Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mov Disord ; 36(4): 977-984, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33404118

RESUMEN

BACKGROUND: The MIND diet has been linked with prevention of Alzheimer's disease and cognitive decline but has not been fully assessed in the context of Parkinson's disease (PD). The objective of the present study was to determine whether MIND diet adherence is associated with the age of Parkinson's disease onset in a manner superior to that of the Mediterranean diet. METHODS: Food Frequency Questionnaires from 167 participants with PD and 119 controls were scored for MIND and 2 versions of Mediterranean diet adherence. Scores were compared between sex and disease subgroups, and PD diet adherence was correlated with age at onset using univariate and multivariate linear models. RESULTS: The female subgroup adhered more closely to the MIND diet than the male subgroup, and diet scores were not modified by disease status. Later age of onset correlated most strongly with MIND diet adherence in the female subgroup, corresponding to differences of up to 17.4 years (P < 0.001) between low and high dietary tertiles. Greek Mediterranean adherence was also significantly associated with later PD onset across all models (P = 0.05-0.03). Conversely, only Greek Mediterranean diet adherence remained correlated with later onset across all models in men, with differences of up to 8.4 years (P = 0.002). CONCLUSIONS: This cross-sectional study found a strong correlation between age of onset of PD and dietary habits, suggesting that nutritional strategies may be an effective tool to delay PD onset. Further studies may help to elucidate potential nutrition-related sex-specific pathophysiological mechanisms and differential prevalence rates in PD. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Disfunción Cognitiva , Dieta Mediterránea , Enfermedad de Parkinson , Estudios Transversales , Femenino , Grecia , Humanos , Masculino , Enfermedad de Parkinson/epidemiología
2.
Mov Disord ; 35(7): 1208-1217, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32357258

RESUMEN

BACKGROUND: Parkinson's disease is characterized by a high burden of gastrointestinal comorbidities, especially constipation and reduced colonic transit time, and by gut microbiota alterations. The diverse metabolites produced by the microbiota are broadly relevant to host health. How microbiota composition and metabolism relate to gastrointestinal function in Parkinson's disease is largely unknown. The objectives of the current study were to assesses associations between microbiota composition, stool consistency, constipation, and systemic microbial metabolites in Parkinson's disease to better understand how intestinal microbes contribute to gastrointestinal disturbances commonly observed in patients. METHODS: Three hundred participants (197 Parkinson's patients and 103 controls) were recruited for this cross-sectional cohort study. Participants supplied fecal samples for microbiota sequencing (n = 300) and serum for untargeted metabolomics (n = 125). Data were collected on motor and nonmotor Parkinson's symptoms, medications, diet, and demographics. RESULTS: Significant microbiota taxonomic differences were observed in Parkinson's patients, even when controlling for gastrointestinal function. Parkinson's microbiota was characterized by reduced carbohydrate fermentation and butyrate synthesis capacity and increased proteolytic fermentation and production of deleterious amino acid metabolites, including p-cresol and phenylacetylglutamine. Taxonomic shifts and elevated proteolytic metabolites were strongly associated with stool consistency (a proxy for colonic transit time) and constipation among patients. CONCLUSIONS: Compositional and metabolic alterations in the Parkinson's microbiota are highly associated with gut function, suggesting plausible mechanistic links between altered bacterial metabolism and reduced gut health in this disease. The systemic detection of elevated deleterious proteolytic microbial metabolites in Parkinson's serum suggests a mechanism whereby microbiota dysbiosis contributes to disease etiology and pathophysiology. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Estudios Transversales , Disbiosis , Tracto Gastrointestinal , Humanos , Enfermedad de Parkinson/complicaciones
4.
Front Hum Neurosci ; 17: 1329097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259335

RESUMEN

Introduction: The vestibular system, which encodes our head movement in space, plays an important role in maintaining our balance as we navigate the environment. While in-laboratory research demonstrates that the vestibular system exerts a context-dependent influence on the control of balance during locomotion, differences in whole-body and head kinematics between indoor treadmill and real-world locomotion challenge the generalizability of these findings. Thus, the goal of this study was to characterize vestibular-evoked balance responses in the real world using a fully portable system. Methods: While experiencing stochastic electrical vestibular stimulation (0-20 Hz, amplitude peak ± 4.5 mA, root mean square 1.25 mA) and wearing inertial measurement units (IMUs) on the head, low back, and ankles, 10 participants walked outside at 52 steps/minute (∼0.4 m/s) and 78 steps/minute (∼0.8 m/s). We calculated time-dependent coherence (a measure of correlation in the frequency domain) between the applied stimulus and the mediolateral back, right ankle, and left ankle linear accelerations to infer the vestibular control of balance during locomotion. Results: In all participants, we observed vestibular-evoked balance responses. These responses exhibited phasic modulation across the stride cycle, peaking during the middle of the single-leg stance in the back and during the stance phase for the ankles. Coherence decreased with increasing locomotor cadence and speed, as observed in both bootstrapped coherence differences (p < 0.01) and peak coherence (low back: 0.23 ± 0.07 vs. 0.16 ± 0.14, p = 0.021; right ankle: 0.38 ± 0.12 vs. 0.25 ± 0.10, p < 0.001; left ankle: 0.33 ± 0.09 vs. 0.21 ± 0.09, p < 0.001). Discussion: These results replicate previous in-laboratory studies, thus providing further insight into the vestibular control of balance during naturalistic movements and validating the use of this portable system as a method to characterize real-world vestibular responses. This study will help support future work that seeks to better understand how the vestibular system contributes to balance in variable real-world environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA