Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nature ; 588(7838): 424-428, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33328663

RESUMEN

Exotic states such as topological insulators, superconductors and quantum spin liquids are often challenging or impossible to create in a single material1-3. For example, it is unclear whether topological superconductivity, which has been suggested to be a key ingredient for topological quantum computing, exists in any naturally occurring material4-9. The problem can be circumvented by deliberately selecting the combination of materials in heterostructures so that the desired physics emerges from interactions between the different components1,10-15. Here we use this designer approach to fabricate van der Waals heterostructures that combine a two-dimensional (2D) ferromagnet with a superconductor, and we observe 2D topological superconductivity in the system. We use molecular-beam epitaxy to grow 2D islands of ferromagnetic chromium tribromide16 on superconducting niobium diselenide. We then use low-temperature scanning tunnelling microscopy and spectroscopy to reveal the signatures of one-dimensional Majorana edge modes. The fabricated 2D van der Waals heterostructure provides a high-quality, tunable system that can be readily integrated into device structures that use topological superconductivity. The layered heterostructures can be readily accessed by various external stimuli, potentially allowing external control of 2D topological superconductivity through electrical17, mechanical18, chemical19 or optical means20.

2.
Angew Chem Int Ed Engl ; 63(18): e202401027, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38415373

RESUMEN

The incorporation of Si atoms into organic compounds significantly increases a variety of functionality, facilitating further applications. Recently, on-surface synthesis was introduced into organosilicon chemistry as 1,4-disilabenzene bridged nanostructures were obtained via coupling between silicon atoms and brominated phenyl groups at the ortho position on Au(111). Here, we demonstrate a high generality of this strategy via syntheses of silole derivatives and nanoribbon structures with eight-membered sila-cyclic rings from dibrominated molecules at the bay and peri positions on Au(111), respectively. Their structures and electronic properties were investigated by a combination of scanning tunneling microscopy/spectroscopy and density functional theory calculations. This work demonstrates a great potential to deal with heavy group 14 elements in on-surface silicon chemistry.

3.
Angew Chem Int Ed Engl ; : e202411893, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039830

RESUMEN

Triangulenes as neutral radicals are becoming promising candidates for future applications such as spintronics and quantum technologies. To extend the potential of the advanced materials, it is of importance to control their electronic and magnetic properties by multiple graphitic nitrogen doping. Here, we synthesize triaza[5]triangulene on Au(111) by cyclodehydrogenation, and its derivatives by cleaving C-N bonds. Bond-resolved scanning tunneling microscopy and scanning tunneling spectroscopy provided detailed structural information and evidence for open-shell singlet ground state. The antiferromagnetic arrangement of the spins in positively doped triaza[5]triangulene was further confirmed by density function theory calculations. The key aspect of triangulenes with multiple graphitic nitrogen is the extra pz electrons composing the π orbitals, favoring charge transfer to the substrate and changing their low-energy excitations. Our findings pave the way for the exploration of exotic low-dimensional quantum phases of matter in heteroatom doped organic systems.

4.
Phys Chem Chem Phys ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37466286

RESUMEN

The adsorption of water on calcite(104) is investigated in ultra-high vacuum by density functional theory (DFT) and non-contact atomic force microscopy (NC-AFM) in the coverage regime of up to one monolayer (ML). DFT calculations reveal a clear preference for water to adsorb on the bulk-like carbonate group rows of the (2 × 1) reconstructed surface. Additionally, an apparent water attraction due to carbonate group reorientation suggest island formation for water adsorbed on the reconstructed carbonate group rows. Experimentally, water is found to exclusively occupy specific positions within the (2 × 1) unit cell up to 0.5 ML, to form islands at coverage between 0.5 and 1 ML, and to express a (1 × 1) structure at coverage of a full monolayer.

5.
J Am Chem Soc ; 144(44): 20227-20231, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36301687

RESUMEN

The existence of water dimers in equilibrium water vapor at room temperature and their anomalous properties revealed by recent studies suggest the benchmark role of water dimers in both experiment and theory. However, there has been a limited observation of individual water dimers due to the challenge of water separation and generation at the single-molecule level. Here, we achieve real-space imaging of individual confined water dimers embedded inside a self-assembled layer of a DNA base, adenine, on Ag(111). The hydration of the adenine layers by these water dimers causes a local surface chiral inversion in such a way that the neighboring homochiral adenine molecules become heterochiral after hydration, resulting in a mismatched hydrogen-bond pattern between neighboring adenine molecules. Furthermore, the mutual influence between the adenine superstructure and these dynamic confined water dimers is corroborated by theoretical simulation and calculations. The observation of single confined water dimers offers an unprecedented approach to studying the fundamental forms of water clusters and their interaction with the local chemical environment.


Asunto(s)
Adenina , ADN , Enlace de Hidrógeno , Dimerización , ADN/química , Adenina/química , Polímeros
6.
J Am Chem Soc ; 142(26): 11363-11369, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32413264

RESUMEN

Heterocyclic [8]circulenes are an important class of polycyclic aromatic hydrocarbon molecules because of their unique structural properties and promising applications. However, the synthesis of heterocyclic [8]circulenes is still limited and thus is an important synthetic challenge. Here we describe the first example of a π-extended diaza[8]circulene surrounded by and fused with six hexagons and two pentagons, which was successfully synthesized only by a combined in-solution and on-surface synthetic strategy. State-of-the-art scanning tunneling microscopy with a CO-functionalized tip and density functional theory calculations revealed its planar conformation and unique electronic structure.

7.
Phys Chem Chem Phys ; 22(11): 6109-6114, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32031553

RESUMEN

On-surface synthesis provides a very promising strategy for creating stable functional structures on surfaces. In the past, classical reactions known from solution synthesis have been successfully transferred onto a surface. Due to the presence of the surface, on-surface synthesis provides the potential of directing the reaction pathway in a manner that might not be accessible in classical solution synthesis. In this work, we present evidence for an acetylene polymerization from a terminal alkyne monomer deposited onto calcite (10.4). Strikingly, although the dimer forms on the surface as well, we find no indication for diacetylene polymerization. This is in sharp contrast to what is observed when directly depositing the dimers on the surface. The different pathways are linked to the specific arrangement of the dimers on the surface. When forming stripes along the [-4-21] direction, the diacetylene polymerization is prohibited, while when arranged in stripes aligned along the [010] direction, the dimers can undergo diacetylene polymerization. Our work thus constitutes a demonstration for controlling the specific reaction pathway in on-surface synthesis by the presence of the surface.

8.
Nano Lett ; 18(9): 5596-5602, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30134111

RESUMEN

Two-dimensional (2D) metal-organic frameworks (MOFs) have been recently proposed as a flexible material platform for realizing exotic quantum phases including topological and anomalous quantum Hall insulators. Experimentally, direct synthesis of 2D MOFs has been essentially confined to metal substrates, where the strong interaction with the substrate masks the intrinsic electronic properties of the MOF. In addition to electronic decoupling from the underlying metal support, synthesis on weakly interacting substrates (e.g., graphene) would enable direct realization of heterostructures of 2D MOFs with inorganic 2D materials. Here, we demonstrate synthesis of 2D honeycomb MOFs on epitaxial graphene substrate. Using low-temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM) complemented by density-functional theory (DFT) calculations, we show the formation of a 2D band structure in the MOF decoupled from the substrate. These results open the experimental path toward MOF-based designer electronic materials with complex, engineered electronic structures.

9.
Nano Lett ; 17(7): 4083-4089, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28650174

RESUMEN

The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH)2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.

10.
Langmuir ; 33(1): 125-129, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27960056

RESUMEN

Solid-liquid interfaces are decisive for a wide range of natural and technological processes, including fields as diverse as geochemistry and environmental science as well as catalysis and corrosion protection. Dynamic atomic force microscopy nowadays provides unparalleled structural insights into solid-liquid interfaces, including the solvation structure above the surface. In contrast, chemical identification of individual interfacial atoms still remains a considerable challenge. So far, an identification of chemically alike atoms in a surface alloy has only been demonstrated under well-controlled ultrahigh vacuum conditions. In liquids, the recent advent of three-dimensional force mapping has opened the potential to discriminate between anionic and cationic surface species. However, a full chemical identification will also include the far more challenging situation of alike interfacial atoms (i.e., with the same net charge). Here we demonstrate the chemical identification capabilities of dynamic atomic force microscopy at solid-liquid interfaces by identifying Ca and Mg cations at the dolomite-water interface. Analyzing site-specific vertical positions of hydration layers and comparing them with molecular dynamics simulations unambiguously unravels the minute but decisive difference in ion hydration and provides a clear means for telling calcium and magnesium ions apart. Our work, thus, demonstrates the chemical identification capabilities of dynamic AFM at the solid-liquid interface.

11.
Nanotechnology ; 27(41): 415709, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27609045

RESUMEN

Frequency modulation atomic force microscopy (FM-AFM) experiments were performed on the calcite (10[Formula: see text]4) surface in pure water, and a detailed analysis was made of the 2D images at a variety of frequency setpoints. We observed eight different contrast patterns that reproducibly appeared in different experiments and with different measurement parameters. We then performed systematic free energy calculations of the same system using atomistic molecular dynamics to obtain an effective force field for the tip-surface interaction. By using this force field in a virtual AFM simulation we found that each experimental contrast could be reproduced in our simulations by changing the setpoint, regardless of the experimental parameters. This approach offers a generic method for understanding the wide variety of contrast patterns seen on the calcite surface in water, and is generally applicable to AFM imaging in liquids.

12.
Phys Rev Lett ; 114(9): 095502, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25793825

RESUMEN

We study the effect of atomic-scale surface-lubricant interactions on nanoscale boundary-lubricated friction by considering two example surfaces-hydrophilic mica and hydrophobic graphene-confining thin layers of water in molecular dynamics simulations. We observe stick-slip dynamics for thin water films confined by mica sheets, involving periodic breaking-reforming transitions of atomic-scale capillary water bridges formed around the potassium ions of mica. However, only smooth sliding without stick-slip events is observed for water confined by graphene, as well as for thicker water layers confined by mica. Thus, our results illustrate how atomic-scale details affect the wettability of the confining surfaces and consequently control the presence or absence of stick-slip dynamics in nanoscale friction.


Asunto(s)
Silicatos de Aluminio/química , Grafito/química , Lubricantes/química , Modelos Químicos , Nanotecnología/métodos , Agua/química , Fricción , Interacciones Hidrofóbicas e Hidrofílicas , Lubrificación , Simulación de Dinámica Molecular , Propiedades de Superficie , Humectabilidad
13.
Phys Rev Lett ; 113(10): 106103, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25238371

RESUMEN

We study a crystalline epitaxial alumina thin film with the characteristics of a spinel-type transition Al2O3(100) surface by using atom-resolved noncontact atomic force microscopy and density functional theory. It is shown that the films are terminated by an Al-O layer rich in Al vacancies, exhibiting a strong preference for surface hydroxyl group formation in two configurations. The transition alumina films are crystalline and perfectly stable in ambient atmospheres, a quality which is expected to open the door to new fundamental studies of the surfaces of transition aluminas.

14.
Phys Chem Chem Phys ; 16(33): 17437-46, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-24733455

RESUMEN

The dissolution of NaCl has been systematically investigated by employing ab initio molecular dynamics (AIMD) on different NaCl nanocrystals as well as on a surface system immersed in water. We discovered a complex dissolution process simultaneously involving multiple ions initiated at the corner sites of the crystal. Our simulations indicated a difference in the dissolution rates of sodium and chlorine. While sodiums readily became partially solvated, chlorines more frequently transitioned into the fully solvated state leading to an overall greater dissolution rate for Cl. We determined that this difference arises due to faster water mediated elongations of individual ionic bonds to Na, but a significantly slower process for the last bond in comparison to Cl. In an attempt to investigate this phenomenon further, we performed metadynamics based free energy simulations on a surface slab presenting corner sites similar to those in cubic crystals, aiming to extract the dissolution free energy profile of corner ions. In qualitative agreement with the nanocrystal simulations, this revealed a shallower first free energy minimum for Na, but no statistically significant difference in the corresponding barriers and inconclusive results for the latter stage. Finally, simulations of smaller NaCl crystals illustrated how dissolution proceeds beyond the point of crystal lattice collapse, highlighting the strength of solvated ion interactions.

15.
Phys Chem Chem Phys ; 16(41): 22545-54, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25227553

RESUMEN

We have used ab initio molecular dynamics (AIMD) simulations to study the interaction of water with the NaCl surface. As expected, we find that water forms several ordered hydration layers, with the first hydration layer having water molecules aligned so that oxygen atoms are on average situated above Na sites. In an attempt to understand the dissolution of NaCl in water, we have then combined AIMD with constrained barrier searches, to calculate the dissolution energetics of Na(+) and Cl(-) ions from terraces, steps, corners and kinks of the (100) surface. We find that the barrier heights show a systematic reduction from the most stable flat terrace sites, through steps to the smallest barriers for corner and kink sites. Generally, the barriers for removal of Na(+) ions are slightly lower than for Cl(-) ions. Finally, we use our calculated barriers in a Kinetic Monte Carlo as a first order model of the dissolution process.

16.
ACS Nano ; 18(17): 11130-11138, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644571

RESUMEN

Scanning tunneling microscopy (STM) with a functionalized tip apex reveals the geometric and electronic structures of a sample within the same experiment. However, the complex nature of the signal makes images difficult to interpret and has so far limited most research to planar samples with a known chemical composition. Here, we present automated structure discovery for STM (ASD-STM), a machine learning tool for predicting the atomic structure directly from an STM image, by building upon successful methods for structure discovery in noncontact atomic force microscopy (nc-AFM). We apply the method on various organic molecules and achieve good accuracy on structure predictions and chemical identification on a qualitative level while highlighting future development requirements for ASD-STM. This method is directly applicable to experimental STM images of organic molecules, making structure discovery available for a wider scanning probe microscopy audience outside of nc-AFM. This work also allows more advanced machine learning methods to be developed for STM structure discovery.

17.
J Chem Theory Comput ; 20(5): 2297-2312, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408381

RESUMEN

Here, we present a study combining Bayesian optimization structural inference with the machine learning interatomic potential Neural Equivariant Interatomic Potential (NequIP) to accelerate and enable the study of the adsorption of the conformationally flexible lignocellulosic molecules ß-d-xylose and 1,4-ß-d-xylotetraose on a copper surface. The number of structure evaluations needed to map out the relevant potential energy surfaces are reduced by Bayesian optimization, while NequIP minimizes the time spent on each evaluation, ultimately resulting in cost-efficient and reliable sampling of large systems and configurational spaces. Although the applicability of Bayesian optimization for the conformational analysis of the more flexible xylotetraose molecule is restricted by the sample complexity bottleneck, the latter can be effectively bypassed with external conformer search tools, such as the Conformer-Rotamer Ensemble Sampling Tool, facilitating the subsequent lower-dimensional global minimum adsorption structure determination. Finally, we demonstrate the applicability of the described approach to find adsorption structures practically equivalent to the density functional theory counterparts at a fraction of the computational cost.

18.
Nanoscale ; 16(7): 3462-3473, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38214028

RESUMEN

The properties of clouds, such as their reflectivity or their likelihood to precipitate, depend on whether the cloud droplets are liquid or frozen. Thus, understanding the ice nucleation mechanisms is essential for the development of reliable climate models. Most ice nucleation in the atmosphere is heterogeneous, i.e., caused by ice nucleating particles such as mineral dusts or organic aerosols. In this regard, K-feldspar minerals have attracted great interest recently as they have been identified as one of the most important ice nucleating particles under mixed-phase cloud conditions. The mechanism by which feldspar minerals facilitate ice nucleation remains, however, elusive. Here, we present atomic force microscopy (AFM) experiments on microcline (001) performed in an ultrahigh vacuum and at the solid-water interface together with density functional theory (DFT) and molecular dynamics (MD) calculations. Our ultrahigh vacuum data reveal features consistent with a hydroxyl-terminated surface. This finding suggests that water in the residual gas readily reacts with the surface. Indeed, the corresponding DFT calculations confirm a dissociative water adsorption. Three-dimensional AFM measurements performed at the mineral-water interface unravel a layered hydration structure with two features per surface unit cell. A comparison with MD calculations suggests that the structure observed in AFM corresponds to the second hydration layer rather than the first water layer. In agreement with previous computation results, no ice-like structure is seen, questioning an explanation of the ice nucleation ability by lattice match. Our results provide an atomic-scale benchmark for the clean and water-covered microcline (001) plane, which is mandatory for understanding the ice nucleation mechanism on feldspar minerals.

19.
ACS Nano ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315583

RESUMEN

The interaction of water with surfaces is crucially important in a wide range of natural and technological settings. In particular, at low temperatures, unveiling the atomistic structure of adsorbed water clusters would provide valuable data for understanding the ice nucleation process. Using high-resolution atomic force microscopy (AFM) and scanning tunneling microscopy, several studies have demonstrated the presence of water pentamers, hexamers, and heptamers (and of their combinations) on a variety of metallic surfaces, as well as the initial stages of 2D ice growth on an insulating surface. However, in all of these cases, the observed structures were completely flat, providing a relatively straightforward path to interpretation. Here, we present high-resolution AFM measurements of several water clusters on Au(111) and Cu(111), whose understanding presents significant challenges due to both their highly 3D configuration and their large size. For each of them, we use a combination of machine learning, atomistic modeling with neural network potentials, and statistical sampling to propose an underlying atomic structure, finally comparing its AFM simulated images to the experimental ones. These results provide insights into the early phases of ice formation, which is a ubiquitous phenomenon ranging from biology to astrophysics.

20.
Nat Chem ; 16(4): 506-513, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37872419

RESUMEN

Friction determines whether liquid droplets slide off a solid surface or stick to it. Surface heterogeneity is generally acknowledged as the major cause of increased contact angle hysteresis and contact line friction of droplets. Here we challenge this long-standing premise for chemical heterogeneity at the molecular length scale. By tuning the coverage of self-assembled monolayers (SAMs), water contact angles change gradually from about 10° to 110° yet contact angle hysteresis and contact line friction are low for the low-coverage hydrophilic SAMs as well as high-coverage hydrophobic SAMs. Their slipperiness is not expected based on the substantial chemical heterogeneity of the SAMs featuring uncoated areas of the substrate well beyond the size of a water molecule as probed by metal reactants. According to molecular dynamics simulations, the low friction of both low- and high-coverage SAMs originates from the mobility of interfacial water molecules. These findings reveal a yet unknown and counterintuitive mechanism for slipperiness, opening new avenues for enhancing the mobility of droplets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA