Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(31): 21335-21347, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39049158

RESUMEN

The formation and preservation of the active phase of the catalysts at the triple-phase interface during CO2 capture and reduction is essential for improving the conversion efficiency of CO2 electroreduction toward value-added chemicals and fuels under operational conditions. Designing such ideal catalysts that can mitigate parasitic hydrogen generation and prevent active phase degradation during the CO2 reduction reaction (CO2RR), however, remains a significant challenge. Herein, we developed an interfacial engineering strategy to build a new SnOx catalyst by invoking multiscale approaches. This catalyst features a hierarchically nanoporous structure coated with an organic F-monolayer that modifies the triple-phase interface in aqueous electrolytes, substantially reducing competing hydrogen generation (less than 5%) and enhancing CO2RR selectivity (∼90%). This rationally designed triple-phase interface overcomes the issue of limited CO2 solubility in aqueous electrolytes via proactive CO2 capture and reduction. Concurrently, we utilized pulsed square-wave potentials to dynamically recover the active phase for the CO2RR to regulate the production of C1 products such as formate and carbon monoxide (CO). This protocol ensures profoundly enhanced CO2RR selectivity (∼90%) compared with constant potential (∼70%) applied at -0.8 V (V vs RHE). We further achieved a mechanistic understanding of the CO2 capture and reduction processes under pulsed square-wave potentials via in situ Raman spectroscopy, thereby observing the potential-dependent intensity of Raman vibrational modes of the active phase and CO2RR intermediates. This work will inspire material design strategies by leveraging triple-phase interface engineering for emerging electrochemical processes, as technology moves toward electrification and decarbonization.

2.
Mar Pollut Bull ; 178: 113653, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35447440

RESUMEN

Microplastics (MP) are a pervasive environmental pollutant that enter coastal water bodies, posing an ingestion risk to marine biota. This study quantified the ability of the Eastern oyster (Crassostrea virginica) to egest MP in-situ in their biodeposits - feces and pseudofeces. Oysters of all sizes were able to egest environmental MP at a mean rate of 1 MP per 1 h through feces, and 1 MP per 2 h through pseudofeces. Smaller C. virginica were more efficient at egesting MP, and efficiency decreased by 0.8% per 1-g increase in tissue weight, with C. virginica of harvestable size being much less efficient. These findings are of relevance to resource managers for C. virginica populations as it further contributes to our understanding of MP accumulation in wild populations and has implications for not just C. virginica but also for their consumers.


Asunto(s)
Crassostrea , Microplásticos , Animales , Heces , Plásticos , Alimentos Marinos
3.
Artículo en Inglés | MEDLINE | ID: mdl-36194320

RESUMEN

Microcystins (MCs) are toxins produced by cyanobacteria commonly found in harmful algal blooms (HABs). Due to their toxicity to humans and other organisms, the World Health Organization (WHO) sets a guideline of 1 µg L-1 for microcystin-leucine-arginine (MC-LR) in drinking water. However, current analytical techniques for the detection of MC-LR such as liquid chromatography-mass spectrometry (LC-MS) and ELISA are costly, bulky, time-consuming, and mostly conducted in a laboratory, requiring highly trained personnel. An analytical method that can be used in the field for rapid determination is essential. In this study, an anti-MC-LR/MC-LR/cysteamine-coated screen-printed carbon electrode (SPCE) biosensor was newly developed to detect MC-LR, bioelectrochemically, in water. The functionalization of the electrode surface was confirmed with surface characterization methods. The sensor performance was evaluated by electrochemical impedance spectroscopy (EIS), obtaining a linear working range of MC-LR concentrations between 0.1 and 100 µg L-1 with a limit of detection (LOD) of 0.69 ng L-1. Natural water samples experiencing HABs were collected and analyzed using the developed biosensor, demonstrating the excellent performance of the biosensor with a relative standard deviation (RSD) of 0.65%. The interference tests showed minimal error and RSD values against other common MCs and possible coexisting ions found in water. The biosensor showed acceptable functionality with a shelf life of up to 12 weeks. Overall, the anti-MC-LR/MC-LR/cysteamine/SPCE biosensors can be an innovative solution with characteristics that allow for in situ, low-cost, and easy-to-use capabilities which are essential for developing an overarching and integrated "smart" environmental management system.

4.
Chemosphere ; 296: 134001, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35181416

RESUMEN

In this study, sliver (Ag) and gold (Au) nanoparticles (NPs) were embedded on poly (acrylic acid) (PAA)/poly (allylamine) hydrochloride (PAH) hydrogel fibers for improved electrochemical oxidation (EO) of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) removal. The NPs-loaded PAA/PAHs shows the better charge transport compared to the ceramic nanofiber membranes (CNM) electrodes. At 10 mA cm-2 of current density, the Ag-PAA/PAH electrodes showed a faster removal of PFAS compared to the Ag-CNM electrode probably due to large surface area-volume ratio and high porosity from the hydrogel. Among NPs-loaded PAA/PAH electrodes, the Ag/Au-PAA/PAH electrodes showed the highest removal of PFOA (72%) and PFOS (91%) in 2 h with the maximum removal rate of PFOA (0.0046 min-1) and PFOS (0.0093 min-1). The rapid PFOS removal is possibly due to the high activity of electron transfer with a higher redox potential of SO4•- than •OH. The highly stable F- generation was obtained from each electrode during reproducibility (n = 3). The net energy consumption from Ag/Au-PAA/PAH electrode was 164.9 kWh m-3 for 72% PFOA removal and 90 kWh m-3 for 91% PFOS removal, respectively. The developed Au-PAA/PAH electrodes were applied to lake water samples and showed acceptable PFOS removal (65%) with relative standard deviations (RSD) of 10.2% (n = 3) at 10 mA cm-2 of current density. Overall, the NP-embedded hydrogel nanofibers were proven to be a promising sustainable catalyst for the electrochemical PFAS oxidation in water.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Nanopartículas , Caprilatos , Electrodos , Fluorocarburos/análisis , Hidrogeles , Oxidación-Reducción , Reproducibilidad de los Resultados , Agua
5.
Opt Express ; 15(18): 11328-35, 2007 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-19547490

RESUMEN

We demonstrate a tunable focus liquid crystal (LC) lens by sandwiching a homogeneous LC layer between a planar electrode and a curved electrode. The curved electrode which is made of conductive polymer has parabolic shape with a large apex distance. Such design dramatically reduces the phase loss which leads to a short focal length (~15 cm). By using a thin top glass substrate on the curved electrode side, the operating voltage of the lens cell is reduced to ~23 V(rms). This LC lens has advantages in wide focal length tunability, low operating voltage, and good mechanical stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA