Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(27): 15488-15495, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32602517

RESUMEN

The design and realization of novel 2D materials and their functionalities have been a focus of research inspired by the successful synthesis of graphene and many other 2D materials. In this study, in view of first principles calculations, we predict a novel 2D material ruthenium carbide (RuC) in graphene-like honeycomb hexagonal lattice with planar geometry. Phonon dispersion spectra display a dynamically stable structure. Comprehensive molecular dynamics calculations confirm the stability of the structure up to high temperatures as ≈1000 K. The system is a narrow gap semiconductor with a band gap of 53 meV (345 meV) due to GGA-PBE (HSE) calculations. Band gap exhibits significant changes by applied strain. Elastic and optical properties of the system are examined in monolayer form. RuC/RuC bilayer, RuC/graphene and RuC/h-BN heterostructures are also investigated. By calculating the phonon dispersion it is verified that RuC bilayer is the most stable in AA type-stacking configuration where Ru and C atoms of both layers have identical lateral coordinates. The effects of atomic substitutions on electronic band structures, acting as p-type and n-type doping, are revealed. A novel 3D RuCLi structure is also predicted to be stable and the isolation of its monolayer forms are discussed. Ruthenium carbide, as a 2D material which is dynamically and thermally stable, holds promise for applications in nanoelectronics.

2.
J Phys Condens Matter ; 26(32): 325303, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25049113

RESUMEN

In this paper, we investigate two- and one-dimensional honeycomb structures of boron antimony (BSb) using a first-principles plane wave method within the density functional theory. BSb with a two-dimensional honeycomb structure is a semiconductor with a 0.336 eV band gap. The vacancy defects, such as B, Sb, B + Sb divacancy, and B + Sb antisite disorder affect the electronic and magnetic properties of the 2D BSb sheet. All the structures with vacancies have nonmagnetic metallic characters, while the system with antisite disorder has a semiconducting band structure. We also examine bare and hydrogen-passivated quasi-one-dimensional armchair BSb nanoribbons. The effects of ribbon width (n) on an armchair BSb nanoribbon and hydrogen passivation on both B and Sb edge atoms are considered. The band gaps of bare and H passivated A-Nr-BSb oscillate with increasing ribbon width; this property is important for quantum dots. For ribbon width n = 12, the bare A-Nr-BSb is a nonmagnetic semiconductor with a 0.280 eV indirect band gap, but it becomes a nonmagnetic metal when B edge atoms are passivated with hydrogen. When Sb atoms are passivated with hydrogen, a ferromagnetic half-metallic ground state is observed with 2.09µB magnetic moment. When both B and Sb edges are passivated with hydrogen, a direct gap semiconductor is obtained with 0.490 eV band gap with disappearance of the bands of edge atoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA