RESUMEN
OBJECTIVE: To evaluate the effects of rehabilitation training of core muscle stability on stroke patients with hemiplegia. METHODS: A total of 180 stroke patients who were hospitalized from December 2017 to December 2018 were enrolled. They were randomly divided into an observation group and a control group (n=90) that both received conventional hemiplegia rehabilitation therapy. On this basis, the observation group was subjected to training for core muscle stability, five times a week for a total of eight weeks. The balance functions before and after training were assessed using the Berg Balance Scale (BBS). The functions of hemiplegic lower limbs were evaluated by Brunnstrom staging and the Fugl-Meyer motor assessment (FMA) scale. The walking speed was estimated using the 10 m walking test. Musculoskeletal ultrasonography was performed to measure the thicknesses of three abdominal muscles of the paralytic side, i.e. transverse abdominis, internal oblique and external oblique muscles. RESULTS: After treatment, the BBS scores of the two groups were significantly higher than those before treatment, with significant differences (P<0.05). The BBS score of the observation group was significantly higher than that of the control group (P<0.05). After treatment, the Brunnstrom stage and FMA scale score, and standing and stepping scores were significantly higher than those before treatment (P<0.05). The Brunnstrom stage, FMA scale score, stepping score and walking speed of the observation group significantly exceeded those of the control group (P<0.05). After treatment, the thicknesses all increased compared with those before treatment, but the thicknesses of internal oblique and external oblique muscles were not significantly different (P>0.05). The thickness of transverse abdominis muscle of the observation group significantly surpassed that before treatment (P<0.05), whereas the thicknesses of the control group were similar (P>0.05). The thickness of transverse abdominis muscle of the observation group was significantly higher than that of the control group (P<0.05). CONCLUSION: Rehabilitation training of core muscle stability can effectively improve the balance function and walking speed of stroke patients, probably by increasing the thickness of transverse abdominis muscle.
RESUMEN
To better understand human adaptation to stress, and in particular to hypoxia, we took advantage of one of nature's experiments at high altitude (HA) and studied Ethiopians, a population that is well-adapted to HA hypoxic stress. Using whole-genome sequencing, we discovered that EDNRB (Endothelin receptor type B) is a candidate gene involved in HA adaptation. To test whether EDNRB plays a critical role in hypoxia tolerance and adaptation, we generated EdnrB knockout mice and found that when EdnrB (-/+) heterozygote mice are treated with lower levels of oxygen (O2), they tolerate various levels of hypoxia (even extreme hypoxia, e.g., 5% O2) very well. For example, they maintain ejection fraction, cardiac contractility, and cardiac output in severe hypoxia. Furthermore, O2 delivery to vital organs was significantly higher and blood lactate was lower in EdnrB (-/+) compared with wild type in hypoxia. Tissue hypoxia in brain, heart, and kidney was lower in EdnrB (-/+) mice as well. These data demonstrate that a lower level of EDNRB significantly improves cardiac performance and tissue perfusion under various levels of hypoxia. Transcriptomic profiling of left ventricles revealed three specific genes [natriuretic peptide type A (Nppa), sarcolipin (Sln), and myosin light polypeptide 4 (Myl4)] that were oppositely expressed (q < 0.05) between EdnrB (-/+) and wild type. Functions related to these gene networks were consistent with a better cardiac contractility and performance. We conclude that EDNRB plays a key role in hypoxia tolerance and that a lower level of EDNRB contributes, at least in part, to HA adaptation in humans.
Asunto(s)
Corazón/fisiología , Hipoxia/patología , Receptor de Endotelina B/fisiología , Aclimatación/genética , Altitud , Animales , Factor Natriurético Atrial/fisiología , Gasto Cardíaco/fisiología , Etiopía , Femenino , Heterocigoto , Humanos , Ácido Láctico/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/fisiología , Contracción Miocárdica , Cadenas Ligeras de Miosina/fisiología , Oxígeno/química , Proteolípidos/fisiología , Sitios de Carácter Cuantitativo , Receptor de Endotelina B/genética , Análisis de Secuencia de ADN , Distribución TisularRESUMEN
KEY POINTS: Changes in gene expression that occur within hours of exposure to hypoxia in in vivo skeletal muscles remain unexplored. Two hours of hypoxia caused significant down-regulation of extracellular matrix genes followed by a shift at 6 h to altered expression of genes associated with the nuclear lumen while respiratory and blood gases were stabilized. Enrichment analysis of mRNAs classified by stability rates suggests an attenuation of post-transcriptional regulation within hours of hypoxic exposure, where PI3K-Akt signalling was suggested to have a nodal role by pathway analysis. Experimental measurements and bioinformatic analyses suggested that the dephosphorylation of Akt after 2 h of hypoxic exposure might deactivate RNA-binding protein BRF1, hence resulting in the selective degradation of mRNAs. ABSTRACT: The effects of acute hypoxia have been widely studied, but there are few studies of transcriptional responses to hours of hypoxia in vivo, especially in hypoxia-tolerant tissues like skeletal muscles. We used RNA-seq to analyse gene expression in plantaris muscles while monitoring respiration, arterial blood gases, and blood glucose in mice exposed to 8% O2 for 2 or 6 h. Rapid decreases in blood gases and a slower reduction in blood glucose suggest stress, which was accompanied by widespread changes in gene expression. Early down-regulation of genes associated with the extracellular matrix was followed by a shift to genes associated with the nuclear lumen. Most of the early down-regulated genes had mRNA half-lives longer than 2 h, suggesting a role for post-transcriptional regulation. These transcriptional changes were enriched in signalling pathways in which the PI3K-Akt signalling pathway was identified as a hub. Our analyses indicated that gene targets of PI3K-Akt but not HIF were enriched in early transcriptional responses to hypoxia. Among the PI3K-Akt targets, 75% could be explained by a deactivation of adenylate-uridylate-rich element (ARE)-binding protein BRF1, a target of PI3K-Akt. Consistent decreases in the phosphorylation of Akt and BRF1 were experimentally confirmed following 2 h of hypoxia. These results suggest that the PI3K-Akt signalling pathway might play a role in responses induced by acute hypoxia in skeletal muscles, partially through the dephosphorylation of ARE-binding protein BRF1.
Asunto(s)
Hipoxia/genética , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hipoxia/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Transducción de SeñalRESUMEN
BACKGROUND: Mandatory deposit of raw microarray data files for public access, prior to study publication, provides significant opportunities to conduct new bioinformatics analyses within and across multiple datasets. Analysis of raw microarray data files (e.g. Affymetrix CEL files) can be time consuming, complex, and requires fundamental computational and bioinformatics skills. The development of analytical workflows to automate these tasks simplifies the processing of, improves the efficiency of, and serves to standardize multiple and sequential analyses. Once installed, workflows facilitate the tedious steps required to run rapid intra- and inter-dataset comparisons. RESULTS: We developed a workflow to facilitate and standardize Meta-Analysis of Affymetrix Microarray Data analysis (MAAMD) in Kepler. Two freely available stand-alone software tools, R and AltAnalyze were embedded in MAAMD. The inputs of MAAMD are user-editable csv files, which contain sample information and parameters describing the locations of input files and required tools. MAAMD was tested by analyzing 4 different GEO datasets from mice and drosophila.MAAMD automates data downloading, data organization, data quality control assesment, differential gene expression analysis, clustering analysis, pathway visualization, gene-set enrichment analysis, and cross-species orthologous-gene comparisons. MAAMD was utilized to identify gene orthologues responding to hypoxia or hyperoxia in both mice and drosophila. The entire set of analyses for 4 datasets (34 total microarrays) finished in ~ one hour. CONCLUSIONS: MAAMD saves time, minimizes the required computer skills, and offers a standardized procedure for users to analyze microarray datasets and make new intra- and inter-dataset comparisons.
Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Metaanálisis como Asunto , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Programas Informáticos , Animales , Drosophila , Ratones , Control de CalidadRESUMEN
Mitochondrial membrane potential (Δψ) and morphology are considered key readouts of mitochondrial functional state. This morphofunction can be studied using fluorescent dyes ("probes") like tetramethylrhodamine methyl ester (TMRM) and Mitotrackers (MTs). Although these dyes are broadly used, information comparing their performance in mitochondrial morphology quantification and Δψ-sensitivity in the same cell model is still scarce. Here we applied epifluorescence microscopy of primary human skin fibroblasts to evaluate TMRM, Mitotracker Red CMXros (CMXros), Mitotracker Red CMH2Xros (CMH2Xros), Mitotracker Green FM (MG) and Mitotracker Deep Red FM (MDR). All probes were suited for automated quantification of mitochondrial morphology parameters when Δψ was normal, although they did not deliver quantitatively identical results. The mitochondrial localization of TMRM and MTs was differentially sensitive to carbonyl cyanide-4-phenylhydrazone (FCCP)-induced Δψ depolarization, decreasing in the order: TMRMâ¯â«â¯CHM2Xrosâ¯=â¯CMXrosâ¯=â¯MDRâ¯>â¯MG. To study the effect of reversible Δψ changes, the impact of photo-induced Δψ "flickering" was studied in cells co-stained with TMRM and MG. During a flickering event, individual mitochondria displayed subsequent TMRM release and uptake, whereas this phenomenon was not observed for MG. Spatiotemporal and computational analysis of the flickering event provided evidence that TMRM redistributes between adjacent mitochondria by a mechanism dependent on Δψ and TMRM concentration. In summary, this study demonstrates that: (1) TMRM and MTs are suited for automated mitochondrial morphology quantification, (2) numerical data obtained with different probes is not identical, and (3) all probes are sensitive to FCCP-induced Δψ depolarization, with TMRM and MG displaying the highest and lowest sensitivity, respectively. We conclude that TMRM is better suited for integrated analysis of Δψ and mitochondrial morphology than the tested MTs under conditions that Δψ is not substantially depolarized.
Asunto(s)
Aldehídos , Mitocondrias , Humanos , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Aldehídos/metabolismo , Aldehídos/farmacología , Fibroblastos/metabolismo , Compuestos OrgánicosRESUMEN
Pathway analysis is ubiquitous in biological data analysis due to the ability to integrate small simultaneous changes in functionally related components. While pathways are often defined based on either manual curation or network topological properties, an attractive alternative is to generate pathways around specific functions, in which metabolism can be defined as the production and consumption of specific metabolites. In this work, we present an algorithm, termed MetPath, that calculates pathways for condition-specific production and consumption of specific metabolites. We demonstrate that these pathways have several useful properties. Pathways calculated in this manner (1) take into account the condition-specific metabolic role of a gene product, (2) are localized around defined metabolic functions, and (3) quantitatively weigh the importance of expression to a function based on the flux contribution of the gene product. We demonstrate how these pathways elucidate network interactions between genes across different growth conditions and between cell types. Furthermore, the calculated pathways compare favorably to manually curated pathways in predicting the expression correlation between genes. To facilitate the use of these pathways, we have generated a large compendium of pathways under different growth conditions for E. coli. The MetPath algorithm provides a useful tool for metabolic network-based statistical analyses of high-throughput data.
RESUMEN
Our goal was to quantify mitochondrial and plasma potential (Δψ(m) and Δψ(p)) based on the disposition of rhodamine 123 (R123) or tetramethylrhodamine ethyl ester (TMRE) in the medium surrounding pulmonary endothelial cells. Dyes were added to the medium, and their concentrations in extracellular medium ([R(e)]) were measured over time. R123 [R(e)] fell from 10 nM to 6.6 ± 0.1 (SE) nM over 120 min. TMRE [R(e)] fell from 20 nM to a steady state of 4.9 ± 0.4 nM after â¼30 min. Protonophore or high K(+) concentration ([K(+)]), used to manipulate contributions of membrane potentials, attenuated decreases in [R(e)], and P-glycoprotein (Pgp) inhibition had the opposite effect, demonstrating the qualitative impact of these processes on [R(e)]. A kinetic model incorporating a modified Goldman-Hodgkin-Katz model was fit to [R(e)] vs. time data for R123 and TMRE, respectively, under various conditions to obtain (means ± 95% confidence intervals) Δψ(m) (-130 ± 7 and -133 ± 4 mV), Δψ(p) (-36 ± 4 and -49 ± 4 mV), and a Pgp activity parameter (K(Pgp), 25 ± 5 and 51 ± 11 µl/min). The higher membrane permeability of TMRE also allowed application of steady-state analysis to obtain Δψ(m) (-124 ± 6 mV). The consistency of kinetic parameter values obtained from R123 and TMRE data demonstrates the utility of this experimental and theoretical approach for quantifying intact cell Δψ(m) and Δψ(p.) Finally, steady-state analysis revealed that although room air- and hyperoxia-exposed (95% O(2) for 48 h) cells have equivalent resting Δψ(m), hyperoxic cell Δψ(m) was more sensitive to depolarization with protonophore, consistent with previous observations of pulmonary endothelial hyperoxia-induced mitochondrial dysfunction.
Asunto(s)
Células Endoteliales/fisiología , Colorantes Fluorescentes , Potenciales de la Membrana/fisiología , Mitocondrias/fisiología , Compuestos Organometálicos , Arteria Pulmonar/metabolismo , Rodamina 123 , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Animales , Bovinos , Células Cultivadas , Hiperoxia/metabolismoRESUMEN
Understanding the effects of microgravity on human organs is crucial to exploration of low-earth orbit, the moon, and beyond. Drosophila can be sent to space in large numbers to examine the effects of microgravity on heart structure and function, which is fundamentally conserved from flies to humans. Flies reared in microgravity exhibit cardiac constriction with myofibrillar remodeling and diminished output. RNA sequencing (RNA-seq) in isolated hearts revealed reduced expression of sarcomeric/extracellular matrix (ECM) genes and dramatically increased proteasomal gene expression, consistent with the observed compromised, smaller hearts and suggesting abnormal proteostasis. This was examined further on a second flight in which we found dramatically elevated proteasome aggregates co-localizing with increased amyloid and polyQ deposits. Remarkably, in long-QT causing sei/hERG mutants, proteasomal gene expression at 1g, although less than the wild-type expression, was nevertheless increased in microgravity. Therefore, cardiac remodeling and proteostatic stress may be a fundamental response of heart muscle to microgravity.
Asunto(s)
Contracción Miocárdica/fisiología , Miocardio/patología , Ingravidez/efectos adversos , Animales , Remodelación Atrial/fisiología , Drosophila melanogaster/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Expresión Génica/genética , Expresión Génica/fisiología , Corazón/fisiología , Modelos Animales , Miocardio/metabolismo , Sarcómeros/genética , Sarcómeros/metabolismo , Remodelación Ventricular/fisiologíaRESUMEN
Pulmonary arterial hypertension (PAH) is a cardiopulmonary disease that can lead to heart failure and eventually death. MicroRNAs (miRs) play essential roles during PAH progression; however, their exact mechanism of action remains unclear. Apelin is a small bioactive peptide with a key protective function in the pathogenesis of PAH mediated by binding to the APJ gene. The aim of the present study was to investigate the role of miR-335-3p in chronic normobaric hypoxia (CNH)-induced PAH in mice and the potential underlying regulatory mechanism. Adult male C57BL/6 mice were exposed to normoxia (~21% O2) or CNH (~10% O2, 23 h/d) for 5 weeks. MiR-335-3p was significantly increased in lung tissue of CNH-induced PAH mice. Blocking miR-335-3p attenuated CNH-induced PAH and alleviated pulmonary vascular remodeling. Bioinformatics analysis and luciferase reporter assay indicated that nuclear factor-kappa beta (NF-κB) acted as a transcriptional regulator upstream of miR-335-3p. Pyrrolidine dithiocarbamate treatment reversed the CNH-induced increase in miR-335-3p expression and diminished CNH-induced PAH. Moreover, p50-/- mice were resistant to CNH-induced PAH. Finally, APJ was identified as a direct targeting gene downstream of miR-335-3p, and pharmacological activation of APJ by its ligand apelin-13 reduced CNH-induced PAH and improved pulmonary vascular remodeling. Our results indicate that NF-κB-mediated transcriptional upregulation of miR-335-3p contributes to the inhibition of APJ and induction of PAH during hypoxia; hence, miR-335-3p could be a potential therapeutic target for hypoxic PAH.
Asunto(s)
Receptores de Apelina/metabolismo , Hipoxia/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Animales , Western Blotting , Hipertrofia Ventricular Derecha/metabolismo , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
We previously showed that apelin-13 ameliorates chronic normobaric hypoxia (CNH)-induced anxiety-like behavior in mice, the mechanism, however, is not well known. This study aims to investigate whether SIRT1 is involved in the anxiolytic effect of apelin-13 in CNH-treated mice, and to illustrate the potential underlying mechanism. We showed that apelin-13 treatment reversed a decrease in SIRT1 and an increase in acetylated p65 (lysine 310) proteins' expression in hippocampus of CNH-treated mice, indicating that apelin-13 inhibited NF-κB signaling pathway by activating SIRT1. Behaviorally, apelin-13 ameliorated CNH-induced anxiety-like behavior, EX-527 blocked the beneficial effect of apelin-13, and the anxiogenic effect of CNH was attenuated by resveratrol pretreatment, suggesting that SIRT1 was involved in the effect of apelin-13 against CNH-induced anxiety-like behavior in mice. We also showed that resveratrol treatment decreased IL-1ß, IL-6, TNF-É, PCNA, Bcl-2, and acetyl-p65 levels, but increased Bax and caspase 3 levels in hippocampus, suggesting a suppressive effect of resveratrol on cellular neuroinflammation and proliferation while a promotive effect on apoptosis of microglia in hippocampus. Finally, blockade of NF-κB activity by PDTC diminished CNH-induced anxiety-like behavior, indicating that NF-κB was involved in CNH-induced anxiety-like behavior in mice. In conclusion, this study provides the first evidence that SIRT1 mediates the anxiolytic effect of apelin-13 in CNH-treated mice through the inhibition of NF-κB pathway. These results imply that dysfunction of the apelin-SIRT1-NF-κB axis in hippocampus represents a potential mechanism that results in the induction of neuroinflammation and reduction in neuroprotection, thus induces anxiety-like behavior in CNH-treated mice.
Asunto(s)
Apelina/metabolismo , Hipocampo/metabolismo , Hipoxia/complicaciones , FN-kappa B/metabolismo , Sirtuina 1/metabolismo , Animales , Ansiedad/etiología , Ansiedad/metabolismo , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiologíaRESUMEN
Due to the highly sensitive nature of metabolic states, the quality of metabolomics data depends on the suitability of the experimental procedure. Metabolism could be affected by factors such as the method of euthanasia of the animals and the sample collection procedures. The effects of these factors on metabolites are tissue-specific. Thus, it is important to select proper methods to sacrifice the animal and appropriate procedures for collecting samples specific to the tissue of interest. Here, we present our protocol to collect specific mouse skeletal muscles with different fiber types for metabolomics studies. We also provide a protocol to measure lactate levels in tissue samples as a way to estimate the metabolic state in collected samples.
Asunto(s)
Metabolómica/métodos , Músculo Esquelético/metabolismo , Animales , Ácido Láctico , RatonesRESUMEN
Increasing numbers of genomic technologies are leading to massive amounts of genomic data, all of which requires complex analysis. More and more bioinformatics analysis tools are being developed by scientist to simplify these analyses. However, different pipelines have been developed using different software environments. This makes integrations of these diverse bioinformatics tools difficult. Kepler provides an open source environment to integrate these disparate packages. Using Kepler, we integrated several external tools including Bioconductor packages, AltAnalyze, a python-based open source tool, and R-based comparison tool to build an automated workflow to meta-analyze both online and local microarray data. The automated workflow connects the integrated tools seamlessly, delivers data flow between the tools smoothly, and hence improves efficiency and accuracy of complex data analyses. Our workflow exemplifies the usage of Kepler as a scientific workflow platform for bioinformatics pipelines.
RESUMEN
Rat exposure to 60% O(2) (hyper-60) or 85% O(2) (hyper-85) for 7 days confers susceptibility or tolerance, respectively, of the otherwise lethal effects of exposure to 100% O(2). The objective of this study was to determine whether activities of the antioxidant cytosolic enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III are differentially altered in hyper-60 and hyper-85 lungs. Duroquinone (DQ), an NQO1 substrate, or its hydroquinone (DQH(2)), a complex III substrate, was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of DQH(2) and DQ were measured. Based on inhibitor effects and kinetic modeling, capacities of NQO1-mediated DQ reduction (V(max1)) and complex III-mediated DQH(2) oxidation (V(max2)) increased by â¼140 and â¼180% in hyper-85 lungs, respectively, compared with rates in lungs of rats exposed to room air (normoxic). In hyper-60 lungs, V(max1) increased by â¼80%, with no effect on V(max2). Additional studies revealed that mitochondrial complex I activity in hyper-60 and hyper-85 lung tissue homogenates was â¼50% lower than in normoxic lung homogenates, whereas mitochondrial complex IV activity was â¼90% higher in only hyper-85 lung tissue homogenates. Thus NQO1 activity increased in both hyper-60 and hyper-85 lungs, whereas complex III activity increased in hyper-85 lungs only. This increase, along with the increase in complex IV activity, may counter the effects the depression in complex I activity might have on tissue mitochondrial function and/or reactive oxygen species production and may be important to the tolerance of 100% O(2) observed in hyper-85 rats.
Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Hiperoxia/enzimología , Pulmón/enzimología , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Animales , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Técnicas de Dilución del Indicador , Pulmón/irrigación sanguínea , Masculino , Modelos Biológicos , Oxidación-Reducción , Perfusión , Ratas , Ratas Sprague-Dawley , Factores de TiempoRESUMEN
Rats pre-exposed to 85% O2 for 5-7 days tolerate the otherwise lethal effects of 100% O2. The objective was to evaluate the effect of rat exposure to 85% O2 for 7 days on lung capillary mean transit time t(c) and distribution of capillary transit times (h(c)(t)). This information is important for subsequent evaluation of the effect of this hyperoxia model on the redox metabolic functions of the pulmonary capillary endothelium. The venous concentration vs. time outflow curves of fluorescein isothiocyanate labeled dextran (FITC-dex), an intravascular indicator, and coenzyme Q1 hydroquinone (CoQ1H2), a compound which rapidly equilibrates between blood and tissue on passage through the pulmonary circulation, were measured following their bolus injection into the pulmonary artery of isolated perfused lungs from rats exposed to room air (normoxic) or 85% O2 for 7 days (hyperoxic). The moments (mean transit time and variance) of the measured FITC-dex and CoQ1H2 outflow curves were determined for each lung, and were then used in a mathematical model [Audi et al. J. Appl. Physiol. 77: 332-351, 1994] to estimate t(c) and the relative dispersion (RD(c)) of h (c)(t). Data analysis reveals that exposure to hyperoxia decreases lung t(c) by 42% and increases RD(c), a measure h(c)(t) heterogeneity, by 40%.