Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 626(8001): 1125-1132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355796

RESUMEN

To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage1,2. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery3-6. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans. We show that Balon is a distant homologue of the archaeo-eukaryotic translation factor aeRF1 and is found in 20% of representative bacteria. During cold shock or stationary phase, Balon occupies the ribosomal A site in both vacant and actively translating ribosomes in complex with EF-Tu, highlighting an unexpected role for EF-Tu in the cellular stress response. Unlike typical A-site substrates, Balon binds to ribosomes in an mRNA-independent manner, initiating a new mode of ribosome hibernation that can commence while ribosomes are still engaged in protein synthesis. Our work suggests that Balon-EF-Tu-regulated ribosome hibernation is a ubiquitous bacterial stress-response mechanism, and we demonstrate that putative Balon homologues in Mycobacteria bind to ribosomes in a similar fashion. This finding calls for a revision of the current model of ribosome hibernation inferred from common model organisms and holds numerous implications for how we understand and study ribosome hibernation.


Asunto(s)
Proteínas Bacterianas , Respuesta al Choque por Frío , Factores de Terminación de Péptidos , Biosíntesis de Proteínas , Psychrobacter , Proteínas Ribosómicas , Ribosomas , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Ribosomas/química , Ribosomas/metabolismo , Ribosomas/ultraestructura , Psychrobacter/química , Psychrobacter/genética , Psychrobacter/metabolismo , Psychrobacter/ultraestructura , Microscopía por Crioelectrón , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/ultraestructura
2.
Nucleic Acids Res ; 52(7): 4053-4066, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38407413

RESUMEN

During stress conditions such as heat shock and antibiotic exposure, ribosomes stall on messenger RNAs, leading to inhibition of protein synthesis. To remobilize ribosomes, bacteria use rescue factors such as HflXr, a homolog of the conserved housekeeping GTPase HflX that catalyzes the dissociation of translationally inactive ribosomes into individual subunits. Here we use time-resolved cryo-electron microscopy to elucidate the mechanism of ribosome recycling by Listeria monocytogenes HflXr. Within the 70S ribosome, HflXr displaces helix H69 of the 50S subunit and induces long-range movements of the platform domain of the 30S subunit, disrupting inter-subunit bridges B2b, B2c, B4, B7a and B7b. Our findings unveil a unique ribosome recycling strategy by HflXr which is distinct from that mediated by RRF and EF-G. The resemblance between HflXr and housekeeping HflX suggests that the alternative ribosome recycling mechanism reported here is universal in the prokaryotic kingdom.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Listeria monocytogenes , Ribosomas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Ribosomas/metabolismo , Listeria monocytogenes/metabolismo , Listeria monocytogenes/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/química , Biosíntesis de Proteínas , Modelos Moleculares , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Factor G de Elongación Peptídica/metabolismo , Factor G de Elongación Peptídica/química
3.
Nat Struct Mol Biol ; 31(5): 810-816, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538914

RESUMEN

The frequency of errors upon decoding of messenger RNA by the bacterial ribosome is low, with one misreading event per 1 × 104 codons. In the universal genetic code, the AUN codon box specifies two amino acids, isoleucine and methionine. In bacteria and archaea, decoding specificity of the AUA and AUG codons relies on the wobble avoidance strategy that requires modification of C34 in the anticodon loop of isoleucine transfer RNAIleCAU (tRNAIleCAU). Bacterial tRNAIleCAU with 2-lysylcytidine (lysidine) at the wobble position deciphers AUA while avoiding AUG. Here we report cryo-electron microscopy structures of the Escherichia coli 70S ribosome complexed with elongation factor thermo unstable (EF-Tu) and isoleucine-tRNAIleLAU in the process of decoding AUA and AUG. Lysidine in tRNAIleLAU excludes AUG by promoting the formation of an unusual Hoogsteen purine-pyrimidine nucleobase geometry at the third position of the codon, weakening the interactions with the mRNA and destabilizing the EF-Tu ternary complex. Our findings elucidate the molecular mechanism by which tRNAIleLAU specifically decodes AUA over AUG.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli , Modelos Moleculares , Factor Tu de Elongación Peptídica , ARN de Transferencia de Isoleucina , Ribosomas , Factor Tu de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Ribosomas/metabolismo , Ribosomas/ultraestructura , Ribosomas/química , ARN de Transferencia de Isoleucina/metabolismo , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/genética , Codón/metabolismo , Codón/genética , Anticodón/química , Anticodón/metabolismo , Conformación de Ácido Nucleico , Isoleucina/metabolismo , Isoleucina/química , ARN Mensajero/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , Lisina/análogos & derivados , Nucleósidos de Pirimidina
4.
Nat Struct Mol Biol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030416

RESUMEN

Translation termination involves release factors RF1, RF2 and the GTPase RF3 that recycles RF1 and RF2 from the ribosome. RF3 dissociates from the ribosome in the GDP-bound form and must then exchange GDP for GTP. The 70S ribosome termination complex (70S-TC) accelerates GDP exchange in RF3, suggesting that the 70S-TC can function as the guanine nucleotide exchange factor for RF3. Here, we use cryogenic-electron microscopy to elucidate the mechanism of GDP dissociation from RF3 catalyzed by the Escherichia coli 70S-TC. The non-rotated ribosome bound to RF1 remodels RF3 and induces a peptide flip in the phosphate-binding loop, efficiently ejecting GDP. Binding of GTP allows RF3 to dock at the GTPase center, promoting the dissociation of RF1 from the ribosome. The structures recapitulate the functional cycle of RF3 on the ribosome and uncover the mechanism by which the 70S-TC allosterically dismantles the phosphate-binding groove in RF3, a previously overlooked function of the ribosome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA