Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Glia ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39188024

RESUMEN

Astrocytes play a multifaceted role regulating brain glucose metabolism, ion homeostasis, neurotransmitters clearance, and water dynamics being essential in supporting synaptic function. Under different pathological conditions such as brain stroke, epilepsy, and neurodegenerative disorders, excitotoxicity plays a crucial role, however, the contribution of astrocytic activity in protecting neurons from excitotoxicity-induced damage is yet to be fully understood. In this work, we evaluated the effect of astrocytic activation by Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) on brain glucose metabolism in wild-type (WT) mice, and we investigated the effects of sustained astrocyte activation following an insult induced by intrahippocampal (iHPC) kainic acid (KA) injection using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) positron emission tomography (PET) imaging, along with behavioral test, nuclear magnetic resonance (NMR) spectroscopy and histochemistry. Astrocytic Ca2+ activation increased the 18F-FDG uptake, but this effect was not found when the study was performed in knock out mice for type-2 inositol 1,4,5-trisphosphate receptor (Ip3r2-/-) nor in floxed mice to abolish glucose transporter 1 (GLUT1) expression in hippocampal astrocytes (GLUT1ΔGFAP). Sustained astrocyte activation after KA injection reversed the brain glucose hypometabolism, restored hippocampal function, prevented neuronal death, and increased hippocampal GABA levels. The findings of our study indicate that astrocytic GLUT1 function is crucial for regulating brain glucose metabolism. Astrocytic Ca2+ activation has been shown to promote adaptive changes that significantly contribute to mitigating the effects of KA-induced damage. This evidence suggests a protective role of activated astrocytes against KA-induced excitotoxicity.

2.
Planta Med ; 89(4): 364-376, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36130709

RESUMEN

Numerous preclinical studies provide evidence that curcumin, a polyphenolic phytochemical extracted from Curcuma longa (turmeric) has neuroprotective, anti-inflammatory and antioxidant properties against various neurological disorders. Curcumin neuroprotective effects have been reported in different animal models of epilepsy, but its potential effect attenuating brain glucose hypometabolism, considered as an early marker of epileptogenesis that occurs during the silent period following status epilepticus (SE), still has not been addressed. To this end, we used the lithium-pilocarpine rat model to induce SE. Curcumin was administered orally (300 mg/kg/day, for 17 days). Brain glucose metabolism was evaluated in vivo by 2-deoxy-2-[18F]Fluoro-D-Glucose ([18F]FDG) positron emission tomography (PET). In addition, hippocampal integrity, neurodegeneration, microglia-mediated neuroinflammation, and reactive astrogliosis were evaluated as markers of brain damage. SE resulted in brain glucose hypometabolism accompanied by body weight (BW) loss, hippocampal neuronal damage, and neuroinflammation. Curcumin did not reduce the latency time to the SE onset, nor the mortality rate associated with SE. Nevertheless, it reduced the number of seizures, and in the surviving rats, curcumin protected BW and attenuated the short-term glucose brain hypometabolism as well as the signs of neuronal damage and neuroinflammation induced by the SE. Overall, our results support the potential adaptogen-like effects of curcumin attenuating key features of SE-induced brain damage.


Asunto(s)
Curcumina , Estado Epiléptico , Ratas , Animales , Curcumina/farmacología , Curcumina/metabolismo , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , Encéfalo , Hipocampo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/tratamiento farmacológico , Tomografía de Emisión de Positrones/métodos , Glucosa/farmacología , Pilocarpina/metabolismo , Pilocarpina/farmacología , Modelos Animales de Enfermedad
3.
J Integr Neurosci ; 22(3): 75, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37258443

RESUMEN

BACKGROUND: Epilepsy is one of the most common neurologic diseases, and around 30% of all epilepsies, particularly the temporal lobe epilepsy (TLE), are highly refractory to current pharmacological treatments. Abnormal synchronic neuronal activity, brain glucose metabolism alterations, neurodegeneration and neuroinflammation are features of epilepsy. Further, neuroinflammation has been shown to contribute to dysregulation of neuronal excitability and the progression of epileptogenesis. Flufenamic acid (FLU), a non-steroidal anti-inflammatory drug, is also characterized by its wide properties as a dose-dependent ion channel modulator. In this context, in vitro studies have shown that it abolishes seizure-like events in neocortical slices stimulated with a gamma-aminobutyric acid A (GABAA) receptor blocker. However, little is known about its effects in animal models. Thus, our goal was to assess the efficacy and safety of a relatively high dose of FLU in the lithium-pilocarpine rat model of status epilepticus (SE). This animal model reproduces many behavioral and neurobiological features of TLE such as short-term brain hypometabolism, severe hippocampal neurodegeneration and inflammation reflected by a marked reactive astrogliosis. METHODS: FLU (100 mg/kg, i.p.) was administered to adult male rats, 150 min before SE induced by pilocarpine. Three days after the SE, brain glucose metabolism was assessed by 2-deoxy-2-[18F]-fluoro-D-glucose ([18F]FDG) positron emission tomography (PET). Markers of hippocampal integrity, neurodegeneration and reactive astrogliosis were also evaluated. RESULTS: FLU neither prevented the occurrence of the SE nor affected brain glucose hypometabolism as assessed by [18F]FDG PET. Regarding the neurohistochemical studies, FLU neither prevented neuronal damage nor hippocampal reactive astrogliosis. On the contrary, FLU increased the mortality rate and negatively affected body weight in the rats that survived the SE. CONCLUSIONS: Our results do not support an acute anticonvulsant effect of a single dose of FLU. Besides, FLU did not show short-term neuroprotective or anti-inflammatory effects in the rat lithium-pilocarpine model of SE. Moreover, at the dose administered, FLU resulted in deleterious effects.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Estado Epiléptico , Ratas , Masculino , Animales , Litio/efectos adversos , Pilocarpina/efectos adversos , Ácido Flufenámico/metabolismo , Ácido Flufenámico/farmacología , Ácido Flufenámico/uso terapéutico , Ratas Sprague-Dawley , Fluorodesoxiglucosa F18/metabolismo , Fluorodesoxiglucosa F18/farmacología , Fluorodesoxiglucosa F18/uso terapéutico , Gliosis/metabolismo , Enfermedades Neuroinflamatorias , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/metabolismo , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Hipocampo/metabolismo , Glucosa/metabolismo , Antiinflamatorios/efectos adversos , Modelos Animales de Enfermedad
4.
Metab Brain Dis ; 36(8): 2597-2602, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34570340

RESUMEN

Status epilepticus (SE) is a clinical emergency with high mortality. SE can trigger neuronal death or injury and alteration of neuronal networks resulting in long-term cognitive decline or epilepsy. Among the multiple factors contributing to this damage, imbalance between oxygen and glucose requirements and brain perfusion during SE has been proposed. Herein, we aimed to quantify by neuroimaging the spatiotemporal course of brain perfusion during and after lithium-pilocarpine-induced SE in rats. To this purpose, animals underwent 99mTc-HMPAO SPECT imaging at different time points during and after SE using a small animal SPECT/CT system. 99mTc-HMPAO regional uptake was normalized to the injected dose. In addition, voxel-based statistical parametric mapping was performed. SPECT imaging showed an increase of cortical perfusion before clinical seizure activity onset followed by regional hypo-perfusion starting with the first convulsive seizure and during SE. Twenty-four hours after SE, brain 99mTc-HMPAO uptake was widely decreased. Finally, chronic epileptic animals showed regionally decreased perfusion affecting hippocampus and cortical sub-regions. Despite elevated energy and oxygen requirements, brain hypo-perfusion is present during SE. Our results suggest that insufficient compensation of required blood flow might contribute to neuronal damage and neuroinflammation, and ultimately to chronic epilepsy generated by SE.


Asunto(s)
Estado Epiléptico , Tomografía Computarizada de Emisión de Fotón Único , Animales , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Neuroimagen , Ratas , Estado Epiléptico/inducido químicamente , Estado Epiléptico/diagnóstico por imagen , Exametazima de Tecnecio Tc 99m , Tomografía Computarizada de Emisión de Fotón Único/métodos
5.
Mol Pharm ; 16(5): 1999-2010, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30865462

RESUMEN

Diseases affecting the central nervous system (CNS) should be regarded as a major health challenge due to the current lack of effective treatments given the hindrance to brain drug delivery imposed by the blood-brain barrier (BBB). Since efficient brain drug delivery should not solely rely on passive targeting, active targeting of nanomedicines into the CNS is being explored. The present study is devoted to the development of lipid nanocapsules (LNCs) decorated with nonpsychotropic cannabinoids as pioneering nonimmunogenic brain-targeting molecules and to the evaluation of their brain-targeting ability both in vitro and in vivo. Noticeably, both the permeability experiments across the hCMEC/D3 cell-based in vitro BBB model and the biodistribution experiments in mice consistently demonstrated that the highest brain-targeting ability was achieved with the smallest-sized cannabinoid-decorated LNCs. Importantly, the enhancement in brain targeting achieved with the conjugation of cannabidiol to LNCs outperformed by 6-fold the enhancement observed for the G-Technology (the main brain active strategy that has already entered clinical trials for the treatment of CNS diseases). As the transport efficiency across the BBB certainly determines the efficacy of the treatments for brain disorders, small cannabinoid-decorated LNCs represent auspicious platforms for the design and development of novel therapies for CNS diseases.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Cannabidiol/farmacología , Sistemas de Liberación de Medicamentos/métodos , Lípidos/química , Nanocápsulas/química , Nanoconjugados/química , Animales , Encefalopatías/tratamiento farmacológico , Cannabidiol/química , Cannabidiol/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Nanomedicina/métodos , Distribución Tisular
6.
Cell Mol Neurobiol ; 36(4): 513-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26208805

RESUMEN

It has been reported that fluoxetine, a selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor, has neuroprotective properties in the lithium-pilocarpine model of status epilepticus (SE) in rats. The aim of the present study was to investigate the effect of 5-HT depletion by short-term administration of p-chlorophenylalanine (PCPA), a specific tryptophan hydroxylase inhibitor, on the brain hypometabolism and neurodegeneration induced in the acute phase of this SE model. Our results show that 5-HT depletion did modify neither the brain basal metabolic activity nor the lithium-pilocarpine-induced hypometabolism when evaluated 3 days after the insult. In addition, hippocampal neurodegeneration and astrogliosis triggered by lithium-pilocarpine were not exacerbated by PCPA treatment. These findings point out that in the early latent phase of epileptogenesis, non-5-HT-mediated actions may contribute, at least in some extent, to the neuroprotective effects of fluoxetine in this model of SE.


Asunto(s)
Hipocampo/metabolismo , Hipocampo/patología , Degeneración Nerviosa/patología , Serotonina/deficiencia , Estado Epiléptico/metabolismo , Estado Epiléptico/patología , Animales , Modelos Animales de Enfermedad , Fenclonina , Gliosis/patología , Hipocampo/diagnóstico por imagen , Litio , Imagen por Resonancia Magnética , Masculino , Degeneración Nerviosa/diagnóstico por imagen , Degeneración Nerviosa/metabolismo , Pilocarpina , Tomografía de Emisión de Positrones , Ratas Sprague-Dawley , Estado Epiléptico/diagnóstico por imagen , Factores de Tiempo
7.
Exp Brain Res ; 233(3): 983-95, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25515088

RESUMEN

Fluoxetine (FLX) is prescribed to treat depression and anxiety in adolescent patients. However, FLX has anxiogenic effects during the acute phase of treatment, and caution has been raised due to increased suicidal thinking and behavior. Herein, we sought to study in adolescent (35-day-old) male rats, the effects of short-term FLX treatment (10 mg/kg/day, i.p. for 3-4 days) on hypothalamic-pituitary-adrenal axis activity, serotonin (5-hidroxytriptamine, 5-HT) transporter (SERT) mRNA expression in the dorsal raphe nucleus (DRN), energy balance-related variables and behavioral profiles in the holeboard. Our results revealed that daily FLX administration increased plasma corticosterone (B) concentrations without affecting basal gene expression of corticotrophin releasing hormone in the hypothalamic paraventricular nucleus (PVN) nor of pro-opiomelanocortin in the anterior pituitary. However, FLX had significant effects increasing the mRNA expression of PVN arginine vasopressin (AVP) and reducing SERT mRNA levels in the dorsolateral subdivision of the DRN. In the holeboard, FLX-induced anxiety/emotionality-like behaviors. As expected, FLX treatment was endowed with anorectic effects and reduced body weight gain. Altogether, our study shows that short-term FLX treatment results in physiological, neuroendocrine and behavioral stress-like effects in adolescent male rats. More importantly, considering that the AVP- and 5-HTergic systems: (1) are intimately involved in regulation of the stress response; (2) are regulated by sex hormones and (3) are related to regulation of aggressive behaviors, our results highlight the potential significance of these systems mediating the anxiogenic/emotionality/stress-like responses of adolescent male rats to short-term FLX treatment.


Asunto(s)
Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Fluoxetina/farmacología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Ansiedad/metabolismo , Corticosterona/sangre , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Sistema Hipófiso-Suprarrenal/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
8.
Heliyon ; 10(15): e35752, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170185

RESUMEN

Brain glucose hypometabolism and insulin alterations are common features of many neurological diseases. Herein we sought to corroborate the brain glucose hypometabolism that develops with ageing in 12-months old Tau-VLW transgenic mice, a model of tauopathy, as well as to determine whether this model showed signs of altered peripheral glucose metabolism. Our results demonstrated that 12-old months Tau mice exhibited brain glucose hypometabolism as well as basal hyperglycemia, impaired glucose tolerance, hyperinsulinemia, and signs of insulin resistance. Then, we further studied the effect of chronic metformin treatment (9 months) in Tau-VLW mice from 9 to 18 months of age. Longitudinal PET neuroimaging studies revealed that chronic metformin altered the temporal profile in the progression of brain glucose hypometabolism associated with ageing. Besides, metformin altered the content and/or phosphorylation of key components of the insulin signal transduction pathway in the frontal cortex leading to significant changes in the content of the active forms. Thus, metformin increased the expression of pAKT-Y474 while reducing pmTOR-S2448 and pGSK3ß. These changes might be related, at least partially, to a slow progression of ageing, neurological damage, and cognitive decline. Metformin also improved the peripheral glucose tolerance and the ability of the Tau-VLW mice to maintain their body weight through ageing. Altogether our study shows that the tau-VLW mice could be a useful model to study the potential interrelationship between tauopathy and central and peripheral glucose metabolism alterations. More importantly our results suggest that chronic metformin treatment may have direct beneficial central effects by post-transcriptional modulation of key components of the insulin signal transduction pathway.

9.
Eur J Pharmacol ; 939: 175453, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36516936

RESUMEN

Status epilepticus (SE) triggered by lithium-pilocarpine is a model of epileptogenesis widely used in rats, reproducing many of the pathological features of human temporal lobe epilepsy (TLE). After the SE, a silent period takes place that precedes the occurrence of recurrent spontaneous seizures. This latent stage is characterized by brain glucose hypometabolism and intense neuronal damage, especially at the hippocampus. Importantly, interictal hypometabolism in humans is a predictive marker of epileptogenesis, being correlated to the extent and severity of neuronal damage. Among the potential mechanisms underpinning glucose metabolism impairment and the subsequent brain damage, a reduction of cerebral blood flow has been proposed. Accordingly, our goal was to evaluate the potential beneficial effects of naftidrofuryl (25 mg/kg i.p., twice after the insult), a vasodilator drug currently used for circulatory insufficiency-related pathologies. Thus, we measured the effects of naftidrofuryl on the short-term brain hypometabolism and hippocampal damage induced by SE in rats. 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) neuroimaging along with various neurohistochemical assays aimed to assess brain damage were performed. SE led to both severe glucose hypometabolism in key epilepsy-related areas and hippocampal neuronal damage. Although naftidrofuryl showed no anticonvulsant properties, it ameliorated the short-term brain hypometabolism induced by pilocarpine. Strikingly, the latter was neither accompanied by neuroprotective nor by anti-inflammatory effects. We suggest that naftidrofuryl, by acutely enhancing brain blood flow around the time of SE improves the brain metabolic state but this effect is not enough to protect from the damage induced by SE.


Asunto(s)
Nafronil , Estado Epiléptico , Humanos , Ratas , Animales , Pilocarpina/farmacología , Litio/farmacología , Nafronil/metabolismo , Nafronil/farmacología , Vasodilatadores/farmacología , Neuroprotección , Glucosa/metabolismo , Modelos Animales de Enfermedad , Encéfalo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/tratamiento farmacológico , Hipocampo , Convulsiones/metabolismo
10.
J Neuroinflammation ; 9: 8, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-22248049

RESUMEN

BACKGROUND: Alzheimer's disease (AD) brain shows an ongoing inflammatory condition and non-steroidal anti-inflammatories diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and anti-inflammatory agents with therapeutic potential. METHODS: We have studied the effects of prolonged oral administration of transgenic amyloid precursor protein (APP) mice with two pharmacologically different cannabinoids (WIN 55,212-2 and JWH-133, 0.2 mg/kg/day in the drinking water during 4 months) on inflammatory and cognitive parameters, and on ¹8F-fluoro-deoxyglucose (¹8FDG) uptake by positron emission tomography (PET). RESULTS: Novel object recognition was significantly reduced in 11 month old Tg APP mice and 4 month administration of JWH was able to normalize this cognitive deficit, although WIN was ineffective. Wild type mice cognitive performance was unaltered by cannabinoid administration. Tg APP mice showed decreased ¹8FDG uptake in hippocampus and cortical regions, which was counteracted by oral JWH treatment. Hippocampal GFAP immunoreactivity and cortical protein expression was unaffected by genotype or treatment. In contrast, the density of Iba1 positive microglia was increased in Tg APP mice, and normalized following JWH chronic treatment. Both cannabinoids were effective at reducing the enhancement of COX-2 protein levels and TNF-α mRNA expression found in the AD model. Increased cortical ß-amyloid (Aß) levels were significantly reduced in the mouse model by both cannabinoids. Noteworthy both cannabinoids enhanced Aß transport across choroid plexus cells in vitro. CONCLUSIONS: In summary we have shown that chronically administered cannabinoid showed marked beneficial effects concomitant with inflammation reduction and increased Aß clearance.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Cannabinoides/administración & dosificación , Trastornos del Conocimiento/prevención & control , Encefalitis/prevención & control , Administración Oral , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Análisis de Varianza , Animales , Benzoxazinas/administración & dosificación , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Trastornos del Conocimiento/diagnóstico por imagen , Trastornos del Conocimiento/etiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Encefalitis/diagnóstico por imagen , Encefalitis/etiología , Ensayo de Inmunoadsorción Enzimática , Fluorodesoxiglucosa F18/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/patología , Morfolinas/administración & dosificación , Naftalenos/administración & dosificación , Tomografía de Emisión de Positrones , ARN Mensajero/metabolismo , Receptor Cannabinoide CB2/metabolismo , Factores de Tiempo
11.
Pharmaceutics ; 14(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35631665

RESUMEN

To date there is no cure for Parkinson's disease (PD), a devastating neurodegenerative disorder with levodopa being the cornerstone of its treatment. In early PD, levodopa provides a smooth clinical response, but after long-term therapy many patients develop motor complications. Tolcapone (TC) is an effective adjunct in the treatment of PD but has a short elimination half-life. In our work, two new controlled delivery systems of TC consisting of biodegradable PLGA 502 (poly (D,L-lactide-co-glycolide acid) microparticles (MPs) and nanoparticles (NPs) were developed and characterized. Formulations MP-TC4 and NP-TC3 were selected for animal testing. Formulation MP-TC4, prepared with 120 mg TC and 400 mg PLGA 502, exhibited a mean encapsulation efficiency (EE) of 85.13%, and zero-order in vitro release of TC for 30 days, with around 95% of the drug released at this time. Formulation NP-TC3, prepared with 10 mg of TC and 50 mg of PLGA 502, exhibited mean EE of 56.69%, particle size of 182 nm, and controlled the release of TC for 8 days. Daily i.p. (intraperitoneal) doses of rotenone (RT, 2 mg/kg) were given to Wistar rats to induce neurodegeneration. Once established, animals received TC in saline (3 mg/kg/day) or encapsulated within formulations MP-TC4 (amount of MPs equivalent to 3 mg/kg/day TC every 14 days) and NP-TC3 (amount of NPs equivalent to 3 mg/kg/day TC every 3 days). Brain analyses of Nissl-staining, GFAP (glial fibrillary acidic protein), and TH (tyrosine hydroxylase) immunohistochemistry as well as behavioral testing (catalepsy, akinesia, swim test) showed that the best formulation was NP-TC3, which was able to revert PD-like symptoms of neurodegeneration in the animal model assayed.

12.
Front Endocrinol (Lausanne) ; 13: 873301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615716

RESUMEN

Several neurological diseases share pathological alterations, even though they differ in their etiology. Neuroinflammation, altered brain glucose metabolism, oxidative stress, mitochondrial dysfunction and amyloidosis are biological events found in those neurological disorders. Altered insulin-mediated signaling and brain glucose hypometabolism are characteristic signs observed in the brains of patients with certain neurological diseases, but also others such as type 2 diabetes mellitus and vascular diseases. Thus, significant reductions in insulin receptor autophosphorylation and Akt kinase activity, and increased GSK-3 activity and insulin resistance, have been reported in these neurological diseases as contributing to the decline in cognitive function. Supporting this relationship is the fact that nasal and hippocampal insulin administration has been found to improve cognitive function. Additionally, brain glucose hypometabolism precedes the unmistakable clinical manifestations of some of these diseases by years, which may become a useful early biomarker. Deficiencies in the major pathways of oxidative energy metabolism have been reported in patients with several of these neurological diseases, which supports the hypothesis of their metabolic background. This review remarks on the significance of insulin and brain glucose metabolism alterations as keystone common pathogenic substrates for certain neurological diseases, highlighting new potential targets.


Asunto(s)
Encéfalo , Resistencia a la Insulina , Enfermedades del Sistema Nervioso , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Insulina/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Transducción de Señal/fisiología
13.
Pharmaceutics ; 14(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36365169

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, with its incidence constantly increasing. To date, there is no cure for the disease, with a need for new and effective treatments. Morin hydrate (MH) is a naturally occurring flavonoid of the Moraceae family with antioxidant and anti-inflammatory properties; however, the blood-brain barrier (BBB) prevents this flavonoid from reaching the CNS when aiming to potentially treat AD. Seeking to use the LAT-1 transporter present in the BBB, a nanoparticle (NPs) formulation loaded with MH and functionalized with phenylalanine-phenylalanine dipeptide was developed (NPphe-MH) and compared to non-functionalized NPs (NP-MH). In addition, two formulations were prepared using rhodamine B (Rh-B) as a fluorescent dye (NPphe-Rh and NP-Rh) to study their biodistribution and ability to cross the BBB. Functionalization of PLGA NPs resulted in high encapsulation efficiencies for both MH and Rh-B. Studies conducted in Wistar rats showed that the presence of phenylalanine dipeptide in the NPs modified their biodistribution profiles, making them more attractive for both liver and lungs, whereas non-functionalized NPs were predominantly distributed to the spleen. Formulation NPphe-Rh remained in the brain for at least 2 h after administration.

14.
Eur J Nucl Med Mol Imaging ; 38(12): 2228-37, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21874322

RESUMEN

PURPOSE: Although specific positron emission tomography (PET) scanners have been developed for small animals, spatial resolution remains one of the most critical technical limitations, particularly in the evaluation of the rodent brain. The purpose of the present study was to examine the reliability of voxel-based statistical analysis (Statistical Parametric Mapping, SPM) applied to (18)F-fluorodeoxyglucose (FDG) PET images of the rat brain, acquired on a small animal PET not specifically designed for rodents. The gold standard for the validation of the PET results was the autoradiography of the same animals acquired under the same physiological conditions, reconstructed as a 3-D volume and analysed using SPM. METHODS: Eleven rats were studied under two different conditions: conscious or under inhalatory anaesthesia during (18)F-FDG uptake. All animals were studied in vivo under both conditions in a dedicated small animal Philips MOSAIC PET scanner and magnetic resonance images were obtained for subsequent spatial processing. Then, rats were randomly assigned to a conscious or anaesthetized group for postmortem autoradiography, and slices from each animal were aligned and stacked to create a 3-D autoradiographic volume. Finally, differences in (18)F-FDG uptake between conscious and anaesthetized states were assessed from PET and autoradiography data by SPM analysis and results were compared. RESULTS: SPM results of PET and 3-D autoradiography are in good agreement and led to the detection of consistent cortical differences between the conscious and anaesthetized groups, particularly in the bilateral somatosensory cortices. However, SPM analysis of 3-D autoradiography also highlighted differences in the thalamus that were not detected with PET. CONCLUSION: This study demonstrates that any difference detected with SPM analysis of MOSAIC PET images of rat brain is detected also by the gold standard autoradiographic technique, confirming that this methodology provides reliable results, although partial volume effects might make it difficult to detect slight differences in small regions.


Asunto(s)
Autorradiografía/métodos , Mapeo Encefálico/métodos , Encéfalo/metabolismo , Fluorodesoxiglucosa F18 , Imagenología Tridimensional/métodos , Tomografía de Emisión de Positrones/métodos , Animales , Encéfalo/diagnóstico por imagen , Interpretación Estadística de Datos , Masculino , Radiografía , Radiofármacos , Ratas , Ratas Sprague-Dawley , Estadística como Asunto , Técnica de Sustracción , Distribución Tisular
15.
Neuroscience ; 409: 101-110, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31034972

RESUMEN

Glucose metabolism and serotonergic neurotransmission have been reported to play an important role in epileptogenesis. We therefore aimed to use neuroimaging to evaluate potential alterations in serotonin 5-HT1A receptor and glucose metabolism during epileptogenesis in the rat electrical kindling model. To achieve this goal, we performed positron emission tomography (PET) imaging in a rat epileptogenesis model triggered by electrical stimulation of the hippocampus using 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG), a radiolabeled analog of glucose, and 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine (18F-MPPF), a radiolabeled 5-HT1A receptor ligand, to evaluate brain metabolism and 5-HT1A receptor functionality. Since the 5-HT1A receptor is also highly expressed in astrocytes, glial fibrillary acidic protein (GFAP) immunofluorescence was performed to detect astrogliosis arising from the kindling procedure once the study was finalized. Lastly, in vitro18F-MPPF autoradiography was performed to evaluate changes in 5HT1A receptor expression. 18F-FDG PET showed reduction of glucose uptake in cortical structures, whereas 18F-MPPF PET revealed an enhancement of tracer binding potential (BPND) in key areas rich in 5-HT1A receptor involved in epilepsy, including septum, hippocampus and entorhinal cortex of kindled animals compared to controls. However, in vitro 5-HT1A receptor autoradiography showed no changes in densitometric signal in any brain region, suggesting that the augmentation in BPND found by PET could be caused by reduction of synaptic serotonin. Importantly, astroglial activation was detected in the hippocampus of kindled rats. Overall, electrical kindling induced hypometabolism, astrogliosis and serotonergic alterations in epilepsy-related regions. Furthermore, the present findings point to 5-HT1A receptor as a valuable epileptogenesis biomarker candidate and a potential therapeutic target.


Asunto(s)
Epilepsia/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Excitación Neurológica/metabolismo , Tomografía de Emisión de Positrones , Serotonina/metabolismo , Animales , Epilepsia/metabolismo , Fluorodesoxiglucosa F18 , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucosa/metabolismo , Hipocampo/metabolismo , Masculino , Neuroimagen , Ratas
16.
Neurochem Int ; 113: 92-106, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29203398

RESUMEN

Intracerebral administration of the potassium channel blocker 4-aminopyridine (4-AP) triggers neuronal depolarization and intense acute seizure activity followed by neuronal damage. We have recently shown that, in the lithium-pilocarpine rat model of status epilepticus (SE), a single administration of metyrapone, an inhibitor of the 11ß-hydroxylase enzyme, had protective properties of preventive nature against signs of brain damage and neuroinflammation. Herein, our aim was to investigate to which extent, pretreatment with metyrapone (150 mg/kg, i.p.) was also able to prevent eventual changes in the acute brain metabolism and short-term neuronal damage induced by intrahippocampal injection of 4-AP (7 µg/5 µl). To this end, regional brain metabolism was assessed by 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) positron emission tomography (PET) during the ictal period. Three days later, markers of neuronal death and hippocampal integrity and apoptosis (Nissl staining, NeuN and active caspase-3 immunohistochemistry), neurodegeneration (Fluoro-Jade C labeling), astrogliosis (glial fibrillary acidic protein (GFAP) immunohistochemistry) and microglia-mediated neuroinflammation (in vitro [18F]GE180 autoradiography) were evaluated. 4-AP administration acutely triggered marked brain hypermetabolism within and around the site of injection as well as short-term signs of brain damage and inflammation. Most important, metyrapone pretreatment was able to reduce ictal hypermetabolism as well as all the markers of brain damage except microglia-mediated neuroinflammation. Overall, our study corroborates the neuroprotective effects of metyrapone against multiple signs of brain damage caused by seizures triggered by 4-AP. Ultimately, our data add up to the consistent protective effect of metyrapone pretreatment reported in other models of neurological disorders of different etiology.


Asunto(s)
4-Aminopiridina/toxicidad , Glucosa/metabolismo , Hipocampo/metabolismo , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/prevención & control , Metirapona/uso terapéutico , 4-Aminopiridina/administración & dosificación , Animales , Antimetabolitos/farmacología , Antimetabolitos/uso terapéutico , Glucosa/antagonistas & inhibidores , Hipocampo/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Hipoxia Encefálica/inducido químicamente , Hipoxia Encefálica/diagnóstico por imagen , Inyecciones Intraventriculares , Masculino , Metirapona/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Tomografía de Emisión de Positrones/métodos , Bloqueadores de los Canales de Potasio/administración & dosificación , Bloqueadores de los Canales de Potasio/toxicidad , Ratas , Ratas Sprague-Dawley
17.
Pharmacol Biochem Behav ; 153: 32-44, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27988176

RESUMEN

Fluoxetine (FLX) has paradoxical anxiogenic-like effects during the acute phase of treatment. In adolescent (35d-old) male rats, the stress-like effects induced by short-term (3d-4d) FLX treatment appear to involve up-regulation of paraventricular nucleus (PVN) arginine vasopressin (AVP) mRNA. However, studies on FLX-induced anxiety-like effects in adult rodents are inconclusive. Herein, we sought to study the response of adult male rats (60-65d-old) to a similar FLX treatment, also investigating how the stressful component, inherent to our experimental conditions, contributed to the responses. We show that FLX acutely increased plasma corticosterone concentrations while it attenuated the stress-induced-hyperthermia (SIH) as well as it reduced (≈40%) basal POMC mRNA expression in the arcuate nucleus (ARC). However, FLX did not alter the basal expression of PVN-corticotrophin-releasing hormone (CRH), anterior pituitary-pro-opiomelanocortin (POMC) and raphe nucleusserotonin transporter (SERT). Nonetheless, some regressions point towards the plausibility that FLX activated the hypothalamic-pituitary-adrenal (HPA). The behavioral study revealed that FLX acutely increased emotional reactivity in the holeboard, effect followed by a body weight loss of ≈2.5% after 24h. Interestingly, i.p. injection with vehicle did not have behavioral effects, furthermore, after experiencing the stressful component of the holeboard, the rats kept eating and gaining weight as normal. By contrast, the stress-naïve rats reduced food intake and gained less weight although maintaining a positive energy state. Therefore, on one hand, repetition of a mild stressor would unchain compensatory mechanisms to restore energy homeostasis after stress increasing the resiliency to novel stressors. On the other hand, FLX might render stressed adult rats vulnerable to novel stressors through the emergence of counter-regulatory changes, involving HPA axis activation and diminished sympathetic output may be due to reduced melanocortin signaling. Therefore, complex interactions between hypothalamic CRH and POMC might be determining the adaptive nature of the response of adult male rats to FLX and/or stress.


Asunto(s)
Ansiedad/inducido químicamente , Fluoxetina/farmacología , Estrés Psicológico/etiología , Animales , Corticosterona/sangre , Hormona Liberadora de Corticotropina/fisiología , Metabolismo Energético/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/fisiología , Hipotálamo/fisiología , Masculino , Sistema Hipófiso-Suprarrenal/fisiología , Proopiomelanocortina/fisiología , Ratas , Ratas Sprague-Dawley , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
18.
Curr Pharm Des ; 23(23): 3423-3431, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27779080

RESUMEN

A new controlled delivery system has been developed for ropinirole (RP) for the treatment of Parkinson´s Disease (PD) consisting in PLGA microparticles (MPs) which exhibited in vitro constant release of RP (78.23 µg/day/10 mg MPs) for 19 days. The neuroprotective effects of RP released from MPs were evaluated in SKN-AS cells after exposure to rotenone (20 µM). Cell apoptosis was significantly reduced by RP (100-120 µM). Daily doses of rotenone (2 mg/kg) given i.p. to rats induced neuronal and behavioral changes similar to those of PD. After 15 days, animals received RP in saline (1 mg/kg/day for 45 days) or as MPs at two dose levels (amount of MPs equivalent to 7.5 mg/kg or 15 mg/kg RP given on days 15 and 30). Brain immunochemistry (Nisslstaining, GFAP and TH immunohistochemistry) and behavioral testing (catalepsy, akinesia, rotarod and swim test) showed that animals receiving RP either in solution or encapsulated within the MPs reverted the PD symptoms with the best results obtained in animals receiving RP microspheres at the highest dose assayed, thereby confirming the potential therapeutic interest of the new RP delivery system.


Asunto(s)
Antiparkinsonianos/administración & dosificación , Indoles/administración & dosificación , Ácido Láctico/administración & dosificación , Microesferas , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Ácido Poliglicólico/administración & dosificación , Rotenona/toxicidad , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Humanos , Insecticidas/toxicidad , Masculino , Trastornos Parkinsonianos/patología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Ratas Wistar , Resultado del Tratamiento
19.
Int J Nanomedicine ; 12: 1959-1968, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28331318

RESUMEN

A new nanocarrier is developed for the passage of gatifloxacin through the blood-brain barrier to treat central nervous system tuberculosis. Gatifloxacin nanoparticles were prepared by nanoprecipitation using poly(lactic-co-glycolic acid) (PLGA) 502 and polysorbate 80 or Labrafil as surface modifiers. The evaluation of in vivo blood-brain barrier transport was carried out in male Wistar rats using rhodamine-loaded PLGA nanoparticles prepared with and without the surface modifiers. At 30 and 60 minutes after administration, nanoparticle biodistribution into the brain (hippocampus and cortex), lungs, and liver was studied. The results obtained from the cerebral cortex and hippocampus showed that functionalization of rhodamine nanoparticles significantly increased their passage into the central nervous system. At 60 minutes, rhodamine concentrations decreased in both the lungs and the liver but were still high in the cerebral cortex. To distinguish the effect between the surfactants, gatifloxacin-loaded PLGA nanoparticles were prepared. The best results corresponded to the formulation prepared with polysorbate 80 with regard to encapsulation efficiency (28.2%), particle size (176.5 nm), and ζ-potential (-20.1 mV), thereby resulting in a promising drug delivery system to treat cerebral tuberculosis.


Asunto(s)
Fluoroquinolonas/uso terapéutico , Nanopartículas/química , Tuberculosis del Sistema Nervioso Central/tratamiento farmacológico , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Química Farmacéutica , Fluoroquinolonas/farmacología , Gatifloxacina , Masculino , Microscopía Confocal , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas Wistar , Rodaminas/metabolismo , Soluciones , Distribución Tisular/efectos de los fármacos
20.
CNS Neurol Disord Drug Targets ; 16(6): 694-704, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27989232

RESUMEN

BACKGROUND: Epilepsy is a central disorder associated with neuronal damage and brain hypometabolism. It has been reported that antidepressant drugs show anticonvulsant and neuroprotective effects in different animal models of seizures and epilepsy. AIMS: The purpose of this study was to investigate the eventual short-term brain impairment induced by a single low convulsant dose of the potassium channel blocker 4-aminopyridine (4-AP) and the eventual neuroprotective effects exerted by fluoxetine, a prototypical selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI). METHOD: In vivo 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) and several histological assessments were carried out in adult male rats after i.p. administration of 3 mg/kg 4-AP for evaluating eventual brain metabolism impairment and signs of hippocampal damage. We also evaluated the effects of a short-term fluoxetine treatment (10 mg/kg, i.p. for 7 days) in this seizure model. RESULTS: [18F]FDG PET analysis revealed no changes in the regional brain metabolism on day 3 after 4-AP injection. The histological assessments revealed signs of damage in the hippocampus, a brain area usually affected by seizures. Thus, reactive gliosis and a significant increase in the expression of caspase-9 were found in the aforementioned brain area. By contrast, we observed no signs of neurodegeneration or neuronal death. Regarding the effects of fluoxetine, this SSRI showed beneficial neurologic effects, since it significantly increased the seizure latency time and reduced the abovementioned 4-AP-induced hippocampal damage markers. CONCLUSION: Overall, our results point to SSRIs and eventually endogenous 5-HT as neuroprotective agents against convulsant-induced hippocampal damage.


Asunto(s)
4-Aminopiridina/toxicidad , Lesiones Encefálicas , Convulsivantes/toxicidad , Fluoxetina/uso terapéutico , Hipocampo/patología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Animales , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/patología , Caspasa 9/metabolismo , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Fluoresceínas/metabolismo , Fluorodesoxiglucosa F18/farmacocinética , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/inducido químicamente , Gliosis/patología , Hipocampo/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Masculino , Fosfopiruvato Hidratasa/metabolismo , Tomografía de Emisión de Positrones , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA