Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 971
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(4): 943-956.e18, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33571432

RESUMEN

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores de Dopamina D1/metabolismo , Transducción de Señal , Regulación Alostérica , Sitio Alostérico , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Catecoles/metabolismo , Microscopía por Crioelectrón , Fenoldopam/química , Fenoldopam/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/ultraestructura , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Multimerización de Proteína , Receptores de Dopamina D1/química , Receptores de Dopamina D1/ultraestructura , Receptores de Dopamina D2/metabolismo , Homología Estructural de Proteína
2.
Mol Cell ; 83(17): 3171-3187.e7, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37597514

RESUMEN

Hydroxycarboxylic acid receptor 2 (HCAR2), modulated by endogenous ketone body ß-hydroxybutyrate and exogenous niacin, is a promising therapeutic target for inflammation-related diseases. HCAR2 mediates distinct pathophysiological events by activating Gi/o protein or ß-arrestin effectors. Here, we characterize compound 9n as a Gi-biased allosteric modulator (BAM) of HCAR2 and exhibit anti-inflammatory efficacy in RAW264.7 macrophages via a specific HCAR2-Gi pathway. Furthermore, four structures of HCAR2-Gi complex bound to orthosteric agonists (niacin or monomethyl fumarate), compound 9n, and niacin together with compound 9n simultaneously reveal a common orthosteric site and a unique allosteric site. Combined with functional studies, we decipher the action framework of biased allosteric modulation of compound 9n on the orthosteric site. Moreover, co-administration of compound 9n with orthosteric agonists could enhance anti-inflammatory effects in the mouse model of colitis. Together, our study provides insight to understand the molecular pharmacology of the BAM and facilitates exploring the therapeutic potential of the BAM with orthosteric drugs.


Asunto(s)
Colitis , Receptores Acoplados a Proteínas G , Animales , Ratones , Regulación Alostérica , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Inflamación/tratamiento farmacológico , Cuerpos Cetónicos , Niacina/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
3.
J Biol Chem ; 300(8): 107556, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002683

RESUMEN

Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.

4.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38048079

RESUMEN

Identification of viruses and further assembly of viral genomes from the next-generation-sequencing data are essential steps in virome studies. This study presented a one-stop tool named VIGA (available at https://github.com/viralInformatics/VIGA) for eukaryotic virus identification and genome assembly from NGS data. It was composed of four modules, namely, identification, taxonomic annotation, assembly and novel virus discovery, which integrated several third-party tools such as BLAST, Trinity, MetaCompass and RagTag. Evaluation on multiple simulated and real virome datasets showed that VIGA assembled more complete virus genomes than its competitors on both the metatranscriptomic and metagenomic data and performed well in assembling virus genomes at the strain level. Finally, VIGA was used to investigate the virome in metatranscriptomic data from the Human Microbiome Project and revealed different composition and positive rate of viromes in diseases of prediabetes, Crohn's disease and ulcerative colitis. Overall, VIGA would help much in identification and characterization of viromes, especially the known viruses, in future studies.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento , Genoma Viral , Metagenoma
5.
Proc Natl Acad Sci U S A ; 119(42): e2204465119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215495

RESUMEN

Airborne bacteria are an influential component of the Earth's microbiomes, but their community structure and biogeographic distribution patterns have yet to be understood. We analyzed the bacterial communities of 370 air particulate samples collected from 63 sites around the world and constructed an airborne bacterial reference catalog with more than 27 million nonredundant 16S ribosomal RNA (rRNA) gene sequences. We present their biogeographic pattern and decipher the interlacing of the microbiome co-occurrence network with surface environments of the Earth. While the total abundance of global airborne bacteria in the troposphere (1.72 × 1024 cells) is 1 to 3 orders of magnitude lower than that of other habitats, the number of bacterial taxa (i.e., richness) in the atmosphere (4.71 × 108 to 3.08 × 109) is comparable to that in the hydrosphere, and its maximum occurs in midlatitude regions, as is also observed in other ecosystems. The airborne bacterial community harbors a unique set of dominant taxa (24 species); however, its structure appears to be more easily perturbed, due to the more prominent role of stochastic processes in shaping community assembly. This is corroborated by the major contribution of surface microbiomes to airborne bacteria (averaging 46.3%), while atmospheric conditions such as meteorological factors and air quality also play a role. Particularly in urban areas, human impacts weaken the relative importance of plant sources of airborne bacteria and elevate the occurrence of potential pathogens from anthropogenic sources. These findings serve as a key reference for predicting planetary microbiome responses and the health impacts of inhalable microbiomes with future changes in the environment.


Asunto(s)
Microbiología del Aire , Microbiota , Efectos Antropogénicos , Bacterias/genética , Humanos , Microbiota/genética , ARN Ribosómico 16S/genética
6.
Neurobiol Dis ; : 106626, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122123

RESUMEN

The kidney-brain axis is a bidirectional communication network connecting the kidneys and the brain, potentially affected by inflammation, uremic toxin, vascular injury, neuronal degeneration, and so on, leading to a range of diseases. Numerous studies emphasize the disruptions of the kidney-brain axis may contribute to the high morbidity of neurological disorders, such as cognitive impairment (CI) in the natural course of chronic kidney disease (CKD). Although the pathophysiology of the kidney-brain axis has not been fully elucidated, epidemiological data indicate that patients at all stages of CKD have a higher risk of developing CI compared with the general population. In contrast to other reviews, we mentioned some commonly used medicines in CKD that may play a pivotal role in the pathogenesis of CI. Revealing the pathophysiology interactions between kidney damage and brain function can reduce the potential risk of future CI. This review will deeply explore the characteristics, indicators, and potential pathophysiological mechanisms of CKD-related CI. It will provide a theoretical basis for identifying CI that progresses during CKD and ultimately prevents and treats CKD-related CI.

7.
Small ; 20(10): e2305767, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37919097

RESUMEN

Low-dimensional materials serving as photocatalysts favor providing abundant unsaturated active sites and shortening the charge transport distance, but the high surface energy readily causes the aggregation that limits their application. Herein, it is demonstrated that 2D covalent organic framework (COF) TpBD nanosheets are effective in the dispersion and stabilization of 0D Ni(OH)2 . The COF precursor TpBD is synthesized from the Schiff base condensation of 1,3,5-triformylphloroglucinol (Tp) and benzidine (BD) and exfoliated into 2D nanosheets named BDNs via ultrasonication. The formation of highly dispersive 0D Ni(OH)2 on BDNs is reached under a mild weak basic condition, enabling robust active sites for CO2 adsorption/activation and rapid interface cascaded electron transport channels for the accumulation of long-lived photo-generated charges. The champion catalyst 30%Ni-BDNs effectively catalyze the CO2 to CO conversion under visible-light irradiation, offering a high CO evolution rate of 158.4 mmol g-1 h-1 and turnover frequency of 51 h-1 . By contrast, the counterpart photocatalyst, the bulk TpBD stabilized Ni(OH)2 , affords a much lower CO evolution rate and selectivity. This work demonstrates a new avenue to simultaneously construct efficient active sites and electron transport channels by coupling 0D metal hydroxides and 2D COF nanosheets for CO2 photoreduction.

8.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36377755

RESUMEN

Virus-encoded small RNAs (vsRNA) have been reported to play an important role in viral infection. Unfortunately, there is still a lack of an effective method for vsRNA identification. Herein, we presented vsRNAfinder, a de novo method for identifying high-confidence vsRNAs from small RNA-Seq (sRNA-Seq) data based on peak calling and Poisson distribution and is publicly available at https://github.com/ZenaCai/vsRNAfinder. vsRNAfinder outperformed two widely used methods namely miRDeep2 and ShortStack in identifying viral miRNAs with a significantly improved sensitivity. It can also be used to identify sRNAs in animals and plants with similar performance to miRDeep2 and ShortStack. vsRNAfinder would greatly facilitate effective identification of vsRNAs from sRNA-Seq data.


Asunto(s)
MicroARNs , Animales , RNA-Seq , MicroARNs/genética , Análisis de Secuencia de ARN/métodos
9.
Cancer Cell Int ; 24(1): 224, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943199

RESUMEN

BACKGROUND: Despite effective strategies, resistance in EGFR mutated lung cancer remains a challenge. Metabolic reprogramming is one of the main mechanisms of tumor drug resistance. A class of drugs known as "statins" inhibit lipid cholesterol metabolism and are widely used in patients with cardiovascular diseases. Previous studies have also documented its ability to improve the therapeutic impact in lung cancer patients who receive EGFR-TKI therapy. Therefore, the effect of statins on targeted drug resistance to lung cancer remains to be investigated. METHODS: Prolonged exposure to gefitinib resulted in the emergence of a resistant lung cancer cell line (PC9GR) from the parental sensitive cell line (PC9), which exhibited a traditional EGFR mutation. The CCK-8 assay was employed to assess the impact of various concentrations of pitavastatin on cellular proliferation. RNA sequencing was conducted to detect differentially expressed genes and their correlated pathways. For the detection of protein expression, Western blot was performed. The antitumor activity of pitavastatin was evaluated in vivo via a xenograft mouse model. RESULTS: PC9 gefitinib resistant strains were induced by low-dose maintenance. Cell culture and animal-related studies validated that the application of pitavastatin inhibited the proliferation of lung cancer cells, promoted cell apoptosis, and restrained the acquired resistance to EGFR-TKIs. KEGG pathway analysis showed that the hippo/YAP signaling pathway was activated in PC9GR cells relative to PC9 cells, and the YAP expression was inhibited by pitavastatin administration. With YAP RNA interference, pAKT, pBAD and BCL-2 expression was decreased, while BAX expression as increased. Accordingly, YAP down-regulated significantly increased apoptosis and decreased the survival rate of gefitinib-resistant lung cancer cells. After pAKT was increased by SC79, apoptosis of YAP down-regulated cells induced by gefitinib was decreased, and the cell survival rate was increased. Mechanistically, these effects of pitavastatin are associated with the YAP pathway, thereby inhibiting the downstream AKT/BAD-BCL-2 signaling pathway. CONCLUSION: Our study provides a molecular basis for the clinical application of the lipid-lowering drug pitavastatin enhances the susceptibility of lung cancer to EGFR-TKI drugs and alleviates drug resistance.

10.
Cell Commun Signal ; 22(1): 343, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907279

RESUMEN

Mitochondria are central to endothelial cell activation and angiogenesis, with the RNA polymerase mitochondrial (POLRMT) serving as a key protein in regulating mitochondrial transcription and oxidative phosphorylation. In our study, we examined the impact of POLRMT on angiogenesis and found that its silencing or knockout (KO) in human umbilical vein endothelial cells (HUVECs) and other endothelial cells resulted in robust anti-angiogenic effects, impeding cell proliferation, migration, and capillary tube formation. Depletion of POLRMT led to impaired mitochondrial function, characterized by mitochondrial depolarization, oxidative stress, lipid oxidation, DNA damage, and reduced ATP production, along with significant apoptosis activation. Conversely, overexpressing POLRMT promoted angiogenic activity in the endothelial cells. In vivo experiments demonstrated that endothelial knockdown of POLRMT, by intravitreous injection of endothelial specific POLRMT shRNA adeno-associated virus, inhibited retinal angiogenesis. In addition, inhibiting POLRMT with a first-in-class inhibitor IMT1 exerted significant anti-angiogenic impact in vitro and in vivo. Significantly elevated expression of POLRMT was observed in the retinal tissues of streptozotocin-induced diabetic retinopathy (DR) mice. POLRMT endothelial knockdown inhibited pathological retinal angiogenesis and mitigated retinal ganglion cell (RGC) degeneration in DR mice. At last, POLRMT expression exhibited a substantial increase in the retinal proliferative membrane tissues of human DR patients. These findings collectively establish the indispensable role of POLRMT in angiogenesis, both in vitro and in vivo.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Células Endoteliales de la Vena Umbilical Humana , Mitocondrias , Humanos , Animales , Ratones , Mitocondrias/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/genética , Ratones Endogámicos C57BL , Proliferación Celular , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Masculino , Neovascularización Fisiológica/genética , Movimiento Celular , Apoptosis , Angiogénesis
11.
Soft Matter ; 20(8): 1905-1912, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38323340

RESUMEN

The spontaneous emulsification for the formation of water-in-oil (W/O) or oil-in-water (O/W) emulsions needs the help of at least one kind of the third component (surfactant or cosolvent) to stabilize the oil-water interface. Herein, with the water/CS2-soluble polymer poly(N,N-diethylacrylamide) (PDEAM) as a surfactant, the spontaneous formation of water-in-PDEAM/CS2 emulsions is reported for the first time. The strong affinity between PDEAM and water or the increase of PDEAM concentration will accelerate the emulsification process with high dispersed phase content. It is demonstrated that the spontaneous emulsification of condensed water droplets into the PDEAM/CS2 solution occurs during the breath figure process, resulting in porous films with two levels of pore sizes (i.e., micron and submicron). The emulsification degree and the amounts of submicron-sized pores increase with PDEAM concentration and solidifying time of the solution. This work brings about incremental interest in spontaneous emulsification that may happen during the breath figure process. The combination of these two simultaneous processes provides us with an option to build hierarchically porous structures with condensed and emulsified water droplets as templates. Such porous membranes may have great potential in fields such as separation, cell culture, and biosensing.

12.
Inorg Chem ; 63(22): 10366-10372, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38772004

RESUMEN

The accurate manipulation of the species and locations of catalytic centers is crucial for regulating the catalytic activity of catalysts, which is essential for their efficient design and development. Metal-organic frameworks (MOFs) with coordinated metal sites are ideal materials for investigating the origin of catalytic activity. In this study, we present a Ni2-MOF featuring novel Ni-based binuclear nodes with open metal sites (OMSs) and saturated metal sites (SMSs). The nickel was replaced by iron to obtain Ni1Fe1-MOF. In the electrocatalytic oxygen evolution reaction, Ni1Fe1-MOF exhibited an overpotential and Tafel slope of 370 mV@10 mA cm-2 and 87.06 mV dec-1, respectively, which were higher than those of Ni2-MOF (283 mV@10 mA cm-2 and 39.59 mV dec-1, respectively), demonstrating the superior performance of Ni1Fe1-MOF. Furthermore, theoretical calculations revealed that iron as an SMS may effectively regulate the electronic structure of the nickel catalytic center to reduce the free energy barrier ΔG*OH of the rate-determining step.

13.
Acta Pharmacol Sin ; 45(1): 150-165, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37696989

RESUMEN

Kidney fibrosis is the hallmark of chronic kidney disease (CKD) progression, whereas no effective anti-fibrotic therapies exist. Recent evidence has shown that tubular ferroptosis contributes to the pathogenesis of CKD with persistent proinflammatory and profibrotic responses. We previously reported that natural flavonol fisetin alleviated septic acute kidney injury and protected against hyperuricemic nephropathy in mice. In this study, we investigated the therapeutic effects of fisetin against fibrotic kidney disease and the underlying mechanisms. We established adenine diet-induced and unilateral ureteral obstruction (UUO)-induced CKD models in adult male mice. The two types of mice were administered fisetin (50 or 100 mg·kg-1·d-1, i.g.) for 3 weeks or 7 days, respectively. At the end of the experiments, the mice were euthanized, and blood and kidneys were gathered for analyzes. We showed that fisetin administration significantly ameliorated tubular injury, inflammation, and tubulointerstitial fibrosis in the two types of CKD mice. In mouse renal tubular epithelial (TCMK-1) cells, treatment with fisetin (20 µM) significantly suppressed adenine- or TGF-ß1-induced inflammatory responses and fibrogenesis, and improved cell viability. By quantitative real-time PCR analysis of ferroptosis-related genes, we demonstrated that fisetin treatment inhibited ferroptosis in the kidneys of CKD mice as well as in injured TCMK-1 cells, as evidenced by decreased ACSL4, COX2, and HMGB1, and increased GPX4. Fisetin treatment effectively restored ultrastructural abnormalities of mitochondrial morphology and restored the elevated iron, the reduced GSH and GSH/GSSG as well as the increased lipid peroxide MDA in the kidneys of CKD mice. Notably, abnormally high expression of the ferroptosis key marker ACSL4 was verified in the renal tubules of CKD patients (IgAN, MN, FSGS, LN, and DN) as well as adenine- or UUO-induced CKD mice, and in injured TCMK-1 cells. In adenine- and TGF-ß1-treated TCMK-1 cells, ACSL4 knockdown inhibited tubular ferroptosis, while ACSL4 overexpression blocked the anti-ferroptotic effect of fisetin and reversed the cytoprotective, anti-inflammatory, and anti-fibrotic effects of fisetin. In summary, we reveal a novel aspect of the nephroprotective effect of fisetin, i.e. inhibiting ACSL4-mediated tubular ferroptosis against fibrotic kidney diseases.


Asunto(s)
Ferroptosis , Insuficiencia Renal Crónica , Obstrucción Ureteral , Humanos , Masculino , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Riñón/patología , Flavonoles/uso terapéutico , Flavonoles/farmacología , Obstrucción Ureteral/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Fibrosis , Adenina/farmacología
14.
Acta Pharmacol Sin ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043969

RESUMEN

Acute kidney injury (AKI) is a common disease, but lacking effective drug treatments. Chromodomain Y-like (CDYL) is a kind of chromodomain protein that has been implicated in transcription regulation of autosomal dominant polycystic kidney disease. Benzo[d]oxazol-2(3H)-one derivative (compound D03) is the first potent and selective small-molecule inhibitor of CDYL (KD = 0.5 µM). In this study, we investigated the expression of CDYL in three different models of cisplatin (Cis)-, lipopolysaccharide (LPS)- and ischemia/reperfusion injury (IRI)-induced AKI mice. By conducting RNA sequencing and difference analysis of kidney samples, we found that tubular CDYL was abnormally and highly expressed in injured kidneys of AKI patients and mice. Overexpression of CDYL in cisplatin-induced AKI mice aggravated tubular injury and pyroptosis via regulating fatty acid binding protein 4 (FABP4)-mediated reactive oxygen species production. Treatment of cisplatin-induced AKI mice with compound D03 (2.5 mg·kg-1·d-1, i.p.) effectively attenuated the kidney dysfunction, pathological damages and tubular pyroptosis without side effects on liver or kidney function and other tissue injuries. Collectively, this study has, for the first time, explored a novel aspect of CDYL for tubular epithelial cell pyroptosis in kidney injury, and confirmed that inhibition of CDYL might be a promising therapeutic strategy against AKI.

15.
Acta Pharmacol Sin ; 45(6): 1224-1236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467717

RESUMEN

The root of Aconitum carmichaelii Debx. (Fuzi) is an herbal medicine used in China that exerts significant efficacy in rescuing patients from severe diseases. A key toxic compound in Fuzi, aconitine (AC), could trigger unpredictable cardiotoxicities with high-individualization, thus hinders safe application of Fuzi. In this study we investigated the individual differences of AC-induced cardiotoxicities, the biomarkers and underlying mechanisms. Diversity Outbred (DO) mice were used as a genetically heterogeneous model for mimicking individualization clinically. The mice were orally administered AC (0.3, 0.6, 0.9 mg· kg-1 ·d-1) for 7 d. We found that AC-triggered cardiotoxicities in DO mice shared similar characteristics to those observed in clinic patients. Most importantly, significant individual differences were found in DO mice (variation coefficients: 34.08%-53.17%). RNA-sequencing in AC-tolerant and AC-sensitive mice revealed that hemoglobin subunit beta (HBB), a toxic-responsive protein in blood with 89% homology to human, was specifically enriched in AC-sensitive mice. Moreover, we found that HBB overexpression could significantly exacerbate AC-induced cardiotoxicity while HBB knockdown markedly attenuated cell death of cardiomyocytes. We revealed that AC could trigger hemolysis, and specifically bind to HBB in cell-free hemoglobin (cf-Hb), which could excessively promote NO scavenge and decrease cardioprotective S-nitrosylation. Meanwhile, AC bound to HBB enhanced the binding of HBB to ABHD5 and AMPK, which correspondingly decreased HDAC-NT generation and led to cardiomyocytes death. This study not only demonstrates HBB achievement a novel target of AC in blood, but provides the first clue for HBB as a novel biomarker in determining the individual differences of Fuzi-triggered cardiotoxicity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aconitina , Cardiotoxicidad , Histona Desacetilasas , Animales , Ratones , Cardiotoxicidad/metabolismo , Cardiotoxicidad/etiología , Histona Desacetilasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Humanos , Aconitum/química , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Medicamentos Herbarios Chinos/farmacología
16.
BMC Nephrol ; 25(1): 105, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500089

RESUMEN

PURPOSE: The aim of this study was to investigate the effectiveness and safety of the pull-through technique through antegrade radial artery puncture without sheath insertion in balloon-assisted radiocephalic AVF maturation. METHODS: We retrospective studied a total of 62 patients with immature radiocephalic AVF, who received balloon-assisted maturation in our hospital. 15 patients received pull-through technique through radial artery without sheath insertion and 47 patients received treatment through a regular venous approach. RESULTS: The success rate of pull-through technique group and control group was 86.7% (13 out of 15), 89.1% (41 out of 46) respectively. There was no significant difference between two groups (P > 0.05). In our study, there were 2 patients in the pull-through technique group and 3 patients in the control group, which had hematoma in the vein puncture site (P = 0.59). There were also no differences in the primary patency rate between two groups at 6 months and 12 months (76.9% vs 70.7%, 38.4% vs 41.5%, respectively, P > 0.05). CONCLUSION: The pull-through technique through antegrade radial artery without sheath insertion in promoting radiocephalic AVF maturation is effective and safe.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Humanos , Arteria Radial/cirugía , Derivación Arteriovenosa Quirúrgica/efectos adversos , Oclusión de Injerto Vascular/etiología , Grado de Desobstrucción Vascular , Estudios Retrospectivos , Factores de Riesgo , Resultado del Tratamiento , Diálisis Renal/efectos adversos , Fístula Arteriovenosa/etiología , Punciones
17.
Nucleic Acids Res ; 50(20): 11470-11491, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36259644

RESUMEN

Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that depends on the endonuclease SMG6. Here, we show that SMG6 is essential for male germ cell differentiation in mice. Germ-cell conditional knockout (cKO) of Smg6 induces extensive transcriptome misregulation, including a failure to eliminate meiotically expressed transcripts in early haploid cells, and accumulation of NMD target mRNAs with long 3' untranslated regions (UTRs). Loss of SMG6 in the male germline results in complete arrest of spermatogenesis at the early haploid cell stage. We find that SMG6 is strikingly enriched in the chromatoid body (CB), a specialized cytoplasmic granule in male germ cells also harboring PIWI-interacting RNAs (piRNAs) and the piRNA-binding protein PIWIL1. This raises the possibility that SMG6 and the piRNA pathway function together, which is supported by several findings, including that Piwil1-KO mice phenocopy Smg6-cKO mice and that SMG6 and PIWIL1 co-regulate many genes in round spermatids. Together, our results demonstrate that SMG6 is an essential regulator of the male germline transcriptome, and highlight the CB as a molecular platform coordinating RNA regulatory pathways to control sperm production and fertility.


Asunto(s)
Endorribonucleasas , Gránulos de Ribonucleoproteína de Células Germinales , Espermatogénesis , Transcriptoma , Animales , Masculino , Ratones , Células Germinativas/metabolismo , ARN Interferente Pequeño/genética , Espermátides/metabolismo , Espermatogénesis/genética , Endorribonucleasas/metabolismo
18.
Ren Fail ; 46(1): 2343818, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38637281

RESUMEN

BACKGROUND: Neutrophil-to-lymphocyte ratio (NLR) has been suggested to be a prognostic marker for various diseases, but whether NLR dynamics (ΔNLR) is related to mortality and disease severity in patients with septic acute kidney injury (AKI) has not been determined. METHODS: Between August 2013 and August 2021, septic AKI patients at our center were retrospectively enrolled. ΔNLR was defined as the difference between the NLR at septic AKI diagnosis and at hospital admission. The relationship between the ΔNLR and mortality was evaluated by Kaplan-Meier curves, Cox proportional hazards, and cubic spline analyses. The prediction values were compared by area under the receiver-operating characteristic curve (AUROC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI) analyses. RESULTS: Of the 413 participants, the mean age was 63 ± 17 years, and 134 were female (32.4%). According to the median value, patients in the high-ΔNLR group had significantly greater 90-d mortality (74.4% vs. 46.6%, p < 0.001). After adjustment for potential confounders, high ΔNLR remained an independent predictor of 90-d mortality (HR = 2.80; 95% CI = 1.74-4.49, p < 0.001). Furthermore, ΔNLR had the highest AUROC for 90-d mortality (0.685) among the various biomarkers and exhibited an improved NRI (0.314) and IDI (0.027) when incorporated with PCT and CRP. For secondary outcomes, patients with high ΔNLR had increased risk of 30-d mortality (p = 0.004), need for renal replacement therapy (p = 0.011), and developing stage-3 AKI (p = 0.040) according to the adjusted models. CONCLUSIONS: High ΔNLR is independently associated with increased risk of patient mortality and adverse outcomes. ΔNLR might be utilized to facilitate risk stratification and optimize septic AKI management.


Asunto(s)
Lesión Renal Aguda , Neutrófilos , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino , Pronóstico , Estudios de Cohortes , Estudios Retrospectivos , Linfocitos , Lesión Renal Aguda/etiología
19.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1327-1334, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621980

RESUMEN

This study aims to investigate whether baicalin induces ferroptosis in HepG2 cells and decipher the underlying mechanisms based on network pharmacology and cell experiments. HepG2 cells were cultured in vitro and the cell viability was detected by the cell counting kit-8(CCK-8). The transcriptome data of hepatocellular carcinoma were obtained from the Cancer Genome Atlas(TCGA), and the ferroptosis gene data from FerrDb V2. The DEG2 package was used to screen the differentially expressed genes(DEGs), and the common genes between DEGs and ferroptosis genes were selected as the target genes that mediate ferroptosis to regulate hepatocellular carcinoma progression. The functions and structures of the target genes were analyzed by Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment with the thresholds of P<0.05 and |log_2(fold change)|>0.5. DCFH-DA probe was used to detect the changes in the levels of cellular reactive oxygen species(ROS) in each group. The reduced glutathione(GSH) assay kit was used to measure the cellular GSH level, and Fe~(2+) assay kit to determine the Fe~(2+) level. Real-time quantitative PCR(RT-PCR) was employed to measure the mRNA levels of glutathione peroxidase 4(GPX4) and solute carrier family 7 member 11(SLC7A11) in each group. Western blot was employed to determine the protein levels of GPX4, SLC7A11, phosphatidylinositol 3-kinase(PI3K), p-PI3K, protein kinase B(Akt), p-Akt, forkhead box protein O3a(FoxO3a), and p-FoxO3a in each group. The results showed that treatment with 200 µmol·L~(-1) baicalin for 48 h significantly inhibited the viability of HepG2 cells. Ferroptosis in hepatocellular carcinoma could be regulated via the PI3K/Akt signaling pathway. The cell experiments showed that baicalin down-regulated the expression of SLC7A11 and GPX4, lowered the GSH level, and increased ROS accumulation and Fe~(2+) production in HepG2 cells. However, ferrostatin-1, an ferroptosis inhibitor, reduced baicalin-induced ROS accumulation, up-regulated the expression of SLC7A11 and GPX4, elevated the GSH level, and decreased PI3K, Akt, and FoxO3a phosphorylation. In summary, baicalin can induce ferroptosis in HepG2 cells by inhibiting the ROS-mediated PI3K/Akt/FoxO3a pathway.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Flavonoides , Neoplasias Hepáticas , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Especies Reactivas de Oxígeno , Células Hep G2 , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Transducción de Señal
20.
J Biol Chem ; 298(10): 102440, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36049520

RESUMEN

The protostome leucokinin (LK) signaling system, including LK peptides and their G protein-coupled receptors, has been characterized in several species. Despite the progress, molecular mechanisms governing LK peptide-receptor interactions remain to be elucidated. Previously, we identified a precursor protein for Aplysia leucokinin-like peptides (ALKs) that contains the greatest number of amidated peptides among LK precursors in all species identified so far. Here, we identified the first ALK receptor from Aplysia, ALKR. We used cell-based IP1 activation assays to demonstrate that two ALK peptides with the most copies, ALK1 and ALK2, activated ALKR with high potencies. Other endogenous ALK-derived peptides bearing the FXXWX-amide motif also activated ALKR to various degrees. Our examination of cross-species activity of ALKs with the Anopheles LK receptor was consistent with a critical role for the FXXWX-amide motif in receptor activity. Furthermore, we showed, through alanine substitution of ALK1, the highly conserved phenylalanine (F), tryptophan (W), and C-terminal amidation were each essential for receptor activation. Finally, we used an artificial intelligence-based protein structure prediction server (Robetta) and Autodock Vina to predict the ligand-bound conformation of ALKR. Our model predicted several interactions (i.e., hydrophobic interactions, hydrogen bonds, and amide-pi stacking) between ALK peptides and ALKR, and several of our substitution and mutagenesis experiments were consistent with the predicted model. In conclusion, our results provide important information defining possible interactions between ALK peptides and their receptors. The workflow utilized here may be useful for studying other ligand-receptor interactions for a neuropeptide signaling system, particularly in protostomes.


Asunto(s)
Aplysia , Inteligencia Artificial , Neuropéptidos , Receptores de Neuropéptido , Animales , Amidas , Aplysia/genética , Aplysia/metabolismo , Ligandos , Mutagénesis , Neuropéptidos/química , Neuropéptidos/genética , Conformación Proteica , Receptores de Neuropéptido/química , Receptores de Neuropéptido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA