharge - the ratio of NaO2 to side-products in the hybrid electrolyte was 2.4 compared with 0.8 for the TMP-based electrolyte - and a different charge mechanism for the dissolution of NaO2 cubes for each electrolyte was observed. The findings of this work demonstrate the high potential of TMP as a base solvent for SABs, and the importance of careful electrolyte composition design in order to step towards greener and less toxic batteries.

5.
Phys Chem Chem Phys ; 26(21): 15742-15750, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38768338

RESUMEN

A set of ionic quasi-block copolymers were investigated to determine the effects of their composition and structure on their performance in their application as solid-state battery electrolytes. Diffusion and electrochemical tests have shown that these new quasi-block electrolytes have comparable performance to traditional block copolymers reaching ionic conductivities of 3.8 × 10-4 S cm-1 and lithium-ion diffusion of 4.6 × 10-12 m2 s-1 at 80 °C. It was illustrated that the mechanical properties of each quasi-block electrolyte are highly dependent on the order of monomer addition in polymer synthesis while the phase morphology hints at each of the quasi-blocks' unique compositional make up.

6.
Nano Lett ; 23(12): 5555-5561, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37315026

RESUMEN

Ion adsorption within nanopores is involved in numerous applications. However, a comprehensive understanding of the fundamental relationship between in-pore ion concentration and pore size, particularly in the sub-2 nm range, is scarce. This study investigates the ion-species-dependent concentration in multilayered graphene membranes (MGMs) with tunable nanoslit sizes (0.5-1.6 nm) using nuclear magnetic resonance and computational simulations. For Na+-based electrolytes in MGMs, the concentration of anions in graphene nanoslits increases in correlation with their chaotropic properties. As the nanoslit size decreases, the concentration of chaotropic ion (BF4-) increases, whereas the concentration of kosmotropic ions (Cit3-, PO43-) and other ions (Ac-, F-) decreases or changes slightly. Notably, anions remain more concentrated than counter Na+ ions, leading to electroneutrality breakdown and unipolar anion packing in MGMs. A continuum modeling approach, integrating molecular dynamic simulation with the Poisson-Boltzmann model, elucidates these observations by considering water-mediated ion-graphene non-electrostatic interactions and charge screening from graphene walls.

7.
Nat Mater ; 21(10): 1175-1182, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35902749

RESUMEN

Polymer electrolytes provide a safe solution for future solid-state high-energy-density batteries. Materials that meet the simultaneous requirement of high ionic conductivity and high transference number remain a challenge, in particular for new battery chemistries beyond lithium such as Na, K and Mg. Herein, we demonstrate the versatility of a polymeric ionic liquid (PolyIL) as a polymer solvent to achieve this goal for both Na and K. Using molecular simulations, we predict and elucidate fast alkali metal ion transport in PolyILs through a structural diffusion mechanism in a polymer-in-salt environment, facilitating a high metal ion transference number simultaneously. Experimental validation of these computationally designed Na and K polymer electrolytes shows good ionic conductivities up to 1.0 × 10-3 S cm-1 at 80 °C and a Na+ transference number of ~0.57. An electrochemical cycling test on a Na∣2:1 NaFSI/PolyIL∣Na symmetric cell also demonstrates an overpotential of 100 mV at a current density of 0.5 mA cm-2 and stable long-term Na plating/stripping performance of more than 100 hours. PolyIL-based polymer-in-salt strategies for new solid-state electrolytes thus offer an alternative route to design high-performance next-generation sustainable battery chemistries.

8.
Nat Mater ; 21(2): 228-236, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34795402

RESUMEN

Zwitterionic materials can exhibit unique characteristics and are highly tunable by variation to the covalently bound cationic and anionic moieties. Despite the breadth of properties and potential uses reported to date, for electrolyte applications they have thus far primarily been used as additives or for making polymer gels. However, zwitterions offer intriguing promise as electrolyte matrix materials that are non-volatile and charged but non-migrating. Here we report a family of zwitterions that exhibit molecular disorder and plasticity, which allows their use as a solid-state conductive matrix. We have characterized the thermal, morphological and structural properties of these materials using techniques including differential scanning calorimetry, scanning electron microscopy, solid-state NMR and X-ray crystallography. We report the physical and transport properties of zwitterions combined with lithium salts and a lithium-functionalized polymer to form solid or high-salt-content liquid electrolytes. We demonstrate that the zwitterion-based electrolytes can allow high target ion transport and support stable lithium metal cell cycling. The ability to use disordered zwitterionic materials as electrolyte matrices for high target ion conduction, coupled with an extensive scope for varying the chemical and physical properties, has important implications for the future design of non-volatile materials that bridge the choice between traditional molecular and ionic solvent systems.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Conductividad Eléctrica , Electrólitos/química , Litio/química , Solventes/química
9.
Nat Mater ; 21(9): 1057-1065, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35788569

RESUMEN

Rechargeable batteries paired with sodium metal anodes are considered to be one of the most promising high-energy and low-cost energy-storage systems. However, the use of highly reactive sodium metal and the formation of sodium dendrites during battery operation have caused safety concerns, especially when highly flammable liquid electrolytes are used. Here we design and develop solvent-free solid polymer electrolytes (SPEs) based on a perfluoropolyether-terminated polyethylene oxide (PEO)-based block copolymer for safe and stable all-solid-state sodium metal batteries. Compared with traditional PEO SPEs, our results suggest that block copolymer design allows for the formation of self-assembled nanostructures leading to high storage modulus at elevated temperatures with the PEO domains providing transport channels even at high salt concentration (ethylene oxide/sodium = 8/2). Moreover, it is demonstrated that the incorporation of perfluoropolyether segments enhances the Na+ transference number of the electrolyte to 0.46 at 80 °C and enables a stable solid electrolyte interface. The new SPE exhibits highly stable symmetric cell-cycling performance at high current density (0.5 mA cm-2 and 1.0 mAh cm-2, up to 1,000 h). Finally, the assembled all-solid-state sodium metal batteries demonstrate outstanding capacity retention, long-term charge/discharge stability (Coulombic efficiency, 99.91%; >900 cycles with Na3V2(PO4)3 cathode) and good capability with high loading NaFePO4 cathode (>1 mAh cm-2).

10.
Phys Chem Chem Phys ; 25(40): 27718-27730, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37814518

RESUMEN

High-voltage sodium batteries are an appealing solution for economical energy storage applications. Currently available electrolyte materials have seen limited success in such applications therefore the identification of high-performing and safer alternatives is urgently required. Herein we synthesise six novel ionic liquids derived from two fluoroborate anions which have shown great promise in recent battery literature. This study reports for the first time the electrochemically applicable room-temperature ionic liquid (RTIL) N-ethyl-N,N,N-tris(2-(2-methoxyethoxy)ethyl)ammonium (tetrakis)hexafluoroisopropoxy borate ([N2(2O2O1)3][B(hfip)4]). The RTIL shows promising physical properties with a very low glass-transition at -73 °C and low viscosity. The RTIL exhibits an electrochemical window of 5.3 V on a glassy carbon substrate which enables high stability electrochemical cycling of sodium in a 3-electrode system. Of particular note is the strong passivation behaviour of [N2(2O2O1)3][B(hfip)4] on aluminium current-collector foil at potentials as high as 7 V (vs. Na+/Na) which is further improved with the addition of 50 mol% Na[FSI]. This study shows [B(hfip)4]- ionic liquids have the desired physical and electrochemical properties for high-voltage sodium electrolytes.

11.
Molecules ; 28(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513439

RESUMEN

Corrosion is a significant problem that negatively affects a wide range of structures and buildings, resulting in their premature failure, which causes safety hazards and significant economic loss. For this reason, various approaches have been developed to prevent or minimize the effects of corrosion, including corrosion inhibitors. Recently, biobased inhibitors have gained a certain interest thanks to their unique properties, eco-friendliness, and availability. Among all the green precursors, lignin is of particular interest, being a natural polymer that can be obtained from different sources including agricultural residues. Corrosion inhibitors based on ionic liquids (ILs) also present interesting advantages, such as low volatility and high tunability. If combined, it may be possible to obtain new lignin-based ILs that present interesting corrosion inhibitor properties. In this work, the inhibition properties of new biobased lignin ILs and the influence of anions and cations on the corrosion of mild steel in an aqueous solution of 0.01 M NaCl were investigated by Potentiostatic Electrochemical Impedance Spectroscopy (PEIS) and Cyclic Potentiodynamic Polarization (CPP). Moreover, the surface was characterized using SEM, EDS, and optical profilometry. The IL choline syringate showed promising performance, reducing the corrosion current after 24 h immersion in 0.01 M sodium chloride, from 1.66 µA/cm2 for the control to 0.066 µA/cm2 with 10 mM of the IL present. In addition to its performance as a corrosion inhibitor, both components of this IL also meet or exceed the current additional desired properties of such compounds, being readily available, and well tolerated in organisms and the environment.

12.
J Am Chem Soc ; 144(22): 9806-9816, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35638261

RESUMEN

Polymer electrolytes (PEs) with excellent flexibility, processability, and good contact with lithium metal (Li°) anodes have attracted substantial attention in both academic and industrial settings. However, conventional poly(ethylene oxide) (PEO)-based PEs suffer from a low lithium-ion transference number (TLi+), leading to a notorious concentration gradient and internal cell polarization. Here, we report two kinds of highly lithium-ion conductive and solvent-free PEs using the benzene-based lithium salts, lithium (benzenesulfonyl)(trifluoromethanesulfonyl)imide (LiBTFSI) and lithium (2,4,6-triisopropylbenzenesulfonyl)(trifluoromethanesulfonyl)imide (LiTPBTFSI), which show significantly improved TLi+ and selective lithium-ion conductivity. Using molecular dynamics simulations, we pinpoint the strong π-π stacking interaction between pairs of benzene-based anions as the cause of this improvement. In addition, we show that Li°âˆ¥Li° and Li°âˆ¥LiFePO4 cells with the LiBTFSI/PEO electrolytes present enhanced cycling performance. By considering π-π stacking interactions as a new molecular-level design route of salts for electrolyte, this work provides an efficient and facile novel strategy for attaining highly selective lithium-ion conductive PEs.

13.
Nat Mater ; 20(9): 1255-1263, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33941912

RESUMEN

A critical challenge for next-generation lithium-based batteries lies in development of electrolytes that enable thermal safety along with the use of high-energy-density electrodes. We describe molecular ionic composite electrolytes based on an aligned liquid crystalline polymer combined with ionic liquids and concentrated Li salt. This high strength (200 MPa) and non-flammable solid electrolyte possesses outstanding Li+ conductivity (1 mS cm-1 at 25 °C) and electrochemical stability (5.6 V versus Li|Li+) while suppressing dendrite growth and exhibiting low interfacial resistance (32 Ω cm2) and overpotentials (≤120 mV at 1 mA cm-2) during Li symmetric cell cycling. A heterogeneous salt doping process modifies a locally ordered polymer-ion assembly to incorporate an inter-grain network filled with defective LiFSI and LiBF4 nanocrystals, strongly enhancing Li+ conduction. This modular material fabrication platform shows promise for safe and high-energy-density energy storage and conversion applications, incorporating the fast transport of ceramic-like conductors with the superior flexibility of polymer electrolytes.

14.
Phys Chem Chem Phys ; 24(45): 27772-27782, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36349726

RESUMEN

Redox-active materials play a primary role in the high-performance electrochemical device research field. Their bulk ion dynamics and performances can be studied using different electrochemical analysis methods, but their molecular level interactions and dynamics on which these depend are often not well understood. Here, nuclear magnetic resonance (NMR) relaxation and double-stimulated echo pulsed field gradient (PFG) techniques have been used to gain insights into the molecular level interactions, exchange dynamics and self-diffusivity of the various species present in a cobalt-based redox active electrolyte system used for thermo-electrochemical applications, including how these factors depend on the oxidation state and concentration of the redox species. A series of liquid electrolyte samples consisting of a Co2+/3+(bpy)3(NTf2)2/3 redox couple (where bpy = bipyridyl and NTf2 = bis(trifluoromethanesulfonyl)imide) in 3-methoxypropionitrile (MPN) have been investigated using NMR as well as viscosity and conductivity measurements carried out over a temperature range 293 to 353 K. The results provide insights into the mobilities and interactions between the various species present, including the exchange of the NTf2- anions between the solvation shells of the Co(bpy)3 species. Such information will be useful in understanding the behaviour of these electrolytes in devices such as thermo-electrochemical cells.

15.
Phys Chem Chem Phys ; 24(27): 16712-16723, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35770687

RESUMEN

Hexamethylguanidinium bis(fluorosulfonyl)imide ([HMG][FSI]) has recently been shown to be a promising solid state organic ionic plastic crystal with potential application in advanced alkali metal batteries. This study provides a detailed exploration of the structural and dynamic behavior of [HMG][FSI] mixtures with the sodium salt NaFSI across the whole composition range from 0 to 100 mol%. All mixtures are solids at room temperature. A combination of differential scanning calorimetry (DSC), synchrotron X-ray diffraction (SXRD) and multinuclear solid state NMR spectroscopy is employed to identify a partial phase diagram. The 25 mol% NaFSI/75 mol% [HMG][FSI] composition presents as the eutectic composition with the eutectic transition temperature at 44 °C. Both DSC and SXRD strongly support the formation of a new compound near 50 mol% NaFSI. Interestingly, the 53 mol% NaFSI [HMG][FSI] composition was consistently found to display features of a pure compound whereas the 50 mol% materials always showed a second phase. Many of the compositions examined showed unusual metastable behaviour. Moreover, the ion dynamics as determined by NMR, indicate that the Na+ and FSI- anions are signifcantly more mobile than the HMG cation in the liquid state (including the metastable state) for these materials.

16.
Biofouling ; 38(3): 207-222, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35345940

RESUMEN

Microbiologically influenced corrosion and biofouling of steels depend on the adsorption of a conditioning film and subsequent attachment of bacteria. Extracellular deoxyribonucleic acid (eDNA) and amino acids are biologically critical nutrient sources and are ubiquitous in marine environments. However, little is known about their role as conditioning film molecules in early biofilm formation on metallic surfaces. The present study evaluated the capacity for eDNA and amino acids to form a conditioning film on carbon steel (CS), and subsequently, the influence of these conditioning films on bacterial attachment using a marine bacterial strain. Conditioning films of eDNA or amino acids were formed on CS through physical adsorption. Biochemical and microscopic analysis of eDNA conditioning, amino acid conditioning and control CS surfaces demonstrated that organic conditioning surfaces promoted bacterial attachment. The results highlight the importance of conditioning the surface in initial bacterial attachment to steel.


Asunto(s)
Adhesión Bacteriana , Shewanella , Aminoácidos , Biopelículas , Carbono , Corrosión , Metales , Shewanella/genética , Acero/química , Propiedades de Superficie
17.
Nat Mater ; 19(10): 1096-1101, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32367080

RESUMEN

Non-uniform metal deposition and dendrite formation in high-density energy storage devices reduces the efficiency, safety and life of batteries with metal anodes. Superconcentrated ionic-liquid electrolytes (for example 1:1 ionic liquid:alkali ion) coupled with anode preconditioning at more negative potentials can completely mitigate these issues, and therefore revolutionize high-density energy storage devices. However, the mechanisms by which very high salt concentration and preconditioning potential enable uniform metal deposition and prevent dendrite formation at the metal anode during cycling are poorly understood, and therefore not optimized. Here, we use atomic force microscopy and molecular dynamics simulations to unravel the influence of these factors on the interface chemistry in a sodium electrolyte, demonstrating how a molten-salt-like structure at the electrode surface results in dendrite-free metal cycling at higher rates. Such a structure will support the formation of a more favourable solid electrolyte interphase, accepted as being a critical factor in stable battery cycling. This new understanding will enable engineering of efficient anode electrodes by tuning the interfacial nanostructure via salt concentration and high-voltage preconditioning.

18.
Phys Chem Chem Phys ; 23(5): 3429-3440, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33506849

RESUMEN

Recently ionic liquids (ILs) have shown promising tribological properties as additives in base oils; however their lack of miscibility is a problem, with very few ILs being compatible with lubricant oil formulation (non-polar base oils). This work shows the use of a surfactant which can increase the range of available ILs that are stable when added to these base oils. In this study a range of tetraalkylphosphonium based ILs were successfully blended with a PIBSA surfactant and these blends were all shown to be miscible in a non-polar base oil. Without the PIBSA a number of the ILs were immiscible in the base oil. The tribological properties of IL additives that are miscible in the non-polar base oils were compared with and without the surfactant present and showed that the presence of the PIBSA did not affect the IL additives performance. Additionally, two ILs that are immiscible without the surfactant showed the greatest reduction in friction and wear. SEM analysis showed an increase in the amount of phosphorus on the wear surface when the surfactant was present, suggesting that the PIBSA enhances tribo-film formation. NMR, FTIR, DLS and TEM investigations into the interactions between the PIBSA and the ILs showed that the improved stability in the base oil may be due to intermolecular interactions such as hydrophobic, van der Waals, dipole-dipole or ion-dipole that reduce the size distribution of the previously immiscible ILs. The presence of the ILs was also shown to improve the resistance to corrosion. Prior to this study the ILs available for use as lubricant additives was severely limited and compromised, mostly based upon their miscibility. Here the use of PIBSA to increase the range of ILs available as lubricant additives has vastly improved the promise that they represent in this area.

19.
Acc Chem Res ; 52(3): 686-694, 2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30801170

RESUMEN

Electrolytes based on organic solvents used in current Li-ion batteries are not compatible with the next-generation energy storage technologies including those based on Li metal. Thus, there has been an increase in research activities investigating solid-state electrolytes, ionic liquids (ILs), polymers, and combinations of these. This Account will discuss some of the work from our teams in these areas. Similarly, other metal-based technologies including Na, Mg, Zn, and Al, for example, are being considered as alternatives to Li-based energy storage. However, the materials research required to effectively enable these alkali metal based energy storage applications is still in its relative infancy. Once again, electrolytes play a significant role in enabling these devices, and research has for the most part progressed along similar lines to that in advanced lithium technologies. Some of our recent contributions in these areas will also be discussed, along with our perspective on future directions in this field. For example, one approach has been to develop single-ion conductors, where the anion is tethered to the polymer backbone, and the dominant charge conductor is the lithium or sodium countercation. Typically, these present with low conductivity, whereas by using a copolymer approach or incorporating bulky quaternary ammonium co-cations, the effective charge separation is increased thus leading to higher conductivities and greater mobility of the alkali metal cation. This has been demonstrated both experimentally and via computer simulations. Further enhancements in ion transport may be possible in the future by designing and tethering more weakly associating anions to the polymer backbone. The second approach considers ion gels or composite polymer electrolytes where a polymerized ionic liquid is the matrix that provides both mechanical robustness and ion conducting pathways. The block copolymer approach is also demonstrated, in this case, to simultaneously provide mechanical properties and high ionic conductivity when used in combination with ionic-liquid electrolytes. The ultimate electrolyte material that will enable all high-performance solid-state batteries will have ion transport decoupled from the mechanical properties. While inorganic conductors can achieve this, their rigid, brittle nature creates difficulties. On the other hand, ionic polymers and their composites provide a rich area of chemistry to design and tune high ionic conductivity together with ideal mechanical properties.

20.
Angew Chem Int Ed Engl ; 59(2): 534-538, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31774206

RESUMEN

Lithium-ion batteries (LIBs) have become ubiquitous power sources for small electronic devices, electric vehicles, and stationary energy storage systems. Despite the success of LIBs which is acknowledged by their increasing commodity market, the historical evolution of the chemistry behind the LIB technologies is laden with obstacles and yet to be unambiguously documented. This Viewpoint outlines chronologically the most essential findings related to today's LIBs, including commercial electrode and electrolyte materials, but furthermore also depicts how the today popular and widely emerging solid-state batteries were instrumental at very early stages in the development of LIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA