Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959221

RESUMEN

The magnetoelectric material has attracted multidisciplinary interest in the past decade for its potential to accommodate various functions. Especially, the external electric field can drive the quantum behaviors of such materials via the spin-electric coupling effect, with the advantages of high spatial resolution and low energy cost. In this work, the spin-electric coupling effect of Mn2+-doped ferroelectric organic-inorganic hybrid perovskite [(CH3)3NCH2Cl]CdCl3 with a large piezoelectric effect was investigated. The electric field manipulation efficiency for the allowed transitions was determined by the pulsed electron paramagnetic resonance. The orientation-included Hamiltonian of the spin-electric coupling effect was obtained via simulating the angle-dependent electric field modulated continuous-wave electron paramagnetic resonance. The results demonstrate that the applied electric field affects not only the principal values of the zero-field splitting tensor but also its principal axis directions. This work proposes and exemplifies a route to understand the spin-electric coupling effect originating from the crystal field imposed on a spin ion being modified by the applied electric field, which may guide the rational screening and designing of hybrid perovskite ferroelectrics that satisfy the efficiency requirement of electric field manipulation of spins in quantum information applications.

2.
Phys Chem Chem Phys ; 26(20): 14832-14838, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38721813

RESUMEN

Magnetic molecules are promising candidates for quantum information processing (QIP) due to their tunable electron structures and quantum properties. A high spin Co(II) complex, CoH2dota, is studied for its potential to be used as a quantum bit (qubit) utilizing continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopy at low temperature. On the X-band microwave energy scale, the system can be treated as an effective spin 1/2 with a strongly anisotropic g-tensor resulting from the significant spin-orbital coupling. An experimental and theoretical study is conducted to investigate the anisotropic Rabi oscillations of the two magnetically equivalent spin centres with different orientations in a single crystal sample, which aims to verify the relationship between the Rabi frequency and the orientation of the g-tensor. The findings of this study show that an effective quantum manipulation method is developed for orthorhombic spin systems.

3.
J Am Chem Soc ; 145(41): 22466-22474, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37738079

RESUMEN

Two-electron oxidations are ubiquitous and play a key role in the synthesis and catalysis. For transition metals and actinides, two-electron oxidation often takes place at a single-metal site. However, redox reactions at rare-earth metals have been limited to one-electron processes due to the lack of accessible oxidation states. Despite recent advancements in nontraditional oxidation state chemistry, the low stability of low-valent compounds and large disparity among different oxidation states prevented the implementation of two-electron processes at a single rare-earth metal center. Here we report two-electron oxidations at a cerium(II) center to yield cerium(IV) terminal oxo and imido complexes. A series of cerium(II-IV) complexes supported by a tripodal tris(amido)arene ligand were synthesized and characterized. Experimental and theoretical studies revealed that the cerium(II) complex is best described as a 4f2 ion stabilized by δ-backdonation to the anchoring arene, while the cerium(IV) oxo and imido complexes exhibit multiple bonding characters. The accomplishment of two-electron oxidations at a single cerium center brings a new facet to molecular rare-earth metal chemistry.

4.
J Am Chem Soc ; 144(19): 8605-8612, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35512343

RESUMEN

Manipulating quantum properties by electric fields using spin-electric coupling (SEC) effects promises spatial addressability. While several studies about inorganic materials showing the SEC functionality have been reported, the vastly tunable crystal structures of molecular ferroelectrics provide a range of rationally designable materials yet to be exploited. In this work, Mn2+-doped molecular ferroelectrics are chosen to experimentally demonstrate the feasibility of achieving the quantum coherent SEC effect in molecular ferroelectrics for the first time. The electric field pulse applied between Hahn-echo pulses in electron paramagnetic resonance (EPR) experiments causes controllable phase shifts via manipulating of the zero-field splitting (ZFS) of the Mn(II) ions. Detailed investigations of the aMn crystal showed unexpected SEC vanishment and enhancement at different crystal orientations, which were elucidated by studying the spin Hamiltonian and magnetic anisotropy. With the enhanced SEC efficiency being achieved (0.68 Hz m/V), this work discovers an emerging material library of molecular ferroelectrics to implement coherent quantum control with selective and tunable SEC effects toward highly scalable quantum gates.

5.
Angew Chem Int Ed Engl ; 61(8): e202115263, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-34913233

RESUMEN

Endohedral nitrogen fullerenes have been proposed as building blocks for quantum information processing due to their long spin coherence time. However, addressability of the individual electron spin levels in such a multiplet system of 4 S3/2 has never been achieved because of the molecular isotropy and transition degeneracy among the Zeeman levels. Herein, by molecular engineering, we lifted the degeneracy by zero-field splitting effects and made the multiple transitions addressable by a liquid-crystal-assisted method. The endohedral nitrogen fullerene derivatives with rigid addends of spiro structure and large aspect ratios of regioselective bis-addition improve the ordering of the spin ensemble. These samples empower endohedral-fullerene-based qudits, in which the transitions between the 4 electron spin levels were respectively addressed and coherently manipulated. The quantum geometric phase manipulation, which has long been proposed for the advantages in error tolerance and gating speed, was implemented in a pure electron spin system using molecules for the first time.

6.
Angew Chem Int Ed Engl ; 61(52): e202212939, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36310119

RESUMEN

Magnetic molecules have shown great potential in quantum information processing due to the chemical tunablity of their quantum behaviors. Chemical derivatives of endohedral nitrogen fullerenes with long coherence time and rich energy levels were synthesized and studied to demonstrate the ability of multiprocessing in quantum information using electron magnetic resonance. After initialization of the 12-levelled spin system, subgroups of spin energy levels coursed by the hyperfine couplings can be selectively manipulated. The cooperatively combining of the parallel calculations enabled quantum error correction, increasing the correct rate by up to 17.82 %. Also, different subgroups of transitions divided by hyperfine coupling can be treated as independent qubits, and multi-task quantum computing were realized by performing Z-gate and X-gate simultaneously, which accelerates the overall gating speed.

7.
Nat Commun ; 14(1): 4657, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537160

RESUMEN

Understanding and exploiting the redox properties of uranium is of great importance because uranium has a wide range of possible oxidation states and holds great potential for small molecule activation and catalysis. However, it remains challenging to stabilise both low and high-valent uranium ions in a preserved ligand environment. Herein we report the synthesis and characterisation of a series of uranium(II-VI) complexes supported by a tripodal tris(amido)arene ligand. In addition, one- or two-electron redox transformations could be achieved with these compounds. Moreover, combined experimental and theoretical studies unveiled that the ambiphilic uranium-arene interactions are the key to balance the stabilisation of low and high-valent uranium, with the anchoring arene acting as a δ acceptor or a π donor. Our results reinforce the design strategy to incorporate metal-arene interactions in stabilising multiple oxidation states, and open up new avenues to explore the redox chemistry of uranium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA