Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS Pathog ; 10(12): e1004528, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474413

RESUMEN

Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8(+) T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45(hi) CD8(+) T cells, ICAM-1(+) macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8(+) T cells and ICAM(+) macrophages, causes a severe restriction in the venous blood efflux from the brain, which exacerbates the vasogenic edema and increases the intracranial pressure. Thus, death from ECM could potentially occur as a consequence of intracranial hypertension.


Asunto(s)
Barrera Hematoencefálica/inmunología , Corteza Cerebral/inmunología , Malaria Cerebral/inmunología , Plasmodium berghei/inmunología , Plasmodium yoelii/inmunología , Animales , Barrera Hematoencefálica/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Corteza Cerebral/parasitología , Corteza Cerebral/patología , Claudina-5/inmunología , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod , Humanos , Inmunosupresores/farmacología , Molécula 1 de Adhesión Intercelular/inmunología , Macrófagos/inmunología , Macrófagos/patología , Malaria Cerebral/tratamiento farmacológico , Malaria Cerebral/patología , Ratones , Neutrófilos/inmunología , Neutrófilos/patología , Ocludina/inmunología , Glicoles de Propileno/farmacología , Esfingosina/análogos & derivados , Esfingosina/farmacología , Proteína de la Zonula Occludens-1/inmunología
2.
PLoS Pathog ; 10(6): e1004080, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24967715

RESUMEN

Alternatively activated macrophages (AAM) that accumulate during chronic T helper 2 inflammatory conditions may arise through proliferation of resident macrophages or recruitment of monocyte-derived cells. Liver granulomas that form around eggs of the helminth parasite Schistosoma mansoni require AAM to limit tissue damage. Here, we characterized monocyte and macrophage dynamics in the livers of infected CX3CR1(GFP/+) mice. CX3CR1-GFP⁺ monocytes and macrophages accumulated around eggs and in granulomas during infection and upregulated PD-L2 expression, indicating differentiation into AAM. Intravital imaging of CX3CR1-GFP⁺ Ly6C(low) monocytes revealed alterations in patrolling behavior including arrest around eggs that were not encased in granulomas. Differential labeling of CX3CR1-GFP⁺ cells in the blood and the tissue showed CD4⁺ T cell dependent accumulation of PD-L2⁺ CX3CR1-GFP⁺ AAM in the tissues as granulomas form. By adoptive transfer of Ly6C(high) and Ly6C(low) monocytes into infected mice, we found that AAM originate primarily from transferred Ly6C(high) monocytes, but that these cells may transition through a Ly6C(low) state and adopt patrolling behavior in the vasculature. Thus, during chronic helminth infection AAM can arise from recruited Ly6C(high) monocytes via help from CD4⁺ T cells.


Asunto(s)
Antígenos Ly/sangre , Linfocitos T CD4-Positivos/inmunología , Granuloma/inmunología , Hígado/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Esquistosomiasis mansoni/inmunología , Animales , Antígenos Ly/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/parasitología , Comunicación Celular , Transdiferenciación Celular , Cruzamientos Genéticos , Femenino , Granuloma/parasitología , Granuloma/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Vigilancia Inmunológica , Hígado/metabolismo , Hígado/parasitología , Hígado/patología , Activación de Macrófagos , Macrófagos/metabolismo , Macrófagos/parasitología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/metabolismo , Monocitos/parasitología , Óvulo/crecimiento & desarrollo , Óvulo/inmunología , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Proteínas Recombinantes/metabolismo , Schistosoma mansoni/crecimiento & desarrollo , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/metabolismo , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/fisiopatología , Regulación hacia Arriba
3.
PLoS Pathog ; 8(10): e1002982, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133375

RESUMEN

Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB.


Asunto(s)
Barrera Hematoencefálica/patología , Malaria Cerebral/patología , Plasmodium berghei/patogenicidad , Plasmodium yoelii/patogenicidad , Animales , Benzamidas , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/fisiopatología , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/etiología , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod , Mesilato de Imatinib , Receptores de Lipopolisacáridos/biosíntesis , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Malaria Cerebral/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos CBA , Neuroinmunomodulación , Parasitemia , Piperazinas/farmacología , Plasmodium falciparum/patogenicidad , Glicoles de Propileno/farmacología , Pirimidinas/farmacología , Esfingosina/análogos & derivados , Esfingosina/farmacología
4.
Infect Immun ; 81(12): 4350-62, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24042110

RESUMEN

Immunization with Plasmodium sporozoites can elicit high levels of sterile immunity, and neutralizing antibodies from protected hosts are known to target the repeat region of the circumsporozoite (CS) protein on the parasite surface. CS-based subunit vaccines have been hampered by suboptimal immunogenicity and the requirement for strong adjuvants to elicit effective humoral immunity. Pathogen-associated molecular patterns (PAMPs) that signal through Toll-like receptors (TLRs) can function as potent adjuvants for innate and adaptive immunity. We examined the immunogenicity of recombinant proteins containing a TLR5 agonist, flagellin, and either full-length or selected epitopes of the Plasmodium falciparum CS protein. Mice immunized with either of the flagellin-modified CS constructs, administered intranasally (i.n.) or subcutaneously (s.c.), developed similar levels of malaria-specific IgG1 antibody and interleukin-5 (IL-5)-producing T cells. Importantly, immunization via the i.n. but not the s.c. route elicited sporozoite neutralizing antibodies capable of inhibiting >90% of sporozoite invasion in vitro and in vivo, as measured using a transgenic rodent parasite expressing P. falciparum CS repeats. These findings demonstrate that functional sporozoite neutralizing antibody can be elicited by i.n. immunization with a flagellin-modified P. falciparum CS protein and raise the potential of a scalable, safe, needle-free vaccine for the 40% of the world's population at risk of malaria.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Administración Intranasal , Animales , Anticuerpos Antiprotozoarios/inmunología , Células Cultivadas , Células Dendríticas/inmunología , Epítopos de Linfocito T/inmunología , Flagelina/inmunología , Humanos , Inmunidad Humoral/inmunología , Inmunización , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Interleucina-5/biosíntesis , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Protozoarias/administración & dosificación , Proteínas Recombinantes/inmunología , Esporozoítos/inmunología , Receptor Toll-Like 5/agonistas , Vacunas de Subunidad/inmunología
5.
Front Immunol ; 13: 801111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734173

RESUMEN

The skin is the site of host invasion by the mosquito-borne Plasmodium parasite, which caused an estimated 229 million infections and 409,000 deaths in 2019 according to WHO World Malaria report 2020. In our previous studies, we have shown that skin scarification (SS) with a P. falciparum circumsporozoite (CS) peptide in the oil-in-water adjuvant AddaVax containing a combination of TLR 7/8 and TLR 9 agonists can elicit sporozoite neutralizing antibodies. SS with AddaVax + TLR agonists, but not AddaVax alone, elicited CD4+ Th1 cells and IgG2a/c anti-repeat antibody. To explore the innate immune responses that may contribute to development of adaptive immunity following SS, we examined the skin at 4h and 24h post priming with CS peptide in AddaVax with or without TLR agonists. H&E stained and IHC-labeled dorsal skin sections obtained 24h post SS demonstrated a marked difference in the pattern of infiltration with F4/80+, CD11b+ and Ly6G+ cells at the immunization site, with the lowest intensity noted following SS with AddaVax + TLR agonists. Serum collected at 4h post SS, had reproducible increases in IL-6, MIP-3α, IL-22 and IP-10 (CXCL10) following SS with AddaVax + TLR agonists, but not with AddaVax alone. To begin to decipher the complex roles of these pro-inflammatory cytokines/chemokines, we utilized IP-10 deficient (IP-10 -/-) mice to examine the role of this chemokine in the development of anti-repeat antibody response following SS. In the absence of IP-10, the levels of Th1-type IgG2a/c antibody and kinetics of the primary anti-repeat antibody response were reduced following prime and boost. The IP-10 chemokine, present as early as 4h post prime, may provide an early serological marker for rapid screening of adjuvant formulations and delivery platforms to optimize SS-induced humoral immunity to CS repeats as well as other pathogens.


Asunto(s)
Anticuerpos Antiprotozoarios , Inmunidad Innata , Malaria Falciparum , Plasmodium falciparum , Vacunación , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Neutralizantes , Quimiocina CXCL10 , Inmunoglobulina G , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Ratones , Proteínas Protozoarias
6.
PLoS Pathog ; 3(11): e171, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17997605

RESUMEN

Plasmodium undergoes one round of multiplication in the liver prior to invading erythrocytes and initiating the symptomatic blood phase of the malaria infection. Productive hepatocyte infection by sporozoites leads to the generation of thousands of merozoites capable of erythrocyte invasion. Merozoites are released from infected hepatocytes as merosomes, packets of hundreds of parasites surrounded by host cell membrane. Intravital microscopy of green fluorescent protein-expressing P. yoelii parasites showed that the majority of merosomes exit the liver intact, adapt a relatively uniform size of 12-18 microm, and contain 100-200 merozoites. Merosomes survived the subsequent passage through the right heart undamaged and accumulated in the lungs. Merosomes were absent from blood harvested from the left ventricle and from tail vein blood, indicating that the lungs effectively cleared the blood from all large parasite aggregates. Accordingly, merosomes were not detectable in major organs such as brain, kidney, and spleen. The failure of annexin V to label merosomes collected from hepatic effluent indicates that phosphatidylserine is not exposed on the surface of the merosome membrane suggesting the infected hepatocyte did not undergo apoptosis prior to merosome release. Merosomal merozoites continued to express green fluorescent protein and did not incorporate propidium iodide or YO-PRO-1 indicating parasite viability and an intact merosome membrane. Evidence of merosomal merozoite infectivity was provided by hepatic effluent containing merosomes being significantly more infective than blood with an identical low-level parasitemia. Ex vivo analysis showed that merosomes eventually disintegrate inside pulmonary capillaries, thus liberating merozoites into the bloodstream. We conclude that merosome packaging protects hepatic merozoites from phagocytic attack by sinusoidal Kupffer cells, and that release into the lung microvasculature enhances the chance of successful erythrocyte invasion. We believe this previously unknown part of the plasmodial life cycle ensures an effective transition from the liver to the blood phase of the malaria infection.


Asunto(s)
Hígado/parasitología , Malaria/parasitología , Merozoítos/fisiología , Plasmodium yoelii/fisiología , Circulación Pulmonar , Animales , Pulmón/irrigación sanguínea , Pulmón/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Microscopía Confocal
7.
Cell Microbiol ; 10(10): 1956-67, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18647171

RESUMEN

Advances in our understanding of the molecular and cell biology of the malaria parasite have led to new vaccine development efforts resulting in a pipeline of over 40 candidates undergoing clinical phase I-III trials. Vaccine-induced CD4+ and CD8+ T cells specific for pre-erythrocytic stage antigens have been found to express cytolytic and multi-cytokine effector functions that support a key role for these T cells within the hepatic environment. However, little is known of the cellular interactions that occur during the effector phase in which the intracellular hepatic stage of the parasite is targeted and destroyed. This review focuses on cell biological aspects of the interaction between malaria-specific effector cells and the various antigen-presenting cells that are known to exist within the liver, including hepatocytes, dendritic cells, Kupffer cells, stellate cells and sinusoidal endothelia. Considering the unique immune properties of the liver, it is conceivable that these different hepatic antigen-presenting cells fulfil distinct but complementary roles during the effector phase against Plasmodium liver stages.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Hígado/inmunología , Hígado/parasitología , Plasmodium/inmunología , Plasmodium/fisiología , Linfocitos T/inmunología , Animales , Humanos
8.
Subcell Biochem ; 47: 182-97, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18512352

RESUMEN

Malaria sporozoites must cross at least two cell barriers to reach their initial site of replication in the mammalian host. After transmission into the skin by an infected mosquito, they migrate towards small dermal capillaries, traverse the vascular endothelial layer, and rapidly home to the liver. To infect hepatocytes, the parasites must cross the sinusoidal cell layer, composed of specialized highly fenestrated sinusoidal endothelia and Kupffer cells, the resident macrophages of the liver (Fig. 1). The exact route Plasmodium sporozoites take to hepatocytes has been subject of controversial discussions for many years. Recent cell biological, microscopic, and genetic approaches have considerably enhanced our understanding of the initial events leading to the establishment of a malaria infection in the liver.


Asunto(s)
Hígado/parasitología , Plasmodium/patogenicidad , Esporozoítos/fisiología , Animales , Hepatocitos/inmunología , Hepatocitos/parasitología , Humanos , Macrófagos del Hígado/inmunología , Macrófagos del Hígado/parasitología , Malaria/inmunología , Malaria/parasitología , Modelos Biológicos , Plasmodium/inmunología , Plasmodium/fisiología , Esporozoítos/inmunología
9.
Int J Parasitol ; 38(6): 655-72, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18005972

RESUMEN

Plasmodium gallinaceum typically causes sub-clinical disease with low mortality in its primary host, the Indian jungle fowl Gallus sonnerati. Domestic chickens of European origin, however, are highly susceptible to this avian malaria parasite. Here we describe the development of P. gallinaceum in young White Leghorn chicks with emphasis on the primary exoerythrocytic phase of the infection. Using various regimens for infection, we found that P. gallinaceum induced a transient primary exoerythrocytic infection followed by a fulminant lethal erythrocytic phase. Prerequisite for the appearance of secondary exoerythrocytic stages was the development of a certain level of parasitaemia. Once established, secondary exoerythrocytic stages could be propagated from bird to bird for several generations without causing fatalities. Infected brains contained large secondary exoerythrocytic stages in capillary endothelia, while in the liver primary and secondary erythrocytic stages developed primarily in Kupffer cells and remained smaller. At later stages, livers exhibited focal hepatocyte necrosis, Kupffer cell hyperplasia, stellate cell proliferation, inflammatory cell infiltration and granuloma formation. Because P. gallinaceum selectively infected Kupffer cells in the liver and caused a histopathology strikingly similar to mammalian species, this avian Plasmodium species represents an evolutionarily closely related model for studies on the hepatic phase of mammalian malaria.


Asunto(s)
Pollos/parasitología , Plasmodium gallinaceum/crecimiento & desarrollo , Enfermedades de las Aves de Corral/parasitología , Animales , Encéfalo/parasitología , Hígado/parasitología , Hígado/patología , Malaria Aviar/inmunología , Malaria Aviar/parasitología , Malaria Aviar/patología , Microscopía Electrónica
10.
PLoS Biol ; 3(6): e192, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15901208

RESUMEN

Plasmodium sporozoite invasion of liver cells has been an extremely elusive event to study. In the prevailing model, sporozoites enter the liver by passing through Kupffer cells, but this model was based solely on incidental observations in fixed specimens and on biochemical and physiological data. To obtain direct information on the dynamics of sporozoite infection of the liver, we infected live mice with red or green fluorescent Plasmodium berghei sporozoites and monitored their behavior using intravital microscopy. Digital recordings show that sporozoites entering a liver lobule abruptly adhere to the sinusoidal cell layer, suggesting a high-affinity interaction. They glide along the sinusoid, with or against the bloodstream, to a Kupffer cell, and, by slowly pushing through a constriction, traverse across the space of Disse. Once inside the liver parenchyma, sporozoites move rapidly for many minutes, traversing several hepatocytes, until ultimately settling within a final one. Migration damage to hepatocytes was confirmed in liver sections, revealing clusters of necrotic hepatocytes adjacent to structurally intact, sporozoite-infected hepatocytes, and by elevated serum alanine aminotransferase activity. In summary, malaria sporozoites bind tightly to the sinusoidal cell layer, cross Kupffer cells, and leave behind a trail of dead hepatocytes when migrating to their final destination in the liver.


Asunto(s)
Hígado/parasitología , Malaria/patología , Plasmodium berghei/patogenicidad , Esporozoítos/patogenicidad , Aedes/parasitología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cartilla de ADN , Modelos Animales de Enfermedad , Hígado/patología , Malaria/parasitología , Ratones , Microscopía Fluorescente , Datos de Secuencia Molecular , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo
11.
Int J Parasitol ; 36(12): 1283-93, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16890231

RESUMEN

The liver stages of Plasmodium, the causative agent of malaria, are the least explored forms in the parasite's life cycle despite their recognition as key vaccine and drug targets. In vivo experimental access to liver stages of human malaria parasites is practically prohibited and therefore rodent model malaria parasites have been used for in vivo studies. However, even in rodent models progress in the analysis of liver stages has been limited, mainly due to their low abundance and associated difficulties in visualisation and isolation. Here, we present green fluorescent protein (GFP)-tagged Plasmodium yoelii rodent malaria parasite liver infections in BALB/c mice as an excellent quantitative model for the live visualisation and isolation of the so far elusive liver stages. We believe P. yoelii GFP-tagged liver stages allow, for the first time, the efficient quantitative isolation of intact early and late liver stage-infected hepatocyte units by fluorescence activated cell sorting. GFP-tagged liver stages are also well suited for intravital imaging, allowing us for the first time to visualise them in real time. We identify previously unrecognised features of liver stages including vigorous parasite movement and expulsion of 'extrusomes'. Intravital imaging thus reveals new, important information on the malaria parasite's transition from tissue to blood stage.


Asunto(s)
Parasitosis Hepáticas/parasitología , Malaria/parasitología , Plasmodium yoelii/aislamiento & purificación , Animales , Animales Modificados Genéticamente , Línea Celular , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo/métodos , Genotipo , Proteínas Fluorescentes Verdes , Hepatocitos/parasitología , Hígado/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microscopía Fluorescente/métodos , Fenotipo , Plasmodium berghei/genética , Plasmodium berghei/aislamiento & purificación , Plasmodium yoelii/genética , Transfección/métodos
12.
Sci Rep ; 6: 32575, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27624667

RESUMEN

Malaria eradication will require a combination of vector control, chemotherapy and an easily administered vaccine. Sterile immunity can be elicited in humans by immunization with sporozoites, the infective stage injected by bite of the mosquito vector, however, whole parasite vaccines present formidable logistical challenges for production, storage and administration. The "gold standard" for infectious disease eradiation, the Smallpox Eradication Programme, utilized mass immunization using the skin scarification (SS) route. SS may more closely mimic the natural route of malaria infection initiated by sporozoites injected by mosquito bite which elicits both neutralizing antibodies and protective cell mediated immunity. We investigated the potential of SS immunization using a malaria repeat peptide containing a protective B cell epitope of Plasmodium falciparum, the most lethal human species, and delivery vehicles containing TLR agonists as adjuvants. In a murine model, SS immunization with peptide in combination with TLR-7/8 and -9 agonists elicited high levels of systemic sporozoite neutralizing antibody, Th1- type CD4+ T cells and resistance to challenge by bites of infected mosquitoes. SS provides the potential to elicit humoral immunity to target Plasmodium at multiple stages of its complex life cycle.


Asunto(s)
Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Plasmodium falciparum/efectos de los fármacos , Esporozoítos/efectos de los fármacos , Adyuvantes Inmunológicos/administración & dosificación , Animales , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Humanos , Inmunización , Estadios del Ciclo de Vida/efectos de los fármacos , Estadios del Ciclo de Vida/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Ratones , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Esporozoítos/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
14.
Front Microbiol ; 6: 482, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074888

RESUMEN

Plasmodium falciparum malaria remains one of the most serious health problems globally. Immunization with attenuated parasites elicits multiple cellular effector mechanisms capable of eliminating Plasmodium liver stages. However, malaria liver stage (LS) immunity is complex and the mechanisms effector T cells use to locate the few infected hepatocytes in the large liver in order to kill the intracellular LS parasites remain a mystery to date. Here, we review our current knowledge on the behavior of CD8 effector T cells in the hepatic microvasculature, in malaria and other hepatic infections. Taking into account the unique immunological and lymphogenic properties of the liver, we discuss whether classical granule-mediated cytotoxicity might eliminate infected hepatocytes via direct cell contact or whether cytokines might operate without cell-cell contact and kill Plasmodium LSs at a distance. A thorough understanding of the cellular effector mechanisms that lead to parasite death hence sterile protection is a prerequisite for the development of a successful malaria vaccine to protect the 40% of the world's population currently at risk of Plasmodium infection.

15.
Trends Parasitol ; 20(9): 417-24, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15324732

RESUMEN

Malaria infection is caused by sporozoites, the life cycle stage of Plasmodium that is transmitted by female anopheline mosquitoes. The inoculated sporozoites migrate in the skin, enter a capillary and use the bloodstream for the long haul to the liver. Here, the parasites invade hepatocytes and differentiate to thousands of merozoites that specifically infect red blood cells. Hepatocytes, however, are not directly accessible to sporozoites entering the liver sinusoid. The liver phase of the malaria life cycle can occur only if the parasites first cross the layer of sinusoidal cells that line the liver capillaries. Experimental observations show that sporozoite entry into the liver parenchyma involves a complex cascade of events, from binding to extracellular matrix proteoglycans via passage through Kupffer cells and transmigration through several hepatocytes, until the final host cell is found. By choosing the liver as their initial site of replication, Plasmodium sporozoites can exploit the tolerogenic properties of this unique immune organ to evade the host's immune response.


Asunto(s)
Hígado/parasitología , Malaria/parasitología , Plasmodium/fisiología , Animales , Anopheles/parasitología , Femenino , Hepatocitos/inmunología , Hepatocitos/parasitología , Humanos , Macrófagos del Hígado/inmunología , Macrófagos del Hígado/parasitología , Malaria/inmunología , Plasmodium/inmunología , Plasmodium/patogenicidad , Piel/inmunología , Piel/parasitología , Esporozoítos
16.
Mol Biochem Parasitol ; 126(2): 263-73, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12615325

RESUMEN

Thrombospondin-related anonymous protein (TRAP) is a type 1 transmembrane protein that plays an essential role in gliding motility and cell invasion by Plasmodium sporozoites. It is stored in micronemes-secretory organelles located primarily in the apical end of the parasites and is also found on the parasite surface. The mechanisms that target TRAP and other sporozoite proteins to micronemes and subsequently to the parasite surface are not known. Here we report that the micronemal and surface localization of TRAP requires a tyrosine-based motif located in its cytoplasmic tail. This motif is analogous to the YXXphi motif (Y: tyrosine, X: any amino acid; phi: hydrophobic amino acid) that targets eukaryotic proteins to certain sub-cellular compartments and to the plasma membrane. Abrogating the Y motif substantially reduces micronemal and cell surface localization of TRAP. The infectivity of mutant parasites is substantially inhibited. However, there is no significant difference in the amounts of TRAP secreted into the culture medium by wild type and mutant parasites, suggesting that TRAP destined for secretion bypasses micronemal localization.


Asunto(s)
Plasmodium/patogenicidad , Proteínas Protozoarias/genética , Trombospondinas/fisiología , Secuencia de Aminoácidos , Animales , Técnica del Anticuerpo Fluorescente Indirecta , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Mutagénesis Insercional , Sistemas de Lectura Abierta , Plasmodium/fisiología , Plasmodium/ultraestructura , Proteínas Protozoarias/fisiología , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Toxoplasma/genética
17.
Int J Parasitol ; 34(9): 991-6, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15313126

RESUMEN

Previous studies have shown that mosquitoes inject Plasmodium sporozoites into avascular portions of the skin of their rodent host rather than directly into the blood circulation. Then, over time, these sporozoites move into the circulation, from where they reach the liver to initiate a malaria infection. By use of intravital microscopy of the skin, we present direct morphological evidence of mosquito probing that introduces sporozoites into avascular tissue, of the migration of these sporozoites through the dermis and into blood vessels, and of the role of anti-sporozoite antibodies in blocking sporozoite invasion of these dermal blood vessels.


Asunto(s)
Anopheles/parasitología , Anticuerpos Antiprotozoarios/inmunología , Plasmodium berghei/fisiología , Piel/parasitología , Esporozoítos/fisiología , Animales , Anopheles/fisiología , Conducta Alimentaria/fisiología , Interacciones Huésped-Parásitos , Ratones , Microscopía Fluorescente , Plasmodium berghei/inmunología , Piel/irrigación sanguínea
18.
Artículo en Inglés | MEDLINE | ID: mdl-25414834

RESUMEN

Most Plasmodium falciparum-infected children with cerebral malaria (CM) die from respiratory arrest, but the underlying pathology is unclear. Here we present a model in which the ultimate cause of death from CM is severe intracranial hypertension. Dynamic imaging of mice infected with P. berghei ANKA, an accepted model for experimental CM, revealed that leukocyte adhesion impairs the venous blood flow by reducing the functional lumen of postcapillary venules (PCV). The resulting increase in intracranial pressure (ICP) exacerbates cerebral edema formation, a hallmark of both murine and pediatric CM. We propose that two entirely different pathogenetic mechanisms-cytoadherence of P. falciparum-infected erythrocytes in pediatric CM and leukocyte arrest in murine CM-result in the same pathological outcome: a severe increase in ICP leading to brainstem herniation and death from respiratory arrest. The intracranial hypertension (IH) model unifies previous hypotheses, applies to human and experimental CM alike, eliminates the need to explain any selective recognition mechanism Plasmodium might use to target multiple sensitive sites in the brain, and explains how an intravascular parasite can cause so much neuronal dysfunction.


Asunto(s)
Hipertensión Intracraneal/etiología , Hipertensión Intracraneal/mortalidad , Malaria Cerebral/complicaciones , Plasmodium falciparum , Animales , Causas de Muerte , Modelos Animales de Enfermedad , Humanos , Hipertensión Intracraneal/diagnóstico , Ratones
19.
Parasitol Int ; 63(1): 171-86, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24076429

RESUMEN

Plasmodium falciparum malaria is responsible for the deaths of over half a million African children annually. Until a decade ago, dynamic analysis of the malaria parasite was limited to in vitro systems with the typical limitations associated with 2D monocultures or entirely artificial surfaces. Due to extremely low parasite densities, the liver was considered a black box in terms of Plasmodium sporozoite invasion, liver stage development, and merozoite release into the blood. Further, nothing was known about the behavior of blood stage parasites in organs such as the brain where clinical signs manifest and the ensuing immune response of the host that may ultimately result in a fatal outcome. The advent of fluorescent parasites, advances in imaging technology, and availability of an ever-increasing number of cellular and molecular probes have helped illuminate many steps along the pathogenetic cascade of this deadly tropical parasite.


Asunto(s)
Encéfalo/parasitología , Hígado/parasitología , Pulmón/parasitología , Microscopía/métodos , Plasmodium/citología , Animales , Encéfalo/inmunología , Hígado/inmunología , Pulmón/inmunología , Plasmodium/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA