Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 191(2): 1002-1016, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36417279

RESUMEN

Excess light causes severe photodamage to photosystem II (PSII) where the primary charge separation for electron transfer takes place. Dissection of mechanisms underlying the PSII maintenance and repair cycle in green algae promotes the usage of genetic engineering and synthetic biology to improve photosynthesis and biomass production. In this study, we systematically analyzed the high light (HL) responsive immunophilin genes in Chlamydomonas (Chlamydomonas reinhardtii) and identified one chloroplast lumen-localized immunophilin, CYN28, as an essential player in HL tolerance. Lack of CYN28 caused HL hypersensitivity, severely reduced accumulation of PSII supercomplexes and compromised PSII repair in cyn28. The thylakoid FtsH (filamentation temperature-sensitive H) is an essential AAA family metalloprotease involved in the degradation of photodamaged D1 during the PSII repair cycle and was identified as one potential target of CYN28. In the cyn28 mutant, the thylakoid FtsH undergoes inefficient turnover under HL conditions. The CYN28-FtsH1/2 interaction relies on the FtsH N-terminal proline residues and is strengthened particularly under HL. Further analyses demonstrated CYN28 displays peptidyl-prolyl isomerase (PPIase) activity, which is necessary for its physiological function. Taken together, we propose that immunophilin CYN28 participates in PSII maintenance and regulates the homeostasis of FtsH under HL stress via its PPIase activity.


Asunto(s)
Chlamydomonas , Tilacoides , Tilacoides/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Péptido Hidrolasas/metabolismo , Inmunofilinas/análisis , Inmunofilinas/metabolismo , Chlamydomonas/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Luz
2.
J Neuroinflammation ; 20(1): 293, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062440

RESUMEN

BACKGROUND: Depression is two-to-three times more frequent among women. The hypothalamus, a sexually dimorphic area, has been implicated in the pathophysiology of depression. Neuroinflammation-induced hypothalamic dysfunction underlies behaviors associated with depression. The lipopolysaccharide (LPS)-induced mouse model of depression has been well-validated in numerous laboratories, including our own, and is widely used to investigate the relationship between neuroinflammation and depression. However, the sex-specific differences in metabolic alterations underlying depression-associated hypothalamic neuroinflammation remain unknown. METHODS: Here, we employed the LPS-induced mouse model of depression to investigate hypothalamic metabolic changes in both male and female mice using a metabolomics approach. Through bioinformatics analysis, we confirmed the molecular pathways and biological processes associated with the identified metabolites. Furthermore, we employed quantitative real-time PCR, enzyme-linked immunosorbent assay, western blotting, and pharmacological interventions to further elucidate the underlying mechanisms. RESULTS: A total of 124 and 61 differential metabolites (DMs) were detected in male and female mice with depressive-like behavior, respectively, compared to their respective sex-matched control groups. Moreover, a comparison between female and male model mice identified 37 DMs. We capitalized on biochemical clustering and functional enrichment analyses to define the major metabolic changes in these DMs. More than 55% of the DMs clustered into lipids and lipid-like molecules, and an imbalance in lipids metabolism was presented in the hypothalamus. Furthermore, steroidogenic pathway was confirmed as a potential sex-specific pathway in the hypothalamus of female mice with depression. Pregnenolone, an upstream component of the steroid hormone biosynthesis pathway, was downregulated in female mice with depressive-like phenotypes but not in males and had considerable relevance to depressive-like behaviors in females. Moreover, exogenous pregnenolone infusion reversed depressive-like behaviors in female mice with depression. The 5α-reductase type I (SRD5A1), a steroidogenic hub enzyme involved in pregnenolone metabolism, was increased in the hypothalamus of female mice with depression. Its inhibition increased hypothalamic pregnenolone levels and ameliorated depressive-like behaviors in female mice with depression. CONCLUSIONS: Our study findings demonstrate a marked sexual dimorphism at the metabolic level in depression, particularly in hypothalamic steroidogenic metabolism, identifying a potential sex-specific pathway in female mice with depressive-like behaviors.


Asunto(s)
Depresión , Enfermedades Neuroinflamatorias , Humanos , Ratones , Masculino , Femenino , Animales , Depresión/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Hipotálamo/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Pregnenolona/metabolismo
3.
Bioconjug Chem ; 34(8): 1349-1365, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37533285

RESUMEN

Matrix metalloproteinases (MMPs) are a class of endopeptidases that are dependent on zinc and facilitate the degradation of extracellular matrix (ECM) proteins, thereby playing pivotal parts in human physiology and pathology. MMPs regulate normal tissue and cellular functions, including tissue development, remodeling, angiogenesis, bone formation, and wound healing. Several diseases, including cancer, inflammation, cardiovascular diseases, and nervous system disorders, have been linked to dysregulated expression of specific MMP subtypes, which can promote tumor progression, metastasis, and inflammation. Various MMP-responsive drug delivery and release systems have been developed by harnessing cleavage activities and overexpression of MMPs in affected regions. Herein, we review the structure, substrates, and physiological and pathological functions of various MMPs and highlight the strategies for designing MMP-responsive nanoparticles to improve the targeting efficiency, penetration, and protection of therapeutic payloads.


Asunto(s)
Metaloproteinasas de la Matriz , Neoplasias , Humanos , Metaloproteinasas de la Matriz/metabolismo , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Matriz Extracelular/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz
4.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239859

RESUMEN

Rice yield can be significantly impacted by rice blast disease. In this investigation, an endophytic strain of Bacillus siamensis that exhibited a potent inhibitory effect on the growth of rice blast was isolated from healthy cauliflower leaves. 16S rDNA gene sequence analysis showed that it belongs to the genus Bacillus siamensis. Using the rice OsActin gene as an internal control, we analyzed the expression levels of genes related to the defense response of rice. Analysis showed that the expression levels of genes related to the defense response in rice were significantly upregulated 48 h after treatment. In addition, peroxidase (POD) activity gradually increased after treatment with B-612 fermentation solution and peaked 48 h after inoculation. These findings clearly demonstrated that the 1-butanol crude extract of B-612 retarded and inhibited conidial germination as well as the development of appressorium. The results of field experiments showed that treatment with B-612 fermentation solution and B-612 bacterial solution significantly reduced the severity of the disease before the seedling stage of Lijiangxintuan (LTH) was infected with rice blast. Future studies will focus on exploring whether Bacillus siamensis B-612 produces new lipopeptides and will apply proteomic and transcriptomic approaches to investigate the signaling pathways involved in its antimicrobial effects.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/fisiología , Proteómica , Oryza/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
5.
Small ; 18(47): e2203431, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36180405

RESUMEN

Mesenchymal stem cell (MSC) therapy via intravenous transplantation exhibits great potential for brain tissue regeneration, but still faces thorny clinical translation challenges as the unknown dynamic fate leads to the contentious therapeutic mechanism and the poor MSC viability in harsh lesions limits therapeutic efficiency. Here, a vitality-enhanced dual-modal tracking system is designed to improve engraftment efficiency and is utilized to noninvasively explore the fate of intravenous transplanted human umbilical cord-derived MSCs during long-term treatment of ischemic stroke. Such a system is obtained by bioorthogonally conjugating magnetic resonance imaging (MRI) contrast and near-infrared fluorescence (NIRF) imaging nanoparticles to metabolic glycoengineered MSCs with a lipoic acid-containing extracellular antioxidative protective layer. The dynamic fates of MSCs in multi-dimensional space-time evolution are digitally detailed for up to 28 days using MRI and NIRF imaging equipment, and the protective layer greatly shields MSCs from reactive oxygen spices (ROS) degradation, enhances MSC survival, and engraftment efficiency. Additionally, it is observed that the bioengineered MSCs exhibit dynamic intelligent responses corresponding to microenvironment remodeling and exert enhanced therapeutic effects. This dual-modal tracking system enables long-term tracking of MSCs while improving their viability at the lesion sites, which may serve as a valuable tool for expediting the clinical translation of MSC therapy.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Accidente Cerebrovascular , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical , Imagen por Resonancia Magnética/métodos , Medios de Contraste/metabolismo , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia
6.
Psychol Med ; 52(7): 1386-1392, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32829730

RESUMEN

BACKGROUND: No studies have reported on how to relieve distress or relax in medical health workers while wearing medical protective equipment in coronavirus disease 2019 (COVID-19) pandemic. The study aimed to establish which relaxation technique, among six, is the most feasible in first-line medical health workers wearing medical protective equipment. METHODS: This was a two-step study collecting data with online surveys. Step 1: 15 first-line medical health workers were trained to use six different relaxation techniques and reported the two most feasible techniques while wearing medical protective equipment. Step 2: the most two feasible relaxation techniques revealed by step 1 were quantitatively tested in a sample of 65 medical health workers in terms of efficacy, no space limitation, no time limitation, no body position requirement, no environment limitation to be done, easiness to learn, simplicity, convenience, practicality, and acceptance. RESULTS: Kegel exercise and autogenic relaxation were the most feasible techniques according to step 1. In step 2, Kegel exercise outperformed autogenic relaxation on all the 10 dimensions among the 65 participants while wearing medical protective equipment (efficacy: 24 v. 15, no space limitation: 30 v. 4, no time limitation: 31 v. 4, no body position requirement: 26 v. 4, no environment limitation: 30 v. 11, easiness to learn: 28 v. 5, simplicity: 29 v. 7, convenience: 29 v. 4, practicality: 30 v. 14, acceptance: 32 v. 6). CONCLUSION: Kegel exercise seems a promising self-relaxation technique for first-line medical health workers while wearing medical protective equipment among COVID-19 pandemic.


Asunto(s)
COVID-19 , COVID-19/prevención & control , Personal de Salud , Humanos , Pandemias/prevención & control , Equipos de Seguridad , Terapia por Relajación
7.
J Nanobiotechnology ; 20(1): 394, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36045429

RESUMEN

Epithelial-mesenchymal transition (EMT), a differentiation process with aberrant changes of tumor cells, is identified as an initial and vital procedure for metastatic processes. Inflammation is a significant inducer of EMT and provides an indispensable target for blocking EMT, however, an anti-inflammatory therapeutic with highlighted safety and efficacy is deficient. Metformin is a promising anti-inflammatory agent with low side effects, but tumor monotherapy with an anti-inflammation drug could generate therapy resistance, cell adaptation or even promote tumor development. Combination therapies with various anti-inflammatory mechanisms can be favorable options improving therapeutic effects of metformin, here we develop a tumor targeting hybrid micelle based on metformin and a histone deacetylase inhibitor propofol-docosahexaenoic acid for efficient therapeutic efficacies of anti-inflammatory drugs. Triptolide is further encapsulated in hybrid micelles for orthotopic tumor therapies. The final multifunctional nanoplatforms (HAOPTs) with hyaluronic acid (HA) modification can target tumor efficiently, inhibit tumor cell EMT processes, repress metastasis establishment and suppress metastatic tumor development in a synergistic manner. Collectively, the results afford proof of concept that the tumor targeting anti-inflammatory nanoplatform can provide a potent, safe and clinical translational approach for EMT inhibition and metastatic tumor therapy.


Asunto(s)
Metformina , Neoplasias , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Metformina/farmacología , Metformina/uso terapéutico
8.
BMC Med Educ ; 22(1): 813, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443714

RESUMEN

BACKGROUND: The lack of interaction and communication in pharmacology courses, especially since the onset of the coronavirus disease 2019 (COVID-19) pandemic, which required a fast shift to remote learning at medical schools, leads to an unsatisfactory learning outcome. New interactive teaching approaches are required to improve pharmacology learning attention and interaction in remote education and traditional classrooms. METHODS: We introduced bullet screens to pharmacology teaching. Then, a survey was distributed to first-, second- and third-year pre-clinical undergraduate medical and nursing students at the Shanghai Jiao Tong University School of Medicine from November 2020 to March 2022. We evaluated the essential features, instructional effectiveness, and entertainment value of bullet screens. Responses to structured and open-ended questions about the strengths and weaknesses of the bullet screen and overall thoughts were coded and compared between medical and nursing students. RESULTS: In terms of essential features, bullet screens have a high degree of acceptability among students, and this novel instructional style conveniently increased classroom interaction. Considering instructional effectiveness, bullet screen may stimulate students' in-depth thinking. Meanwhile, students tended to use bullet-screen comments as a way to express their support rather than to make additional comments or to express their different viewpoints. The entertainment value of bullet screen was noteworthy. The lack of ideas might lead to relative differences between medical and nursing students, indicating that guiding the appropriate use of bullet screen is necessary. CONCLUSIONS: The bullet screen may be popularized as an auxiliary teaching approach to promote interaction between teachers and students in the classroom as well as during remote education. It is an interesting and beneficial tool in pharmacology courses, yet there are several aspects of this device that should be improved for popularization.


Asunto(s)
Educación de Pregrado en Medicina , Farmacología , Humanos , China , COVID-19 , Medicina , Facultades de Medicina , Farmacología/educación
9.
Psychother Psychosom ; 90(2): 127-136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33152729

RESUMEN

BACKGROUND: As the fight against the COVID-19 epidemic continues, medical workers may have allostatic load. OBJECTIVE: During the reopening of society, medical and nonmedical workers were compared in terms of allostatic load. METHODS: An online study was performed; 3,590 Chinese subjects were analyzed. Socio-demographic variables, allostatic load, stress, abnormal illness behavior, global well-being, mental status, and social support were assessed. RESULTS: There was no difference in allostatic load in medical workers compared to nonmedical workers (15.8 vs. 17.8%; p = 0.22). Multivariate conditional logistic regression revealed that anxiety (OR = 1.24; 95% CI 1.18-1.31; p < 0.01), depression (OR = 1.23; 95% CI 1.17-1.29; p < 0.01), somatization (OR = 1.20; 95% CI 1.14-1.25; p < 0.01), hostility (OR = 1.24; 95% CI 1.18-1.30; p < 0.01), and abnormal illness behavior (OR = 1.49; 95% CI 1.34-1.66; p < 0.01) were positively associated with allostatic load, while objective support (OR = 0.84; 95% CI 0.78-0.89; p < 0.01), subjective support (OR = 0.84; 95% CI 0.80-0.88; p < 0.01), utilization of support (OR = 0.80; 95% CI 0.72-0.88; p < 0.01), social support (OR = 0.90; 95% CI 0.87-0.93; p < 0.01), and global well-being (OR = 0.30; 95% CI 0.22-0.41; p < 0.01) were negatively associated. CONCLUSIONS: In the post-COVID-19 epidemic time, medical and nonmedical workers had similar allostatic load. Psychological distress and abnormal illness behavior were risk factors for it, while social support could relieve it.


Asunto(s)
Alostasis/fisiología , Ansiedad/fisiopatología , COVID-19 , Depresión/fisiopatología , Personal de Salud , Conducta de Enfermedad/fisiología , Satisfacción Personal , Apoyo Social , Estrés Psicológico/fisiopatología , Adulto , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ocupaciones
10.
J Gastroenterol Hepatol ; 36(11): 3113-3126, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34159625

RESUMEN

BACKGROUND AND AIM: Metabolic reprogramming is characterized by dysregulated levels of metabolites and metabolic enzymes. Integrated metabolomic and transcriptomic data analysis can help to elucidate changes in the levels of metabolites and metabolic enzymes, screen the core metabolic pathways, and develop novel therapeutic strategies for cancer. METHODS: Here, the metabolome of gastric cancer tissues was determined using liquid chromatography-mass spectrometry. The transcriptome data from The Cancer Genome Atlas dataset were integrated with the liquid chromatography-mass spectrometry data to identify the common dysregulated gastric cancer-specific metabolic pathways. Additionally, the protein expression and clinical significance of key metabolic enzymes were examined using a gastric cancer tissue array. RESULTS: Metabolomic analysis of 16 gastric cancer tissues revealed that among the 15 dysregulated metabolomic pathways, the aminoacyl-tRNA biosynthesis pathway in the gastric tissues was markedly upregulated relative to that in the adjacent noncancerous tissues, which was consistent with the results of transcriptome analysis. Bioinformatic analysis revealed that among the key regulators in the aminoacyl-tRNA biosynthesis pathway, the expression levels of threonyl-tRNA synthetase (TARS) and phenylalanyl-tRNA synthetase (FARSB) were correlated with tumor grade and poor survival, respectively. Additionally, gastric tissue array data analysis indicated that TARS and FARSB were upregulated in gastric cancer tissues and were correlated with poor prognosis and tumor metastasis. CONCLUSIONS: This study demonstrated that the aminoacyl-tRNA biosynthesis pathway is upregulated in gastric cancer and both TARS and FARSB play key roles in the progression of gastric cancer. Additionally, a novel therapeutic strategy for gastric cancer was proposed that involves targeting the aminoacyl-tRNA biosynthesis pathway.


Asunto(s)
Fenilalanina-ARNt Ligasa , Neoplasias Gástricas , Treonina-ARNt Ligasa , Aminoacil-ARNt Sintetasas/biosíntesis , Aminoacil-ARNt Sintetasas/genética , Humanos , Metaboloma , Fenilalanina-ARNt Ligasa/biosíntesis , Fenilalanina-ARNt Ligasa/genética , ARN de Transferencia/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Treonina-ARNt Ligasa/biosíntesis , Treonina-ARNt Ligasa/genética , Transcriptoma , Regulación hacia Arriba
11.
Nutr Metab Cardiovasc Dis ; 31(1): 169-177, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33127250

RESUMEN

BACKGROUND AND AIM: Serum pepsinogens (PGs) are biomarkers for gastric mucosal damage and have been reported to be associated with atherosclerosis. Its correlation with atherosclerotic cardiovascular disease (ASCVD) is still unknown. This study aimed to explore the association between serum PGs and ASCVD for providing physicians with an integrative picture to make rational plans in the diagnosis and treatment of ASCVD. METHODS AND RESULTS: The concentrations of serum PGs and their distributions between ASCVD and non-ASCVD were compared by non-parametric test, Chi-squared test and Fisher exact test. The correlation between variables was analyzed by Spearman's correlation test. The association of serum PGs with ASCVD was analyzed by the binary logistic regression and two-piecewise linear regression. A total of 8355 recruited cases were eligible for the study. The concentrations of serum PGs were significantly different between the ASCVD and non-ASCVD groups (P = 0.025, P < 0.001). The lower PGI and PGR levels were significantly correlated with a high risk of ASCVD presence after adjustment for 26 potential covariates. Moreover, there was a linear relationship between the high level of PGII and the high risk of ASCVD [adjusted OR = 1.16 (1.00, 1.37), P = 0.07]. A nonlinear relationship of PGI/PGR and ASCVD (P = 0.08/<0.001) was also revealed. The risk of ASCVD increased with a range of log PGI ≥2.13 (PGI≥131 ng/mL) [adjusted OR = 4.67 (1.00, 23.17)], and decreased with a range of log PGR ≥0.22 (1.65) [adjusted OR = 0.59 (0.48, 0.74), P < 0.001]. CONCLUSIONS: Serum PGI and PGR are nonlinearly correlated with ASCVD, while PGII is linearly correlated with ASCVD. Among all PGs, PGR may serve as a reliable biomarker for ASCVD.


Asunto(s)
Aterosclerosis/sangre , Pepsinógeno A/sangre , Pepsinógeno C/sangre , Anciano , Aterosclerosis/diagnóstico por imagen , Biomarcadores/sangre , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
12.
Nano Lett ; 20(9): 6780-6790, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32809834

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) strongly resists standard therapies since KRAS-mutated cancer cells harbor endogenous resistance toward chemotherapy-induced apoptosis and tumor-associated macrophages (TAMs) activate stroma cells to create the nearly impenetrable matrix. Herein, we developed a tailored nanocomplex through the self-assembly of synthetic 4-(phosphonooxy)phenyl-2,4-dinitrobenzenesulfonate and Fe3+ followed by hyaluronic acid decoration, realizing chemodynamic therapy (CDT) to combat PDAC. By controllably releasing its components in a GSH-sensitive manner under the distinctive redox homeostasis in cancer cells and TAMs, the nanocomplex selectively triggered a Fenton reaction to induce oxidative damage in cancer cells and simultaneously repolarized TAMs to deactivate stromal cells and thus attenuate stroma. Compared to gemcitabine, CDT remarkably inhibited tumor growth and prolonged animal survival in orthotopic PDAC models without noticeable side effects. This study provides a promising strategy to improve the treatment of PDAC through CDT-mediated controlled cancer cells damage and reprogramming of the stromal microenvironment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Nanomedicina , Neoplasias Pancreáticas/tratamiento farmacológico , Microambiente Tumoral
13.
BMC Genomics ; 21(1): 633, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928100

RESUMEN

BACKGROUND: Previous studies show that galanin neurons in ventrolateral preoptic nucleus (VLPO-Gal) are essential for sleep regulation. Here, we explored the transcriptional regulation of the VLPO-Gal neurons in sleep by comparing their transcriptional responses between sleeping mice and those kept awake, sacrificed at the same diurnal time. RESULTS: RNA-sequencing (RNA-seq) analysis was performed on eGFP(+) galanin neurons isolated using laser captured microdissection (LCM) from VLPO. Expression of Gal was assessed in our LCM eGFP(+) neurons via real time qPCR and showed marked enrichment when compared to LCM eGFP(-) cells and to bulk VLPO samples. Gene set enrichment analysis utilizing data from a recent single-cell RNA-seq study of the preoptic area demonstrated that our VLPO-Gal samples were highly enriched with galanin-expressing inhibitory neurons, but not galanin-expressing excitatory neurons. A total of 263 genes were differentially expressed between sleep and wake in VLPO-Gal neurons. When comparing differentially expressed genes in VLPO-Gal neurons to differentially expressed genes in a wake-active neuronal region (the medial prefrontal cortex), evidence indicates that both systemic and cell-specific mechanisms contribute to the transcriptional regulation in VLPO-Gal neurons. In both wake-active and sleep-active neurons, ER stress pathways are activated by wake and cold-inducible RNA-binding proteins are activated by sleep. In contrast, expression of DNA repair genes is increased in VLPO-Gal during wakefulness, but increased in wake-active cells during sleep. CONCLUSION: Our study identified transcriptomic responses of the galanin neurons in the ventrolateral preoptic nucleus during sleep and sleep deprivation. Data indicate that VLPO contains mainly sleep-active inhibitory galaninergic neurons. The VLPO galanin neurons show responses to sleep and wake similar to wake-active regions, indicating these responses, such as ER stress and cold-inducible RNA-binding proteins, are systemic affecting all neuronal populations. Region-specific differences in sleep/wake responses were also identified, in particular DNA repair. Our study expands knowledge about the transcriptional response of a distinct group of neurons essential for sleep.


Asunto(s)
Galanina/metabolismo , Área Preóptica/metabolismo , Privación de Sueño/genética , Sueño , Transcriptoma , Animales , Galanina/genética , Masculino , Ratones , Neuronas/metabolismo , Área Preóptica/citología , Privación de Sueño/metabolismo , Vigilia
14.
Cell Immunol ; 353: 104132, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32446031

RESUMEN

Protective immune response to chlamydial infection is largely dependent on cell-mediated immune responses with IFN-γ production. Recent studies have shown the critical role of NK cells in bridging innate and adaptive immune responses. In this study, we investigated the effect of NK cells on T cell responses during Chlamydophila pneumoniae (Cpn) lung infection. The results showed that NK cells play a protective role in Cpn infection and influence T cell immunity largely though modulating dendritic cells (DCs) function. Specifically, we found that NK depletion significantly impaired type 1 T cell responses, but enhanced FOXP3+Treg cells and IL-10-producing CD4+T cells. The alteration of T cell responses was associated with more disease severity and higher chlamydial growth in the lung. Further analysis of DC phenotype and cytokine profile found that DCs from NK cell-depleted mice expressed lower levels of co-stimulatory molecules and produced higher levels of IL-10 than those from control IgG-treated mice. More importantly, the adoptive transfer of DCs from NK cell-depleted mice induced a much lower degree of type 1 T cell responses but a higher amount of FOXP3+ Treg cells and IL-10-producing CD4+T cells in the recipient mice than DCs from IgG-treated mice. In contrast to the strong protective effect observed in recipients of DCs from IgG-treated mice, the recipients of DCs from NK cell-depleted mice failed to be protected against Cpn infection. The data suggest that NK cells play a critical role in coordinating innate and adaptive immunity in Cpn lung infection by modulating the DC function to influence T cell responses.


Asunto(s)
Infecciones por Chlamydophila/inmunología , Chlamydophila pneumoniae/inmunología , Células Asesinas Naturales/inmunología , Traslado Adoptivo , Animales , Chlamydophila pneumoniae/metabolismo , Chlamydophila pneumoniae/patogenicidad , Citocinas/metabolismo , Células Dendríticas/inmunología , Inmunidad Celular/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células T Asesinas Naturales/inmunología , Neumonía Bacteriana/inmunología
15.
Microb Pathog ; 149: 104592, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33098931

RESUMEN

Tuberculosis (TB), a serious disease caused by Mycobacterium tuberculosis (Mtb), remains the world's top infectious killer. It is well-established that TB can circumvent the host's immune response for long-term survival. Macrophages serve as the major host cells for TB growth and persistence and their altered functions are critical for the response of the host defense against TB exposure (elimination, latency, reactivation, and bacillary dissemination). Noncoding RNAs are crucial posttranscriptional regulators of macrophage discrimination. Therefore, this review highlights the regulatory mechanism underlying the relationship between noncoding RNAs and macrophages in TB infection, which may facilitate the identification of potential therapeutic targets and effective diagnosis biomarkers for TB disease.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Humanos , Macrófagos , Mycobacterium tuberculosis/genética , ARN no Traducido/genética
16.
Sleep Breath ; 24(4): 1441-1449, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31898189

RESUMEN

OBJECTIVE: The endocannabinoid system (ECS) regulates bone turn-over and remodeling. Chronic intermittent hypoxia (CIH) occurring during obstructive sleep apnea (OSA) may lead to disorders of the ECS and bone metabolism abnormalities. This study aimed to investigate whether or not the cannabinoid receptor 1 (CB1R) antagonist rimonabant (Ri) alleviates bone metabolism abnormalities and bone destruction induced by chronic intermittent hypoxia (CIH). METHODS: Healthy male Sprague Dawley (SD) rats (n=48) were randomly divided into 6 groups of 8 rats: 2 normal control (NC) groups, 2 intermittent hypoxia (IH) groups, and 2 IH + Ri groups. Rats in NC groups breathed room air for 4 weeks (4w NC group) and 6 weeks (6w NC group). Rats in IH groups experienced IH environment for 4 weeks (4w IH group) and 6 weeks (6w IH group). In addition to the same IH exposure, rats in IH + Ri group were given daily intraperitoneal injection of Ri at the dosage of 1.5 mg/kg/d for 4 weeks (4w IH + Ri group) and 6 weeks (6w IH + Ri group). Levels of serum tartrate-resistant acid phosphatase (TRAP, a marker of bone resorption) were determined by ELISA. Hematoxylin and eosin (HE) staining was performed on bone sections to observe the changes in bone microstructure. Expression of CB1R in bone tissue was determined by immunohistochemistry. RESULTS: TRAP levels were higher in the 4w IH and 6w IH groups than in the 4w NC and 6w NC groups; TRAP levels were lower in the 4w IH + Ri and 6w IH + Ri groups than in the 4w IH and 6w IH groups. HE staining showed that the morphology of bone cells in the NC group was normal, but the 4w IH group had mild edema of bone cells, reduction in trabecular bone, and destruction of bone microstructure. Changes were more severe in the 6w IH group than 4w IH. The 4w IH + Ri group was slightly improved compared with the 4w IH group. The 6w IH + Ri group was improved compared with the 4w IH + Ri group. The results of immunohistochemistry showed that the expression of CB1R in IH group was significantly higher than that in NC group. The expression of CB1R in the IH + Ri group was lower than that in the IH group. With the prolongation of hypoxia, the expression of CB1R in bone cells of IH group increased. The expression level of CB1R in IH + Ri group decreased with the prolongation of intervention time. Correlation analysis showed that the expression rate of CB1R in bone cells was positively correlated with the level of TRAP in serum. CONCLUSION: CIH increases serum TRAP levels and triggers metabolic bone disorder by activating bone CB1R. Intervention with CB1R antagonist (rimonabant) reduces the bone dysmetabolism in the CIH rat model.


Asunto(s)
Enfermedades Óseas Metabólicas/fisiopatología , Antagonistas de Receptores de Cannabinoides/administración & dosificación , Hipoxia/fisiopatología , Sustancias Protectoras/administración & dosificación , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Rimonabant/administración & dosificación , Animales , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Enfermedades Óseas Metabólicas/metabolismo , Modelos Animales de Enfermedad , Masculino , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ratas Sprague-Dawley , Fosfatasa Ácida Tartratorresistente/sangre
17.
BMC Pulm Med ; 20(1): 248, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948170

RESUMEN

BACKGROUND: One forth whole-world population is infected with Mycobacterium tuberculosis (Mtb), but 90% of them are asymptotic latent infection without any symptoms but positive result in IFN-γ release assay. There is lack of ideal strategy to distinguish active tuberculosis (TB) and latent tuberculosis infection (LTBI). Some scientist had focused on a set of cytokines as biomarkers besides interferon- gamma (IFN-γ) to distinguish active TB and LTBI, but with considerable variance of results. This meta-analysis aimed to evaluate the overall discriminative ability of potential immune molecules to distinguish active TB and LTBI. METHODS: PubMed, the Cochrane Library, and Web of Science databases were searched to identify studies assessing diagnostic roles of cytokines for distinguishing active TB and LTBI published up to August 2018. The quality of enrolled studies was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). The pooled diagnostic sensitivity and specificity of each cytokine was calculated by using Meta-DiSc software. Area under the summary receiver operating characteristic curve (AUC) was used to summarize the overall diagnostic performance of each biomarker. RESULTS: Fourteen studies with 982 subjects met the inclusion criteria, including 526 active TB and 456 LTBI patients. Pooled sensitivity, specificity and AUC for discriminating between active TB and LTBI were analyzed for IL-2 (0.87, 0.61 and 0.9093), IP-10 (0.77, 0.73 and 0.8609), IL-5 (0.64, 0.75 and 0.8533), IL-13 (0.75, 0.71 and 0.8491), IFN-γ (0.67, 0.75 and 0.8031), IL-10 (0.68, 0.74 and 0.7957) and TNF-α (0.67, 0.64 and 0.7783). The heterogeneous subgroup analysis showed that cytokine detection assays, TB incidence, and stimulator with Mtb antigens are main influence factors for their diagnostic performance. CONCLUSIONS: The meta-analysis showed cytokine production could assist the distinction between active TB and LTBI, IL-2 with the highest overall accuracy. No single biomarker is likely to show sufficiently diagnostic performance due to limited sensitivity and specificity. Further prospective studies are needed to identify the optimal combination of biomarkers to enhanced diagnostic capacity in clinical practice.


Asunto(s)
Interleucina-2/sangre , Tuberculosis Latente/diagnóstico , Biomarcadores/sangre , Diagnóstico Diferencial , Femenino , Humanos , Ensayos de Liberación de Interferón gamma , Tuberculosis Latente/sangre , Masculino , Curva ROC , Sensibilidad y Especificidad
18.
Pestic Biochem Physiol ; 162: 69-77, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31836057

RESUMEN

Endophytic bacteria are potential biocontrol agents for the control of fungal diseases. Here, an endophyte strain, B21, was isolated from Osmanthus fragrans Lour. fruits and identified as Bacillus safensis by analysis of its 16S rDNA gene sequence and its biochemical and physiological characteristics. The culture filtrate showed antifungal activity against Magnaporthe oryzae, which causes rice blast disease, and the IC50 of the methanol extract was 15.56 µg/mL, which was significantly lower than that of carbendazim (25.16 µg/mL). The antifungal activity of the methanol extract was stable at a wide range of pH values (1-9) and temperatures (40-100 °C). Two antifungal compounds were isolated by organic extraction, silica gel column chromatography and high-performance liquid chromatography (HPLC). Based on electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectrometry (NMR) analyses, the structures of the antifungal compounds were identified as iturin A2 and iturin A6. Additionally, the hyphae treated with iturin (iturin A2 or iturin A6) could be stained with the fluorescent dye propidium iodide (PI), indicating that these two compounds inhibited the growth of hyphae by changing the hyphal membrane permeability. In field experiments, spray treatment with fermentation broth resulted in a lower disease index than treatment with carbendazim, as did the culture filtrate. The results suggest that strain B21 and its bioactive compounds have the potential to be developed into a biopesticide for the biocontrol of rice blast.


Asunto(s)
Bacillus , Oryza , Antifúngicos , Agentes de Control Biológico , Enfermedades de las Plantas
19.
Nano Lett ; 19(6): 3548-3562, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31026397

RESUMEN

Metastasis is the major cause of high mortality in cancer patients; thus, blocking the metastatic process is of critical importance for cancer treatments. The premetastatic niche, a specialized microenvironment with aberrant changes related to inflammation, allows the colonization of circulating tumor cells (CTCs) and serves as a potential target for metastasis prevention. However, little effort has been dedicated to developing nanomedicine to amend the premetastatic niche. Here this study reports a premetastatic niche-targeting micelle for the modulation of premetastatic microenvironments and suppression of tumor metastasis. The micelles are self-assembled with the oleate carbon chain derivative of metformin and docosahexaenoic acid, two anti-inflammatory agents with low toxicity, and coated with fucoidan for premetastatic niche-targeting. The obtained functionalized micelles (FucOMDs) exhibit an excellent blood circulation profile and premetastatic site-targeting efficiency, inhibit CTC adhesion to activated endothelial cells, alleviate lung vascular permeability, and reverse the aberrant expression of key marker proteins in premetastatic niches. As a result, FucOMDs prevent metastasis formation and efficiently suppress both primary-tumor growth and metastasis formation when combined with targeted chemotherapy. Collectively, the findings here provide proof of concept that the modulation of the premetastatic niche with targeted anti-inflammatory agents provides a potent platform and a safe and clinical translational option for the suppression of tumor metastasis.


Asunto(s)
Antiinflamatorios/administración & dosificación , Ácidos Docosahexaenoicos/administración & dosificación , Metformina/administración & dosificación , Metástasis de la Neoplasia/prevención & control , Neoplasias/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Animales , Antiinflamatorios/sangre , Antiinflamatorios/uso terapéutico , Ácidos Docosahexaenoicos/sangre , Ácidos Docosahexaenoicos/uso terapéutico , Pulmón/irrigación sanguínea , Metformina/sangre , Metformina/uso terapéutico , Ratones , Micelas , Metástasis de la Neoplasia/patología , Neoplasias/patología , Células Neoplásicas Circulantes/efectos de los fármacos , Células Neoplásicas Circulantes/patología , Ratas Sprague-Dawley
20.
Small ; 15(24): e1900631, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31033217

RESUMEN

Pancreatic cancer is a highly aggressive malignancy that strongly resists extant treatments. The failure of existing therapies is majorly attributed to the tough tumor microenvironment (TME) limiting drug access and the undruggable targets of tumor cells. The formation of suppressive TME is regulated by transforming growth factor beta (TGF-ß) signaling, while the poor response and short survival of almost 90% of pancreatic cancer patients results from the oncogenic KRAS mutation. Hence, simultaneously targeting both the TGF-ß and KRAS pathways might dismantle the obstacles of pancreatic cancer therapy. Here, a novel sequential-targeting strategy is developed, in which antifibrotic fraxinellone-loaded CGKRK-modified nanoparticles (Frax-NP-CGKRK) are constructed to regulate TGF-ß signaling and siRNA-loaded lipid-coated calcium phosphate (LCP) biomimetic nanoparticles (siKras-LCP-ApoE3) are applied to interfere with the oncogenic KRAS. Frax-NP-CGKRK successfully targets the tumor sites through the recognition of overexpressed heparan sulfate proteoglycan, reverses the activated cancer-associated fibroblasts (CAFs), attenuates the dense stroma barrier, and enhances tumor blood perfusion. Afterward, siKras-LCP-ApoE3 is efficiently internalized by the tumor cells through macropinocytosis and specifically silencing KRAS mutation. Compared with gemcitabine, this sequential-targeting strategy significantly elongates the lifespans of pancreatic tumor-bearing animals, hence providing a promising approach for pancreatic cancer therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Benzofuranos/administración & dosificación , Terapia Molecular Dirigida/métodos , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , ARN Interferente Pequeño/administración & dosificación , Factor de Crecimiento Transformador beta/efectos de los fármacos , Animales , Apolipoproteína E3/genética , Esquema de Medicación , Portadores de Fármacos/administración & dosificación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , Mutación/efectos de los fármacos , Células 3T3 NIH , Nanopartículas/administración & dosificación , Neoplasias Pancreáticas/patología , Fragmentos de Péptidos/administración & dosificación , Proteínas Proto-Oncogénicas p21(ras)/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA