Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(2): 414-426.e12, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985564

RESUMEN

Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/inmunología , Bacteriófagos/genética , Bacteriófagos/inmunología , Proteínas Asociadas a CRISPR/inmunología , Proteínas Asociadas a CRISPR/ultraestructura , ADN Viral/química , Modelos Químicos , Modelos Moleculares , Complejos Multiproteicos/química , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestructura
2.
Mol Cell ; 81(1): 166-182.e6, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33238161

RESUMEN

The repeating structural unit of metazoan chromatin is the chromatosome, a nucleosome bound to a linker histone, H1. There are 11 human H1 isoforms with diverse cellular functions, but how they interact with the nucleosome remains elusive. Here, we determined the cryoelectron microscopy (cryo-EM) structures of chromatosomes containing 197 bp DNA and three different human H1 isoforms, respectively. The globular domains of all three H1 isoforms bound to the nucleosome dyad. However, the flanking/linker DNAs displayed substantial distinct dynamic conformations. Nuclear magnetic resonance (NMR) and H1 tail-swapping cryo-EM experiments revealed that the C-terminal tails of the H1 isoforms mainly controlled the flanking DNA orientations. We also observed partial ordering of the core histone H2A C-terminal and H3 N-terminal tails in the chromatosomes. Our results provide insights into the structures and dynamics of the chromatosomes and have implications for the structure and function of chromatin.


Asunto(s)
ADN/química , Histonas/química , Nucleosomas/química , Microscopía por Crioelectrón , ADN/ultraestructura , Humanos , Nucleosomas/ultraestructura , Isoformas de Proteínas/química
3.
Mol Cell ; 81(4): 801-810.e3, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33385326

RESUMEN

DNA-dependent protein kinase (DNA-PK), like all phosphatidylinositol 3-kinase-related kinases (PIKKs), is composed of conserved FAT and kinase domains (FATKINs) along with solenoid structures made of HEAT repeats. These kinases are activated in response to cellular stress signals, but the mechanisms governing activation and regulation remain unresolved. For DNA-PK, all existing structures represent inactive states with resolution limited to 4.3 Å at best. Here, we report the cryoelectron microscopy (cryo-EM) structures of DNA-PKcs (DNA-PK catalytic subunit) bound to a DNA end or complexed with Ku70/80 and DNA in both inactive and activated forms at resolutions of 3.7 Å overall and 3.2 Å for FATKINs. These structures reveal the sequential transition of DNA-PK from inactive to activated forms. Most notably, activation of the kinase involves previously unknown stretching and twisting within individual solenoid segments and loosens DNA-end binding. This unprecedented structural plasticity of helical repeats may be a general regulatory mechanism of HEAT-repeat proteins.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/química , Autoantígeno Ku/química , Complejos Multiproteicos/química , Microscopía por Crioelectrón , Proteína Quinasa Activada por ADN/genética , Activación Enzimática , Células HEK293 , Células HeLa , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura
4.
N Engl J Med ; 387(5): 408-420, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35921450

RESUMEN

BACKGROUND: Aggregated α-synuclein plays an important role in Parkinson's disease pathogenesis. Cinpanemab, a human-derived monoclonal antibody that binds to α-synuclein, is being evaluated as a disease-modifying treatment for Parkinson's disease. METHODS: In a 52-week, multicenter, double-blind, phase 2 trial, we randomly assigned, in a 2:1:2:2 ratio, participants with early Parkinson's disease to receive intravenous infusions of placebo (control) or cinpanemab at a dose of 250 mg, 1250 mg, or 3500 mg every 4 weeks, followed by an active-treatment dose-blinded extension period for up to 112 weeks. The primary end points were the changes from baseline in the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) total score (range, 0 to 236, with higher scores indicating worse performance) at weeks 52 and 72. Secondary end points included MDS-UPDRS subscale scores and striatal binding as assessed on dopamine transporter single-photon-emission computed tomography (DaT-SPECT). RESULTS: Of the 357 enrolled participants, 100 were assigned to the control group, 55 to the 250-mg cinpanemab group, 102 to the 1250-mg group, and 100 to the 3500-mg group. The trial was stopped after the week 72 interim analysis owing to lack of efficacy. The change to week 52 in the MDS-UPDRS score was 10.8 points in the control group, 10.5 points in the 250-mg group, 11.3 points in the 1250-mg group, and 10.9 points in the 3500-mg group (adjusted mean difference vs. control, -0.3 points [95% confidence interval {CI}, -4.9 to 4.3], P = 0.90; 0.5 points [95% CI, -3.3 to 4.3], P = 0.80; and 0.1 point [95% CI, -3.8 to 4.0], P = 0.97, respectively). The adjusted mean difference at 72 weeks between participants who received cinpanemab through 72 weeks and the pooled group of those who started cinpanemab at 52 weeks was -0.9 points (95% CI, -5.6 to 3.8) for the 250-mg dose, 0.6 points (95% CI, -3.3 to 4.4) for the 1250-mg dose, and -0.8 points (95% CI, -4.6 to 3.0) for the 3500-mg dose. Results for secondary end points were similar to those for the primary end points. DaT-SPECT imaging at week 52 showed no differences between the control group and any cinpanemab group. The most common adverse events with cinpanemab were headache, nasopharyngitis, and falls. CONCLUSIONS: In participants with early Parkinson's disease, the effects of cinpanemab on clinical measures of disease progression and changes in DaT-SPECT imaging did not differ from those of placebo over a 52-week period. (Funded by Biogen; SPARK ClinicalTrials.gov number, NCT03318523.).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antiparkinsonianos , Enfermedad de Parkinson , alfa-Sinucleína , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antiparkinsonianos/efectos adversos , Método Doble Ciego , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Resultado del Tratamiento , alfa-Sinucleína/inmunología
5.
BMC Neurol ; 21(1): 459, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34814867

RESUMEN

BACKGROUND: Dopamine transporter single-photon emission computed tomography (DaT-SPECT) can quantify the functional integrity of the dopaminergic nerve terminals and has been suggested as an imaging modality to verify the clinical diagnosis of Parkinson's disease (PD). Depending on the stage of progression, approximately 5-15% of participants clinically diagnosed with idiopathic PD have been observed in previous studies to have normal DaT-SPECT patterns. However, the utility of DaT-SPECT in enhancing early PD participant selection in a global, multicenter clinical trial of a potentially disease-modifying therapy is not well understood. METHODS: The SPARK clinical trial was a phase 2 trial of cinpanemab, a monoclonal antibody against alpha-synuclein, in participants with early PD. DaT-SPECT was performed at screening to select participants with DaT-SPECT patterns consistent with degenerative parkinsonism. Acquisition was harmonised across 82 sites. Images were reconstructed and qualitatively read at a central laboratory by blinded neuroradiologists for inclusion prior to automated quantitative analysis. RESULTS: In total, 482 unique participants were screened between January 2018 and May 2019; 3.8% (15/398) of imaged participants were excluded owing to negative DaT-SPECT findings (i.e., scans without evidence of dopaminergic deficit [SWEDD]). CONCLUSION: A smaller proportion of SPARK participants were excluded owing to SWEDD status upon DaT-SPECT screening than has been reported in prior studies. Further research is needed to understand the reasons for the low SWEDD rate in this study and whether these results are generalisable to future studies. If supported, the radiation risks, imaging costs, and operational burden of DaT-SPECT for enrichment may be mitigated by clinical assessment and other study design aspects. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03318523 . Date submitted: October 19, 2017. First Posted: October 24, 2017.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Enfermedad de Parkinson , Biomarcadores , Dopamina , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único
6.
Mov Disord ; 34(8): 1154-1163, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31211448

RESUMEN

BACKGROUND: Pathological and genetic evidence implicates toxic effects of aggregated α-synuclein in the pathophysiology of neuronal dysfunction and degeneration in Parkinson's disease. Immunotherapy targeting aggregated α-synuclein is a promising strategy for delaying disease progression. OBJECTIVE: This study (NCT02459886) evaluated the safety, tolerability, and pharmacokinetics of BIIB054, a human-derived monoclonal antibody that preferentially binds to aggregated α-synuclein, in healthy volunteers and participants with Parkinson's disease. METHODS: A total of 48 healthy volunteers (age 40-65, 19 women) and 18 Parkinson's disease participants (age 47-75, 5 women, Hoehn and Yahr stage ≤2.5) were in the study. Volunteers were enrolled into 6 single-dose cohorts of BIIB054 (range 1-135 mg/kg) or placebo, administered intravenously; Parkinson's disease participants received a single dose of BIIB054 (15 or 45 mg/kg) or placebo. All participants were evaluated for 16 weeks with clinical, neuroimaging, electrocardiogram, and laboratory assessments. Serum and cerebrospinal fluid BIIB054 concentrations were measured. BIIB054/α-synuclein complexes were measured in plasma. RESULTS: Most adverse events were mild and assessed by investigators as unrelated to the study drug. Pharmacokinetic parameters for volunteers and the Parkinson's disease participants were similar. BIIB054 serum exposure and maximum concentrations were dose proportional during the dose range studied. In volunteers and the Parkinson's disease participants, the serum half-life of BIIB054 was 28 to 35 days; the cerebrospinal fluid-to-serum ratio ranged from 0.13% to 0.56%. The presence of BIIB054/α-synuclein complexes in plasma was confirmed; all Parkinson's disease participants showed almost complete saturation of the BIIB054/α-synuclein complex formation. CONCLUSIONS: BIIB054 has favorable safety, tolerability, and pharmacokinetic profiles in volunteers and Parkinson's disease participants, supporting further clinical development. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Factores Inmunológicos/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/inmunología , Adulto , Anciano , Anticuerpos Monoclonales/farmacocinética , Método Doble Ciego , Femenino , Humanos , Factores Inmunológicos/farmacocinética , Masculino , Persona de Mediana Edad
7.
Langmuir ; 31(31): 8680-8, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26174179

RESUMEN

We present an in situ cryo-electron microscopy (cryoEM) study of mixed poly(acrylic acid) (PAA)/polystyrene (PS) brush-grafted 67 nm silica nanoparticles in organic and aqueous solvents. These organic-inorganic nanoparticles are predicted to be environmentally responsive and adopt distinct brush layer morphologies in different solvent environments. Although the self-assembled morphology of mixed PAA/PS brush-grafted particles has been studied previously in a dried state, no direct visualization of microphase separation was achieved in the solvent environment. CryoEM allows the sample to be imaged in situ, that is, in a frozen solvated state, at the resolution of a transmission electron microscope. Cryo-electron tomograms (cryoET) were generated for mixed PAA/PS brush-grafted nanoparticles in both N,N-dimethylformamide (DMF, a nonselective good solvent) and water (a selective solvent for PAA). Different nanostructures for the mixed brushes were observed in these two solvents. Overall, the brush layer is more compact in water, with a thickness of 18 nm, as compared with an extended layer of 27 nm in DMF. In DMF, mixed PAA/PS brushes are observed to form laterally separated microdomains with a ripple wavelength of 13.8 nm. Because of its lower grafting density than that of PAA, PS domains form more or less cylindrical or truncated cone-shaped domains in the PAA matrix. In water, PAA chains are found to form a more complete shell around the nanoparticle to maximize their interaction with water, whereas PS chains collapse into the core of surface-tethered micelles near the silica core. The cryoET results presented here confirm the predicted environmentally responsive nature of PAA/PS mixed brush-grafted nanoparticles. This experimental approach may be useful for the design of future mixed brush-grafted nanoparticles for nano- and biotechnology applications.


Asunto(s)
Resinas Acrílicas/química , Microscopía por Crioelectrón , Dimetilformamida/química , Nanopartículas/química , Poliestirenos/química , Dióxido de Silicio/química , Tamaño de la Partícula , Solventes/química , Propiedades de Superficie , Agua/química
8.
Soft Matter ; 11(27): 5501-12, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26061172

RESUMEN

Environmentally responsive self-assembly of nearly symmetric mixed poly(tert-butyl acrylate) (PtBA, 22.2 kDa)/polystyrene (PS, 23.4 kDa) brushes grafted onto 67 nm silica nanoparticles in selective homopolymer matrices [PtBA for the grafted PtBA chains and poly(cyclohexyl methacrylate) (PCHMA) for the grafted PS chains] was investigated using both conventional transmission electron microscopy (TEM) and electron tomography (i.e., 3D TEM). A variety of self-assembled phase morphologies were observed for the mixed brushes in selective polymer matrices with different molecular weights, and these can be explained by entropy-driven wet- and dry-brush theories. In a low molecular weight selective matrix, the wet-brush regime was formed with the miscible chains stretching out and the immiscible chains collapsing into isolated domains. In contrast, when the molecular weight of the selective matrix was higher than that of the compatible grafted polymer chains, the dry-brush regime was formed with the mixed brushes exhibiting the unperturbed morphology. In addition to the molecular weight, the size of nanoparticles (or the substrate curvature) was also observed to play an important role. For small particles (core size less than 50 nm), the wet brush-like morphology with a surface-tethered micellar structure was observed. Finally, the wet- and dry-brush regimes also significantly affected the dispersion of mixed brush particles in selective polymer matrices.


Asunto(s)
Acrilatos/química , Nanocompuestos/química , Nanopartículas/química , Poliestirenos/síntesis química , Entropía , Peso Molecular , Nanocompuestos/ultraestructura , Nanopartículas/ultraestructura , Tamaño de la Partícula , Polimerizacion , Ácidos Polimetacrílicos/química , Compuestos de Rutenio/química
9.
J Biol Chem ; 288(7): 4819-30, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277356

RESUMEN

Small heat shock proteins (sHSPs) are ubiquitous chaperones that bind and sequester non-native proteins preventing their aggregation. Despite extensive studies of sHSPs chaperone activity, the location of the bound substrate within the sHSP oligomer has not been determined. In this paper, we used cryoelectron microscopy (cryoEM) to visualize destabilized mutants of T4 lysozyme (T4L) bound to engineered variants of the small heat shock protein Hsp16.5. In contrast to wild type Hsp16.5, binding of T4L to these variants does not induce oligomer heterogeneity enabling cryoEM analysis of the complexes. CryoEM image reconstruction reveals the sequestration of T4L in the interior of the Hsp16.5 oligomer primarily interacting with the buried N-terminal domain but also tethered by contacts with the α-crystallin domain shell. Analysis of Hsp16.5-WT/T4L complexes uncovers oligomer expansion as a requirement for high affinity binding. In contrast, a low affinity mode of binding is found to involve T4L binding on the outer surface of the oligomer bridging the formation of large complexes of Hsp16.5. These mechanistic principles were validated by cryoEM analysis of an expanded variant of Hsp16.5 in complex with T4L and Hsp16.5-R107G, which is equivalent to a mutant of human αB-crystallin linked to cardiomyopathy. In both cases, high affinity binding is found to involve conformational changes in the N-terminal region consistent with a central role of this region in substrate recognition.


Asunto(s)
Proteínas Arqueales/metabolismo , Bacteriófago T4/enzimología , Microscopía por Crioelectrón/métodos , Proteínas de Choque Térmico/metabolismo , Muramidasa/química , Clonación Molecular , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformación Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Temperatura , alfa-Cristalinas/química
10.
J Virol ; 87(17): 9610-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23804638

RESUMEN

Adenoviruses (Ads) are promising vectors for therapeutic interventions in humans. When injected into the bloodstream, Ad vectors can bind several vitamin K-dependent blood coagulation factors, which contributes to virus sequestration in the liver by facilitating transduction of hepatocytes. Although both coagulation factors FVII and FX bind the hexon protein of human Ad serotype 5 (HAdv5) with a very high affinity, only FX appears to play a role in mediating Ad-hepatocyte transduction in vivo. To understand the discrepancy between efficacy of FVII binding to hexon and its apparently poor capacity for supporting virus cell entry, we analyzed the HAdv5-FVII complex by using high-resolution cryo-electron microscopy (cryo-EM) followed by molecular dynamic flexible fitting (MDFF) simulations. The results indicate that although hexon amino acids T423, E424, and T425, identified earlier as critical for FX binding, are also involved in mediating binding of FVII, the FVII GLA domain sits within the surface-exposed hexon trimer depression in a different orientation from that found for FX. Furthermore, we found that when bound to hexon, two proximal FVII molecules interact via their serine protease (SP) domains and bury potential heparan sulfate proteoglycan (HSPG) receptor binding residues within the dimer interface. In contrast, earlier cryo-EM studies of the Ad-FX interaction showed no evidence of dimer formation. Dimerization of FVII bound to Ad may be a contributing mechanistic factor for the differential infectivity of Ad-FX and Ad-FVII complexes, despite high-affinity binding of both these coagulation factors to the virus.


Asunto(s)
Adenovirus Humanos/genética , Adenovirus Humanos/fisiología , Factor VII/química , Factor VII/metabolismo , Factor X/química , Factor X/metabolismo , Vectores Genéticos , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Internalización del Virus
11.
J Perianesth Nurs ; 29(1): 12-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24461278

RESUMEN

PURPOSE: With little scientific evidence to support use of aromatherapy for postoperative nausea and/or vomiting (PONV) symptoms, this study evaluated controlled breathing with peppermint aromatherapy (AR) and controlled breathing alone (CB) for PONV relief. DESIGN: A single blind randomized control trial design was used. METHODS: On initial PONV complaint, symptomatic subjects received either CB (n = 16) or AR (n = 26) intervention based on randomization at enrollment. A second treatment was repeated at 5 minutes if indicated. Final assessment occurred 10 minutes post initial treatment. Rescue medication was offered for persistent symptoms. FINDINGS: Among eligible subjects, PONV incidence was 21.4% (42/196). Gender was the only risk factor contributing to PONV symptoms (P = .0024). Though not statistically significant, CB was more efficacious than AR, 62.5% versus 57.7%, respectively. CONCLUSIONS: CB can be initiated without delay as an alternative to prescribed antiemetics. Data also support use of peppermint AR in conjunction with CB for PONV relief.


Asunto(s)
Aromaterapia , Mentha piperita , Náusea y Vómito Posoperatorios/prevención & control , Respiración , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
12.
N Z Med J ; 137(1602): 55-64, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39236326

RESUMEN

INTRODUCTION: Endoscopic submucosal dissection (ESD) is a specialised endoscopic technique in the treatment of large pre-cancerous and early cancerous gastrointestinal lesions that avoids the need for surgical resections. The objective of this study was to assess the feasibility, efficacy and safety of learning ESD in an untutored approach in a prevalence-based setting within New Zealand. METHODS: Over a 4-year period, 80 ESD procedures were performed at a single tertiary centre within New Zealand. We retrospectively reviewed basic demographics of the patients, along with successful en bloc resection rates, dissection speeds, histological diagnoses (including margin assessments) and complications. RESULTS: We captured 80 procedures. Within this database we achieved an en bloc resection of 88.7% (71 out of 80 cases) and an R0 resection of 72.5% (58 out of 80 cases). The international benchmark for dissection speed of 9cm2/h was achieved within the first block of 20 cases and was maintained throughout. There was a perforation rate of 6.25% (five patients), with one patient (1.25%) requiring emergency surgery for a rectal perforation. CONCLUSIONS: Our study shows it is feasible and safe to learn ESD within a low-volume tertiary centre within New Zealand via a prevalence-based approached. The majority of patients were able to have en bloc resection and a R0 resection. Our intent is that this data be used to help design a more formalised training process for learning ESD within a New Zealand setting.


Asunto(s)
Resección Endoscópica de la Mucosa , Curva de Aprendizaje , Humanos , Nueva Zelanda , Resección Endoscópica de la Mucosa/educación , Resección Endoscópica de la Mucosa/métodos , Masculino , Femenino , Estudios Retrospectivos , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Estudios de Factibilidad , Adulto
13.
Commun Biol ; 7(1): 260, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431713

RESUMEN

RAF kinases are integral to the RAS-MAPK signaling pathway, and proper RAF1 folding relies on its interaction with the chaperone HSP90 and the cochaperone CDC37. Understanding the intricate molecular interactions governing RAF1 folding is crucial for comprehending this process. Here, we present a cryo-EM structure of the closed-state RAF1-HSP90-CDC37 complex, where the C-lobe of the RAF1 kinase domain binds to one side of the HSP90 dimer, and an unfolded N-lobe segment of the RAF1 kinase domain threads through the center of the HSP90 dimer. CDC37 binds to the kinase C-lobe, mimicking the N-lobe with its HxNI motif. We also describe structures of HSP90 dimers without RAF1 and CDC37, displaying only N-terminal and middle domains, which we term the semi-open state. Employing 1 µs atomistic simulations, energetic decomposition, and comparative structural analysis, we elucidate the dynamics and interactions within these complexes. Our quantitative analysis reveals that CDC37 bridges the HSP90-RAF1 interaction, RAF1 binds HSP90 asymmetrically, and that HSP90 structural elements engage RAF1's unfolded region. Additionally, N- and C-terminal interactions stabilize HSP90 dimers, and molecular interactions in HSP90 dimers rearrange between the closed and semi-open states. Our findings provide valuable insight into the contributions of HSP90 and CDC37 in mediating client folding.


Asunto(s)
Proteínas de Ciclo Celular , Chaperoninas , Humanos , Proteínas de Ciclo Celular/metabolismo , Unión Proteica , Chaperoninas/química , Chaperonas Moleculares/metabolismo , Proteínas HSP90 de Choque Térmico
14.
Neurology ; 102(5): e209137, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38315945

RESUMEN

BACKGROUND AND OBJECTIVES: Sensitive, reliable, and scalable biomarkers are needed to accelerate the development of therapies for Parkinson disease (PD). In this study, we evaluate the biomarkers of early PD diagnosis, disease progression, and treatment effect collected in the SPARK. METHODS: Cinpanemab is a human-derived monoclonal antibody binding preferentially to aggregated forms of extracellular α-synuclein. SPARK was a randomized, double-blind, placebo-controlled, phase 2 multicenter trial evaluating 3 cinpanemab doses administered intravenously every 4 weeks for 52 weeks with an active treatment dose-blind extension period for up to 112 weeks. SPARK enrolled 357 participants diagnosed with PD within 3 years, aged 40-80 years, ≤2.5 on the modified Hoehn and Yahr scale, and with evidence of striatal dopaminergic deficit. The primary outcome was change from baseline in the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale total score. Secondary and exploratory biomarker outcomes evaluated change from baseline at week 52 relative to placebo. Dopamine transporter SPECT and MRI were used to quantify changes in the nigrostriatal dopamine pathway and regional atrophy. CSF and plasma samples were used to assess change in total α-synuclein levels, α-synuclein seeding, and neurofilament light chain levels. SPARK was conducted from January 2018 to April 2021 and terminated due to lack of efficacy. RESULTS: Approximately 3.8% (15/398) of SPECT-imaged participants did not have evidence of dopaminergic deficit and were screen-failed. Binary classification of α-synuclein seeding designated 93% (110/118) of the enrolled CSF subgroup as positive for α-synuclein seeds at baseline. Clinical disease progression was observed, with no statistically significant difference in cinpanemab groups compared with that in placebo. Ninety-nine percent of participants with positive α-synuclein seeding remained positive through week 52. No statistically significant changes from baseline were observed between treatment groups and placebo across biomarker measures. Broadly, there was minimal annual change with high interindividual variability across biomarkers-with striatal binding ratios of the ipsilateral putamen showing the greatest mean change/SD over time. DISCUSSION: Biomarker results indicated enrollment of the intended population with early PD, but there was no significant correlation with disease progression or clear evidence of a cinpanemab treatment effect on biomarker measures. Suitable biomarkers for evaluating disease severity and progression in early PD trials are still needed. TRIAL REGISTRATION INFORMATION: NCT03318523 (clinicaltrials.gov/ct2/show/NCT03318523); Submitted October 24, 2017; First patient enrolled January 2018.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína , Antiparkinsonianos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Dopamina/metabolismo , Biomarcadores , Progresión de la Enfermedad , Método Doble Ciego
15.
mBio ; 13(2): e0030622, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35348349

RESUMEN

The ribosome, a multicomponent assembly consisting of RNA and proteins, is a pivotal macromolecular machine that translates the genetic code into proteins. The large ribosomal subunit rRNA helix 68 (H68) is a key element in the protein synthesis process, as it coordinates the coupled movements of the actors involved in translocation, including the tRNAs and L1 stalk. Examination of cryo-electron microscopy (cryo-EM) structures of ribosomes incubated for various time durations at physiological temperatures led to the identification of functionally relevant H68 movements. These movements assist the transition of the L1 stalk between its open and closed states. H68 spatial flexibility and its significance to the protein synthesis process were confirmed through its effective targeting with antisense PNA oligomers. Our results suggest that H68 is actively involved in ribosome movements that are central to the elongation process. IMPORTANCE The mechanism that regulates the translocation step in ribosomes during protein synthesis is not fully understood. In this work, cryo-EM techniques used to image ribosomes from Staphylococcus aureus after incubation at physiological temperature allowed the identification of a conformation of the helix 68 that has never been observed so far. We then propose a mechanism in which such helix, switching between two different conformations, actively coordinates the translocation step, shedding light on the dynamics of ribosomal components. In addition, the relevance of helix 68 to ribosome function and its potential as an antibiotic target was proved by inhibiting Staphylococcus aureus ribosomes activity in vitro using oligomers with sequence complementarity.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Microscopía por Crioelectrón/métodos , Modelos Moleculares , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
16.
Commun Biol ; 3(1): 676, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168926

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Nat Struct Mol Biol ; 27(2): 202-209, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32042153

RESUMEN

The mitochondrial membrane-bound AAA protein Bcs1 translocate substrates across the mitochondrial inner membrane without previous unfolding. One substrate of Bcs1 is the iron-sulfur protein (ISP), a subunit of the respiratory Complex III. How Bcs1 translocates ISP across the membrane is unknown. Here we report structures of mouse Bcs1 in two different conformations, representing three nucleotide states. The apo and ADP-bound structures reveal a homo-heptamer and show a large putative substrate-binding cavity accessible to the matrix space. ATP binding drives a contraction of the cavity by concerted motion of the ATPase domains, which could push substrate across the membrane. Our findings shed light on the potential mechanism of translocating folded proteins across a membrane, offer insights into the assembly process of Complex III and allow mapping of human disease-associated mutations onto the Bcs1 structure.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/química , Chaperonas Moleculares/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Cristalografía por Rayos X , Ratones , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Transporte de Proteínas
18.
Structure ; 28(11): 1206-1217.e4, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32783951

RESUMEN

The 26S proteasome is specialized for regulated protein degradation and formed by a dynamic regulatory particle (RP) that caps a hollow cylindrical core particle (CP) where substrates are proteolyzed. Its diverse substrates unify as proteasome targets by ubiquitination. We used cryogenic electron microscopy (cryo-EM) to study how human 26S proteasome interacts with M1-linked hexaubiquitin (M1-Ub6) unanchored to a substrate and E3 ubiquitin ligase E6AP/UBE3A. Proteasome structures are available with model substrates extending through the RP ATPase ring and substrate-conjugated K63-linked ubiquitin chains present at inhibited deubiquitinating enzyme hRpn11 and the nearby ATPase hRpt4/hRpt5 coiled coil. In this study, we find M1-Ub6 at the hRpn11 site despite the absence of conjugated substrate, indicating that ubiquitin binding at this location does not require substrate interaction with the RP. Moreover, unanchored M1-Ub6 binds to this hRpn11 site of the proteasome with the CP gating residues in both the closed and opened conformational states.


Asunto(s)
Adenosina Trifosfatasas/química , Poliubiquitina/química , Complejo de la Endopetidasa Proteasomal/química , Transactivadores/química , Ubiquitina-Proteína Ligasas/química , Ubiquitina/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Expresión Génica , Humanos , Simulación del Acoplamiento Molecular , Poliubiquitina/genética , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Transactivadores/genética , Transactivadores/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
19.
Science ; 363(6429)2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30679383

RESUMEN

Visualization in atomic detail of the replisome that performs concerted leading- and lagging-DNA strand synthesis at a replication fork has not been reported. Using bacteriophage T7 as a model system, we determined cryo-electron microscopy structures up to 3.2-angstroms resolution of helicase translocating along DNA and of helicase-polymerase-primase complexes engaging in synthesis of both DNA strands. Each domain of the spiral-shaped hexameric helicase translocates sequentially hand-over-hand along a single-stranded DNA coil, akin to the way AAA+ ATPases (adenosine triphosphatases) unfold peptides. Two lagging-strand polymerases are attached to the primase, ready for Okazaki fragment synthesis in tandem. A ß hairpin from the leading-strand polymerase separates two parental DNA strands into a T-shaped fork, thus enabling the closely coupled helicase to advance perpendicular to the downstream DNA duplex. These structures reveal the molecular organization and operating principles of a replisome.


Asunto(s)
Bacteriófago T7/enzimología , Bacteriófago T7/fisiología , ADN Helicasas/química , ADN Primasa/química , ADN Polimerasa Dirigida por ADN/química , Proteínas Virales/química , Replicación Viral , Microscopía por Crioelectrón , Dominios Proteicos
20.
Commun Biol ; 2: 358, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31602407

RESUMEN

The TonB-ExbB-ExbD molecular motor harnesses the proton motive force across the bacterial inner membrane to couple energy to transporters at the outer membrane, facilitating uptake of essential nutrients such as iron and cobalamine. TonB physically interacts with the nutrient-loaded transporter to exert a force that opens an import pathway across the outer membrane. Until recently, no high-resolution structural information was available for this unique molecular motor. We published the first crystal structure of ExbB-ExbD in 2016 and showed that five copies of ExbB are arranged as a pentamer around a single copy of ExbD. However, our spectroscopic experiments clearly indicated that two copies of ExbD are present in the complex. To resolve this ambiguity, we used single-particle cryo-electron microscopy to show that the ExbB pentamer encloses a dimer of ExbD in its transmembrane pore, and not a monomer as previously reported. The revised stoichiometry has implications for motor function.


Asunto(s)
Proteínas de Escherichia coli/química , Microscopía por Crioelectrón , Escherichia coli , Proteínas de Escherichia coli/ultraestructura , Modelos Moleculares , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA