Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(32): 22166-22171, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39052847

RESUMEN

The competition between polymer chain folding and aggregation is a critical structuring process that determines the physical properties of synthetic and biopolymers. However, supramolecular polymer systems that exhibit both processes have not yet been reported. We herein introduce a system in which folded supramolecular polymers spontaneously undergo interchain aggregation due to a rearrangement in internal molecular order, converting them into crystalline aggregates. These folded supramolecular polymers slowly crystallize over the course of half a day, due to their characteristic higher-order structures. However, the photoisomerization of the trans-azobenzene incorporated into the monomer to the cis isomer leads to unfolding of the polymer, accelerating the intrachain and interchain molecular ordering to a few hours. The intermediate structures visualized by AFM demonstrate that the unfolding is coupled with interchain aggregation.

2.
Biomacromolecules ; 25(6): 3532-3541, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38750618

RESUMEN

Despite the potential of lignocellulose in manufacturing value-added chemicals and biofuels, its efficient biotechnological conversion by enzymatic hydrolysis still poses major challenges. The complex interplay between xylan, cellulose, and lignin in fibrous materials makes it difficult to assess underlying physico- and biochemical mechanisms. Here, we reduce the complexity of the system by creating matrices of cellulose, xylan, and lignin, which consists of a cellulose base layer and xylan/lignin domains. We follow enzymatic degradation using an endoxylanase by high-speed atomic force microscopy and surface plasmon resonance spectroscopy to obtain morphological and kinetic data. Fastest reaction kinetics were observed at low lignin contents, which were related to the different swelling capacities of xylan. We demonstrate that the complex processes taking place at the interfaces of lignin and xylan in the presence of enzymes can be monitored in real time, providing a future platform for observing phenomena relevant to fiber-based systems.


Asunto(s)
Endo-1,4-beta Xilanasas , Lignina , Madera , Xilanos , Lignina/química , Lignina/metabolismo , Xilanos/química , Xilanos/metabolismo , Madera/química , Madera/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Celulosa/química , Celulosa/metabolismo , Hidrólisis , Microscopía de Fuerza Atómica , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA