Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 174(1): 218-230.e13, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29804836

RESUMEN

Ribonucleoprotein enzymes require dynamic conformations of their RNA constituents for regulated catalysis. Human telomerase employs a non-coding RNA (hTR) with a bipartite arrangement of domains-a template-containing core and a distal three-way junction (CR4/5) that stimulates catalysis through unknown means. Here, we show that telomerase activity unexpectedly depends upon the holoenzyme protein TCAB1, which in turn controls conformation of CR4/5. Cells lacking TCAB1 exhibit a marked reduction in telomerase catalysis without affecting enzyme assembly. Instead, TCAB1 inactivation causes unfolding of CR4/5 helices that are required for catalysis and for association with the telomerase reverse-transcriptase (TERT). CR4/5 mutations derived from patients with telomere biology disorders provoke defects in catalysis and TERT binding similar to TCAB1 inactivation. These findings reveal a conformational "activity switch" in human telomerase RNA controlling catalysis and TERT engagement. The identification of two discrete catalytic states for telomerase suggests an intramolecular means for controlling telomerase in cancers and progenitor cells.


Asunto(s)
ARN no Traducido/química , Telomerasa/metabolismo , Biocatálisis , Línea Celular , Células HeLa , Humanos , Chaperonas Moleculares , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , ARN no Traducido/metabolismo , Telomerasa/antagonistas & inhibidores , Telomerasa/química , Telomerasa/genética , Telómero/metabolismo
2.
Nature ; 556(7700): 244-248, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618815

RESUMEN

Hepatocytes are replenished gradually during homeostasis and robustly after liver injury1, 2. In adults, new hepatocytes originate from the existing hepatocyte pool3-8, but the cellular source of renewing hepatocytes remains unclear. Telomerase is expressed in many stem cell populations, and mutations in telomerase pathway genes have been linked to liver diseases9-11. Here we identify a subset of hepatocytes that expresses high levels of telomerase and show that this hepatocyte subset repopulates the liver during homeostasis and injury. Using lineage tracing from the telomerase reverse transcriptase (Tert) locus in mice, we demonstrate that rare hepatocytes with high telomerase expression (TERTHigh hepatocytes) are distributed throughout the liver lobule. During homeostasis, these cells regenerate hepatocytes in all lobular zones, and both self-renew and differentiate to yield expanding hepatocyte clones that eventually dominate the liver. In response to injury, the repopulating activity of TERTHigh hepatocytes is accelerated and their progeny cross zonal boundaries. RNA sequencing shows that metabolic genes are downregulated in TERTHigh hepatocytes, indicating that metabolic activity and repopulating activity may be segregated within the hepatocyte lineage. Genetic ablation of TERTHigh hepatocytes combined with chemical injury causes a marked increase in stellate cell activation and fibrosis. These results provide support for a 'distributed model' of hepatocyte renewal in which a subset of hepatocytes dispersed throughout the lobule clonally expands to maintain liver mass.


Asunto(s)
Hepatocitos/citología , Hepatocitos/enzimología , Homeostasis , Regeneración Hepática , Hígado/citología , Hígado/lesiones , Telomerasa/metabolismo , Animales , Linaje de la Célula/genética , Autorrenovación de las Células/genética , Femenino , Hepatocitos/metabolismo , Homeostasis/genética , Hígado/metabolismo , Hígado/patología , Regeneración Hepática/genética , Masculino , Ratones , Análisis de Secuencia de ARN , Telomerasa/genética
3.
J Neurochem ; 158(5): 1074-1082, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34273193

RESUMEN

Imbalance in the metabolic pathway linking excitatory and inhibitory neurotransmission has been implicated in multiple psychiatric and neurologic disorders. Recently, we described enantiomer-specific effects of 2-methylglutamate, which is not decarboxylated to the corresponding methyl analogue of gamma-aminobutyric acid (GABA): 4-aminopentanoic acid (4APA). Here, we tested the hypothesis that 4APA also has enantiomer-specific actions in brain. Mouse cerebral synaptosome uptake (nmol/mg protein over 30 min) of (R)-4APA or (S)-4APA was time and temperature dependent; however, the R enantiomer had greater uptake, reduction of endogenous GABA concentration, and release following membrane depolarization than did the S enantiomer. (S)-4APA exhibited some weak agonist (GABAA α4ß3δ, GABAA α5ß2γ2, and GABAB B1/B2) and antagonist (GABAA α6ß2γ2) activity while (R)-4APA showed weak agonist activity only with GABAA α5ß2γ2. Both 4APA enantiomers (100 mg/kg IP) were detected in mouse brain 10 min after injection, and by 1 hr had reached concentrations that were stable over 6 hr; both enantiomers were cleared rapidly from mouse serum over 6 hr. Two-month-old mice had no mortality following 100-900 mg/kg IP of each 4APA enantiomer but did have similar dose-dependent reduction in distance moved in a novel cage. Neither enantiomer at 30 or 100 mg/kg impacted outcomes in 23 measures of well-being, activity chamber, or withdrawal from hot plate. Our results suggest that enantiomers of 4APA are active in mouse brain, and that (R)-4APA may act as a novel false neurotransmitter of GABA. Future work will focus on disease models and on possible applications as neuroimaging agents.


Asunto(s)
Conducta Exploratoria/fisiología , Locomoción/fisiología , Neurotransmisores/química , Ácidos Pentanoicos/química , Ácido gamma-Aminobutírico/química , Animales , Encéfalo/metabolismo , Química Encefálica , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/metabolismo , Ácidos Pentanoicos/metabolismo , Ácidos Pentanoicos/farmacología , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Estereoisomerismo , Sinaptosomas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
Cytometry A ; 99(9): 939-945, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33818911

RESUMEN

Mass-tag cell barcoding has increased the throughput, multiplexing, and robustness of multiple cytometry approaches. Previously, we adapted mass cytometry for cells to analyze synaptosome preparations (mass synaptometry or SynTOF), extending mass cytometry to these smaller, anuclear particles. To improve throughput and individual event resolution, we report here the application of palladium-based barcoding in human synaptosomes. Up to 20 individual samples, each with a unique combinatorial barcode, were pooled for labeling with an antibody cocktail. Our synaptosome protocol used six palladium-based barcoding reagents, and in combination with sequential gating increased the identification of presynaptic events approximately fourfold. These same parameters also efficiently resolved two other anuclear particles: human red blood cells and platelets. The addition of palladium-based mass-tag barcoding to our approach improves mass cytometry of synaptic particles.


Asunto(s)
Anticuerpos , Sinaptosomas , Citometría de Flujo , Humanos
5.
J Inherit Metab Dis ; 44(4): 939-948, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33389772

RESUMEN

The severe impact on brain function and lack of effective therapy for patients with creatine (Cr) transporter deficiency motivated the generation of three ubiquitous Slc6a8 deficient mice (-/y). While each mouse knock-out line has similar behavioral effects at 2 to 3 months of age, other features critical to the efficient use of these mice in drug discovery are unclear or lacking: the concentration of Cr in brain and heart differ widely between mouse lines, there are limited data on histopathologic changes, and no data on Cr uptake. Here, we determined survival, measured endogenous Cr and uptake of its deuterium-labeled analogue Cr-d3 using a liquid chromatography coupled with tandem mass spectrometry assay, and performed comprehensive histopathologic examination on the Slc6a8-/y mouse developed by Skelton et al. Our results show that Slc6a8-/y mice have widely varying organ-specific uptake of Cr-d3, significantly diminished growth with the exception of brain, progressive vacuolar myopathy, and markedly shortened lifespan.


Asunto(s)
Encefalopatías Metabólicas Innatas/genética , Creatina/deficiencia , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Animales , Encefalopatías Metabólicas Innatas/patología , Cromatografía Liquida , Creatina/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , Ratones , Ratones Noqueados , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Espectrometría de Masas en Tándem
6.
Mol Neurodegener ; 19(1): 59, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090623

RESUMEN

BACKGROUND: Multiple lines of evidence support peripheral organs in the initiation or progression of Lewy body disease (LBD), a spectrum of neurodegenerative diagnoses that include Parkinson's Disease (PD) without or with dementia (PDD) and dementia with Lewy bodies (DLB). However, the potential contribution of the peripheral immune response to LBD remains unclear. This study aims to characterize peripheral immune responses unique to participants with LBD at single-cell resolution to highlight potential biomarkers and increase mechanistic understanding of LBD pathogenesis in humans. METHODS: In a case-control study, peripheral mononuclear cell (PBMC) samples from research participants were randomly sampled from multiple sites across the United States. The diagnosis groups comprise healthy controls (HC, n = 159), LBD (n = 110), Alzheimer's disease dementia (ADD, n = 97), other neurodegenerative disease controls (NDC, n = 19), and immune disease controls (IDC, n = 14). PBMCs were activated with three stimulants (LPS, IL-6, and IFNa) or remained at basal state, stained by 13 surface markers and 7 intracellular signal markers, and analyzed by flow cytometry, which generated 1,184 immune features after gating. RESULTS: The model classified LBD from HC with an AUROC of 0.87 ± 0.06 and AUPRC of 0.80 ± 0.06. Without retraining, the same model was able to distinguish LBD from ADD, NDC, and IDC. Model predictions were driven by pPLCγ2, p38, and pSTAT5 signals from specific cell populations under specific activation. The immune responses characteristic for LBD were not associated with other common medical conditions related to the risk of LBD or dementia, such as sleep disorders, hypertension, or diabetes. CONCLUSIONS AND RELEVANCE: Quantification of PBMC immune response from multisite research participants yielded a unique pattern for LBD compared to HC, multiple related neurodegenerative diseases, and autoimmune diseases thereby highlighting potential biomarkers and mechanisms of disease.


Asunto(s)
Leucocitos Mononucleares , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/metabolismo , Enfermedad por Cuerpos de Lewy/inmunología , Masculino , Femenino , Anciano , Estudios de Casos y Controles , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Biomarcadores/metabolismo , Persona de Mediana Edad , Estudios de Cohortes , Anciano de 80 o más Años , Cuerpos de Lewy/patología , Cuerpos de Lewy/metabolismo , Análisis de la Célula Individual/métodos
7.
Sci Rep ; 13(1): 13849, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620363

RESUMEN

Comparing brain structure across species and regions enables key functional insights. Leveraging publicly available data from a novel mass cytometry-based method, synaptometry by time of flight (SynTOF), we applied an unsupervised machine learning approach to conduct a comparative study of presynapse molecular abundance across three species and three brain regions. We used neural networks and their attractive properties to model complex relationships among high dimensional data to develop a unified, unsupervised framework for comparing the profile of more than 4.5 million single presynapses among normal human, macaque, and mouse samples. An extensive validation showed the feasibility of performing cross-species comparison using SynTOF profiling. Integrative analysis of the abundance of 20 presynaptic proteins revealed near-complete separation between primates and mice involving synaptic pruning, cellular energy, lipid metabolism, and neurotransmission. In addition, our analysis revealed a strong overlap between the presynaptic composition of human and macaque in the cerebral cortex and neostriatum. Our unique approach illuminates species- and region-specific variation in presynapse molecular composition.


Asunto(s)
Encéfalo , Transmisión Sináptica , Humanos , Animales , Ratones , Corteza Cerebral , Metabolismo de los Lípidos , Macaca
8.
J Cell Sci ; 123(Pt 11): 1922-30, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20460439

RESUMEN

The microenvironment of growth factors in the subependymal zone (SEZ) of the adult brain provides the instructive milieu for neurogenesis to proceed in this germinal niche. In particular, tight regulation of bone morphogenetic protein (BMP) signaling is essential to balance proliferative and non-proliferative cell fate specification. However, the regulatory pathways that control BMP signaling in the SEZ are still poorly defined. We demonstrate that LRP2, a clearance receptor for BMP4 is specifically expressed in ependymal cells of the lateral ventricles in the adult brain. Intriguingly, expression is restricted to the ependyma that faces the stem cell niche. Expression is not seen in ependyma elsewhere in the lateral ventricles or in the dentate gyrus, the second major neurogenic zone of the adult brain. We further show that lack of LRP2 expression in adult mice results in impaired proliferation of neural precursor cells in the SEZ resulting in decreased numbers of neuroblasts reaching the olfactory bulb. Reduced neurogenesis coincides with increased BMP4 expression and enhanced activation of downstream mediators phospho-SMAD1/5/8 and ID3 in the stem cell niche. Our findings suggest a novel mechanism whereby LRP2-mediated catabolism of BMP4 in the ependyma modulates the microenvironment of the SEZ and enables adult neurogenesis to proceed.


Asunto(s)
Células Madre Adultas/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Epéndimo/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Nicho de Células Madre/metabolismo , Células Madre Adultas/citología , Animales , Proteína Morfogenética Ósea 4/genética , Proliferación Celular , Células Cultivadas , Epéndimo/citología , Regulación de la Expresión Génica , Inmunohistoquímica , Proteínas Inhibidoras de la Diferenciación/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Ratones , Ratones Mutantes , Proteínas de Neoplasias/metabolismo , Neurogénesis/genética , Neuronas Receptoras Olfatorias/citología , Eliminación de Secuencia/genética , Transducción de Señal , Proteínas Smad/metabolismo
9.
Dev Dyn ; 240(6): 1567-77, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21455927

RESUMEN

Low-density lipoprotein receptor-related protein 2 (LRP2) is a multifunctional cell surface receptor conserved from nematodes to humans. In mammals, it acts as regulator of sonic hedgehog and bone morphogenetic protein pathways in patterning of the embryonic forebrain and as a clearance receptor in the adult kidney. Little is known about activities of this LRP in other phyla. Here, we extend the functional elucidation of LRP2 to zebrafish as a model organism of receptor (dys)function. We demonstrate that expression of Lrp2 in embryonic and larval fish recapitulates the patterns seen in mammalian brain and kidney. Furthermore, we studied the consequence of receptor deficiencies in lrp2 and in lrp2b, a homologue unique to fish, using ENU mutagenesis or morpholino knockdown. While receptor-deficient zebrafish suffer from overt renal resorption deficiency, their brain development proceeds normally, suggesting evolutionary conservation of receptor functions in pronephric duct clearance but not in patterning of the teleost forebrain.


Asunto(s)
Túbulos Renales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Tasa de Depuración Metabólica/genética , Prosencéfalo/embriología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Túbulos Renales/embriología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/fisiología , Modelos Biológicos , Filogenia , Prosencéfalo/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal/genética , Transducción de Señal/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/fisiología
10.
Methods Mol Biol ; 2417: 69-88, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35099792

RESUMEN

Synaptic degeneration is one of the earliest and phenotypically most significant features associated with numerous neurodegenerative conditions, including Alzheimer's and Parkinson's diseases. Synaptic changes are also known to be important in neurocognitive disorders such as schizophrenia and autism spectrum disorders. Several labs, including ours, have demonstrated that conventional (fluorescence-based) flow cytometry of individual synaptosomes is a robust and reproducible method. However, the repertoire of probes needed to assess comprehensively the type of synapse, pathologic proteins (including protein products of risk genes discovered in GWAS), and markers of stress and injury far exceeds what is achievable with conventional flow cytometry. We recently developed a method that applies CyTOF (Cytometry by Time-Of-Flight mass spectrometry) to high-dimensional analysis of individual human synaptosomes, overcoming many of the multiplexing limitations of conventional flow cytometry. We call this new method Mass Synaptometry. Here we describe the preparation of synaptosomes from human and mouse brain, the generation and quality control of the "SynTOF" (Synapse by Time-Of-Flight mass spectrometry) antibody panel, the staining protocol, and CyTOF parameter setup for acquisition, post-acquisition processing, and analysis.


Asunto(s)
Sinapsis , Sinaptosomas , Animales , Citometría de Flujo , Espectrometría de Masas , Ratones
11.
Eur J Med Chem ; 229: 114080, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34992038

RESUMEN

Mutations in the Leucine Rich Repeat Protein Kinase 2 gene (LRRK2) are the most common genetic causes of Parkinson's Disease (PD). The G2019S mutation is the most common inherited LRRK2 mutation, occurs in the kinase domain, and results in increased kinase activity. We report the discovery and development of compound 38, an indazole-based, G2019S-selective (>2000-fold vs. WT) LRRK2 inhibitor capable of entering rodent brain (Kp = 0.5) and selectively inhibiting G2019S-LRRK2. The compounds disclosed herein present a starting point for further development of brain penetrant G2019S selective inhibitors that hopefully reduce lung phenotype side-effects and pave the way to providing a precision medicine for people with PD who carry the G2019S mutation.


Asunto(s)
Indazoles/síntesis química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Fármacos Neuroprotectores/síntesis química , Enfermedad de Parkinson/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/síntesis química , Animales , Encéfalo , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Humanos , Indazoles/farmacocinética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Pulmón , Masculino , Ratones , Simulación del Acoplamiento Molecular , Mutación , Fármacos Neuroprotectores/farmacocinética , Fenotipo , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacocinética , Roedores , Relación Estructura-Actividad
12.
Eur J Med Chem ; 242: 114693, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36049274

RESUMEN

Mutations in the Leucine Rich Repeat Protein Kinase 2 gene (LRRK2) are genetic predispositions for Parkinson's Disease, of which the G2019S (GS) missense mutation is the most common. GS-LRRK2 has a hyperactive kinase, and although numerous drug discovery programs have targeted the LRRK2 kinase, few have reached clinical trials. We recently reported on the discovery of a novel LRRK2 kinase inhibitor chemotype, 1H-pyrazole biaryl sulfonamides. Although both potent and selective GS-LRRK2 inhibitors, 1H-pyrazole biaryl sulfonamides are incapable of crossing the blood-brain barrier. Retaining the core 1H-pyrazole and focusing our efforts on a phenylsulfonamide bioisosteric replacement, we report the discovery and preliminary development of azaspirocyclic 1H-3,4,5-trisubstituted pyrazoles as potent and selective (>2000-fold) GS-LRRK2 kinase inhibitors capable of entering rodent brain. The compounds disclosed here present an excellent starting point for the development of more brain penetrant compounds.


Asunto(s)
Enfermedad de Parkinson , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico
13.
ACS Med Chem Lett ; 13(6): 981-988, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35707141

RESUMEN

G2019S (GS) is the most prevalent mutation in the leucine rich repeat protein kinase 2 gene (LRRK2), a genetic predisposition that is common for Parkinson's disease, as well as for some forms of cancer, and is a shared risk allele for Crohn's disease. GS-LRRK2 has a hyperactive kinase, and although numerous drug discovery programs have targeted LRRK2 kinase, few have reached clinical development. We report the discovery and preliminary development of an entirely novel structural class of potent and selective GS-LRRK2 kinase inhibitors: biaryl-1H-pyrazoles.

14.
Brain Res ; 1770: 147627, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34418357

RESUMEN

The enzymes glycine amidinotransferase, mitochondrial (GATM also known as AGAT) and guanidinoacetate N-methyltransferase (GAMT) function together to synthesize creatine from arginine, glycine, and S-Adenosyl methionine. Deficiency in either enzyme or the creatine transporter, CT1, results in a devastating neurological disorder, Cerebral Creatine Deficiency Syndrome (CCDS). To better understand the pathophysiology of CCDS, we mapped the distribution of GATM and GAMT at single cell resolution, leveraging RNA sequencing analysis combined with in vivo immunofluorescence (IF). Using the mouse as a model system, we find that GATM and GAMT are coexpressed in several tissues with distinct and overlapping cellular sources, implicating local synthesis as an important mechanism of creatine metabolism in numerous organs. Extending previous findings at the RNA level, our analysis demonstrates that oligodendrocytes express the highest level of Gatm and Gamt of any cell type in the body. We confirm this finding in the mouse brain by IF, where GATM localizes to the mitochondria of oligodendrocytes, whereas both oligodendrocytes and cerebral cortical neurons express GAMT. Interestingly, the latter is devoid of GATM. Single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) analysis of 4 brain regions highlights a similar primacy of oligodendrocytes in the expression of GATM and GAMT in the human central nervous system. Importantly, an active putative regulatory element within intron 2 of human GATM is detected in oligodendrocytes but not neurons.


Asunto(s)
Amidinotransferasas/metabolismo , Encéfalo/metabolismo , Creatina/metabolismo , Guanidinoacetato N-Metiltransferasa/metabolismo , Oligodendroglía/metabolismo , Animales , Ratones , Mitocondrias/metabolismo , Neuronas/metabolismo
15.
Sci Rep ; 11(1): 8138, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854131

RESUMEN

Imbalance of excitatory and inhibitory neurotransmission is implicated in a wide range of psychiatric and neurologic disorders. Here we tested the hypothesis that insertion of a methyl group on the stereogenic alpha carbon of L-Glu or L-Gln would impact the γ-aminobutyric acid (GABA) shunt and the glutamate-glutamine cycle. (S)-2-methylglutamate, or (S)-2MeGlu, was efficiently transported into brain and synaptosomes where it was released by membrane depolarization in a manner equivalent to endogenous L-Glu. (R)-2MeGlu was transported less efficiently into brain and synaptosomes but was not released by membrane depolarization. Each enantiomer of 2MeGlu had limited activity across a panel of over 30 glutamate and GABA receptors. While neither enantiomer of 2MeGlu was metabolized along the GABA shunt, (S)-2MeGlu was selectively converted to (S)-2-methylglutamine, or (S)-2MeGln, which was subsequently slowly hydrolyzed back to (S)-2MeGlu in brain. rac-2MeGln was also transported into brain, with similar efficiency as (S)-2MeGlu. A battery of behavioral tests in young adult wild type mice showed safety with up to single 900 mg/kg dose of (R)-2MeGlu, (S)-2MeGlu, or rac-2MeGln, suppressed locomotor activity with single ≥ 100 mg/kg dose of (R)-2MeGlu or (S)-2MeGlu. No effect on anxiety or hippocampus-dependent learning was evident. Enantiomers of 2MeGlu and 2MeGln show promise as potential pharmacologic agents and imaging probes for cells that produce or transport L-Gln.


Asunto(s)
Encéfalo/metabolismo , Glutamatos/administración & dosificación , Glutamina/administración & dosificación , Sinaptosomas/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Femenino , Glutamatos/química , Glutamatos/farmacocinética , Glutamina/química , Glutamina/farmacocinética , Masculino , Ratones , Cultivo Primario de Células , Estereoisomerismo , Espectrometría de Masas en Tándem , Ácido gamma-Aminobutírico/metabolismo
16.
Sci Adv ; 7(51): eabk0473, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34910503

RESUMEN

Synaptic molecular characterization is limited for Alzheimer's disease (AD). Our newly invented mass cytometry­based method, synaptometry by time of flight (SynTOF), was used to measure 38 antibody probes in approximately 17 million single-synapse events from human brains without pathologic change or with pure AD or Lewy body disease (LBD), nonhuman primates (NHPs), and PS/APP mice. Synaptic molecular integrity in humans and NHP was similar. Although not detected in human synapses, Aß was in PS/APP mice single-synapse events. Clustering and pattern identification of human synapses showed expected disease-specific differences, like increased hippocampal pathologic tau in AD and reduced caudate dopamine transporter in LBD, and revealed previously unidentified findings including increased hippocampal CD47 and lowered DJ1 in AD and higher ApoE in AD with dementia. Our results were independently supported by multiplex ion beam imaging of intact tissue. This highlights the higher depth and breadth of insight on neurodegenerative diseases obtainable through SynTOF.

17.
Sci Adv ; 6(48)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33239300

RESUMEN

Peripheral blood mononuclear cells (PBMCs) may provide insight into the pathogenesis of Alzheimer's disease (AD) or Parkinson's disease (PD). We investigated PBMC samples from 132 well-characterized research participants using seven canonical immune stimulants, mass cytometric identification of 35 PBMC subsets, and single-cell quantification of 15 intracellular signaling markers, followed by machine learning model development to increase predictive power. From these, three main intracellular signaling pathways were identified specifically in PBMC subsets from people with AD versus controls: reduced activation of PLCγ2 across many cell types and stimulations and selectively variable activation of STAT1 and STAT5, depending on stimulant and cell type. Our findings functionally buttress the now multiply-validated observation that a rare coding variant in PLCG2 is associated with a decreased risk of AD. Together, these data suggest enhanced PLCγ2 activity as a potential new therapeutic target for AD with a readily accessible pharmacodynamic biomarker.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Enfermedad de Alzheimer/tratamiento farmacológico , Biomarcadores , Humanos , Leucocitos Mononucleares , Fosfolipasa C gamma
18.
J Neurosci Methods ; 312: 73-83, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30465796

RESUMEN

BACKGROUND: Synaptic alterations, especially presynaptic changes, are cardinal features of neurodegenerative diseases and strongly correlate with cognitive decline. NEW METHOD: We report "Mass Synaptometry" for the high-dimensional analysis of individual human synaptosomes, enriched nerve terminals from brain. This method was adapted from cytometry by time-of-flight mass spectrometry (CyTOF), which is commonly used for single-cell analysis of immune and blood cells. RESULT: Here we overcome challenges for single synapse analysis by optimizing synaptosome preparations, generating a 'SynTOF panel,' recalibrating acquisition settings, and applying computational analyses. Through the analysis of 390,000 individual synaptosomes, we also provide proof-of principle validation by characterizing changes in synaptic diversity in Lewy Body Disease (LBD), Alzheimer's disease and normal brain. COMPARISON WITH EXISTING METHOD(S): Current imaging methods to study synapses in humans are capable of analyzing a limited number of synapses, and conventional flow cytometric techniques are typically restricted to fewer than 6 parameters. Our method allows for the simultaneous detection of 34 parameters from tens of thousands of individual synapses. CONCLUSION: We applied Mass Synaptometry to analyze 34 parameters simultaneously on more than 390,000 synaptosomes from 13 human brain samples. This new approach revealed regional and disease-specific changes in synaptic phenotypes, including validation of this method with the expected changes in the molecular composition of striatal dopaminergic synapses in Lewy body disease and Alzheimer's disease. Mass synaptometry enables highly parallel molecular profiling of individual synaptic terminals.


Asunto(s)
Encéfalo/metabolismo , Espectrometría de Masas/métodos , Análisis de la Célula Individual/métodos , Sinapsis/metabolismo , Enfermedad de Alzheimer/metabolismo , Biología Computacional , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Sinaptosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA