Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Genet ; 61(6): 503-519, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38471765

RESUMEN

Rubinstein-Taybi syndrome (RTS) is an archetypical genetic syndrome that is characterised by intellectual disability, well-defined facial features, distal limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in either of two genes (CREBBP, EP300) which encode for the proteins CBP and p300, which both have a function in transcription regulation and histone acetylation. As a group of international experts and national support groups dedicated to the syndrome, we realised that marked heterogeneity currently exists in clinical and molecular diagnostic approaches and care practices in various parts of the world. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria for types of RTS (RTS1: CREBBP; RTS2: EP300), molecular investigations, long-term management of various particular physical and behavioural issues and care planning. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimisation of diagnostics and care.


Asunto(s)
Proteína de Unión a CREB , Proteína p300 Asociada a E1A , Síndrome de Rubinstein-Taybi , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/terapia , Humanos , Proteína de Unión a CREB/genética , Proteína p300 Asociada a E1A/genética , Consenso , Manejo de la Enfermedad , Mutación
2.
Hum Mol Genet ; 31(3): 440-454, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34505148

RESUMEN

Recently, others and we identified de novo FBXO11 (F-Box only protein 11) variants as causative for a variable neurodevelopmental disorder (NDD). We now assembled clinical and mutational information on 23 additional individuals. The phenotypic spectrum remains highly variable, with developmental delay and/or intellectual disability as the core feature and behavioral anomalies, hypotonia and various facial dysmorphism as frequent aspects. The mutational spectrum includes intragenic deletions, likely gene disrupting and missense variants distributed across the protein. To further characterize the functional consequences of FBXO11 missense variants, we analyzed their effects on protein expression and localization by overexpression of 17 different mutant constructs in HEK293 and HeLa cells. We found that the majority of missense variants resulted in subcellular mislocalization and/or reduced FBXO11 protein expression levels. For instance, variants located in the nuclear localization signal and the N-terminal F-Box domain lead to altered subcellular localization with exclusion from the nucleus or the formation of cytoplasmic aggregates and to reduced protein levels in western blot. In contrast, variants localized in the C-terminal Zn-finger UBR domain lead to an accumulation in the cytoplasm without alteration of protein levels. Together with the mutational data, our functional results suggest that most missense variants likely lead to a loss of the original FBXO11 function and thereby highlight haploinsufficiency as the most likely disease mechanism for FBXO11-associated NDDs.


Asunto(s)
Proteínas F-Box , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteínas F-Box/genética , Células HEK293 , Células HeLa , Humanos , Discapacidad Intelectual/genética , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Proteína-Arginina N-Metiltransferasas/genética
3.
Am J Obstet Gynecol ; 230(3): 368.e1-368.e12, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37717890

RESUMEN

BACKGROUND: The 22q11.2 deletion syndrome is the most common microdeletion syndrome and is frequently associated with congenital heart disease. Prenatal diagnosis of 22q11.2 deletion syndrome is increasingly offered. It is unknown whether there is a clinical benefit to prenatal detection as compared with postnatal diagnosis. OBJECTIVE: This study aimed to determine differences in perinatal and infant outcomes between patients with prenatal and postnatal diagnosis of 22q11.2 deletion syndrome. STUDY DESIGN: This was a retrospective cohort study across multiple international centers (30 sites, 4 continents) from 2006 to 2019. Participants were fetuses, neonates, or infants with a genetic diagnosis of 22q11.2 deletion syndrome by 1 year of age with or without congenital heart disease; those with prenatal diagnosis or suspicion (suggestive ultrasound findings and/or high-risk cell-free fetal DNA screen for 22q11.2 deletion syndrome with postnatal confirmation) were compared with those with postnatal diagnosis. Perinatal management, cardiac and noncardiac morbidity, and mortality by 1 year were assessed. Outcomes were adjusted for presence of critical congenital heart disease, gestational age at birth, and site. RESULTS: A total of 625 fetuses, neonates, or infants with 22q11.2 deletion syndrome (53.4% male) were included: 259 fetuses were prenatally diagnosed (156 [60.2%] were live-born) and 122 neonates were prenatally suspected with postnatal confirmation, whereas 244 infants were postnatally diagnosed. In the live-born cohort (n=522), 1-year mortality was 5.9%, which did not differ between groups but differed by the presence of critical congenital heart disease (hazard ratio, 4.18; 95% confidence interval, 1.56-11.18; P<.001) and gestational age at birth (hazard ratio, 0.78 per week; 95% confidence interval, 0.69-0.89; P<.001). Adjusting for critical congenital heart disease and gestational age at birth, the prenatal cohort was less likely to deliver at a local community hospital (5.1% vs 38.2%; odds ratio, 0.11; 95% confidence interval, 0.06-0.23; P<.001), experience neonatal cardiac decompensation (1.3% vs 5.0%; odds ratio, 0.11; 95% confidence interval, 0.03-0.49; P=.004), or have failure to thrive by 1 year (43.4% vs 50.3%; odds ratio, 0.58; 95% confidence interval, 0.36-0.91; P=.019). CONCLUSION: Prenatal detection of 22q11.2 deletion syndrome was associated with improved delivery management and less cardiac and noncardiac morbidity, but not mortality, compared with postnatal detection.


Asunto(s)
Síndrome de DiGeorge , Cardiopatías Congénitas , Lactante , Recién Nacido , Embarazo , Femenino , Humanos , Masculino , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Estudios Retrospectivos , Diagnóstico Prenatal , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/genética , Atención Prenatal
4.
J Med Genet ; 60(7): 644-654, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36446582

RESUMEN

BACKGROUND: KBG syndrome is a highly variable neurodevelopmental disorder and clinical diagnostic criteria have changed as new patients have been reported. Both loss-of-function sequence variants and large deletions (copy number variations, CNVs) involving ANKRD11 cause KBG syndrome, but no genotype-phenotype correlation has been reported. METHODS: 67 patients with KBG syndrome were assessed using a custom phenotypical questionnaire. Manifestations present in >50% of the patients and a 'phenotypical score' were used to perform a genotype-phenotype correlation in 340 patients from our cohort and the literature. RESULTS: Neurodevelopmental delay, macrodontia, triangular face, characteristic ears, nose and eyebrows were the most prevalentf (eatures. 82.8% of the patients had at least one of seven main comorbidities: hearing loss and/or otitis media, visual problems, cryptorchidism, cardiopathy, feeding difficulties and/or seizures. Associations found included a higher phenotypical score in patients with sequence variants compared with CNVs and a higher frequency of triangular face (71.1% vs 42.5% in CNVs). Short stature was more frequent in patients with exon 9 variants (62.5% inside vs 27.8% outside exon 9), and the prevalence of intellectual disability/attention deficit hyperactivity disorder/autism spectrum disorder was lower in patients with the c.1903_1907del variant (70.4% vs 89.4% other variants). Presence of macrodontia and comorbidities were associated with larger deletion sizes and hand anomalies with smaller deletions. CONCLUSION: We present a detailed phenotypical description of KBG syndrome in the largest series reported to date of 67 patients, provide evidence of a genotype-phenotype correlation between some KBG features and specific ANKRD11 variants in 340 patients, and propose updated clinical diagnostic criteria based on our findings.


Asunto(s)
Anomalías Múltiples , Trastorno del Espectro Autista , Enfermedades del Desarrollo Óseo , Discapacidad Intelectual , Anomalías Dentarias , Masculino , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Anomalías Múltiples/diagnóstico , Enfermedades del Desarrollo Óseo/genética , Anomalías Dentarias/genética , Facies , Trastorno del Espectro Autista/genética , Variaciones en el Número de Copia de ADN , Proteínas Represoras/genética , Deleción Cromosómica , Fenotipo , Factores de Transcripción/genética
5.
Am J Hum Genet ; 106(1): 26-40, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31870554

RESUMEN

The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 × 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Cardiopatías Congénitas/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Cardiopatías Congénitas/patología , Humanos , Desequilibrio de Ligamiento , Masculino , Fenotipo , Proto-Oncogenes Mas , Duplicaciones Segmentarias en el Genoma
6.
Hum Mutat ; 43(2): 266-282, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34859529

RESUMEN

De novo variants in QRICH1 (Glutamine-rich protein 1) has recently been reported in 11 individuals with intellectual disability (ID). The function of QRICH1 is largely unknown but it is likely to play a key role in the unfolded response of endoplasmic reticulum stress through transcriptional control of proteostasis. In this study, we present 27 additional individuals and delineate the clinical and molecular spectrum of the individuals (n = 38) with QRICH1 variants. The main clinical features were mild to moderate developmental delay/ID (71%), nonspecific facial dysmorphism (92%) and hypotonia (39%). Additional findings included poor weight gain (29%), short stature (29%), autism spectrum disorder (29%), seizures (24%) and scoliosis (18%). Minor structural brain abnormalities were reported in 52% of the individuals with brain imaging. Truncating or splice variants were found in 28 individuals and 10 had missense variants. Four variants were inherited from mildly affected parents. This study confirms that heterozygous QRICH1 variants cause a neurodevelopmental disorder including short stature and expands the phenotypic spectrum to include poor weight gain, scoliosis, hypotonia, minor structural brain anomalies, and seizures. Inherited variants from mildly affected parents are reported for the first time, suggesting variable expressivity.


Asunto(s)
Trastorno del Espectro Autista , Enanismo , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Escoliosis , Trastorno del Espectro Autista/genética , Humanos , Discapacidad Intelectual/genética , Hipotonía Muscular , Trastornos del Neurodesarrollo/genética , Convulsiones , Aumento de Peso
7.
Genet Med ; 24(11): 2351-2366, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36083290

RESUMEN

PURPOSE: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. METHODS: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. RESULTS: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. CONCLUSION: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Fenotipo , Trastornos del Neurodesarrollo/genética , Vía de Señalización Wnt/genética , Discapacidad Intelectual/genética , Genómica , beta Catenina/genética
8.
Am J Med Genet A ; 188(9): 2819-2824, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779070

RESUMEN

EVEN-PLUS syndrome is a rare autosomal recessive disorder caused by biallelic pathogenic variants in the mitochondrial chaperone called mortalin, encoded by HSPA9. This genetic disorder, presenting with several overlapping features with CODAS syndrome, is characterized by the involvement of the Epiphyses, Vertebrae, Ears, and Nose (EVEN), PLUS associated findings. Only five individuals presenting with the EVEN-PLUS phenotype and biallelic variants in HSPA9 have been published. Here, we expand the phenotypic and molecular spectrum associated with this disorder, reporting two sibs with a milder phenotype and compound heterozygous pathogenic variants (a recurrent variant and a novel one). Also, we confirm a homozygous pathogenic variant in the family originally reported as EVE dysplasia.


Asunto(s)
Anomalías Craneofaciales , Osteocondrodisplasias , Anomalías Dentarias , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Proteínas HSP70 de Choque Térmico/genética , Homocigoto , Humanos , Proteínas Mitocondriales/genética , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Fenotipo
9.
J Genet Couns ; 31(1): 71-81, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34218491

RESUMEN

Evaluation of clinical genetic services is challenging due to the nature of their interventions. The Genetic Counseling Outcome Scale (GCOS-24), a patient-reported outcome measure, was developed to measure empowerment, an important patient-reported outcome from genetic counseling. Previously, we translated and adapted GCOS-24 for use in Spain, but neither test-retest reliability nor structural and construct validity were assessed at that time. In the present study, we set out to test the reliability and validity of the Spanish adaptation of the GCOS-24 against already validated Spanish language measures of satisfaction with life, anxiety, and health locus of control. 880 patients/families who attended the genetics clinic were invited to participate in a online survey. 201 participants (23%) completed the four questionnaires at the first timepoint, and 59 of these (29%) completed GCOS-24 again the second timepoint, 2-4 weeks later. Test-retest reliability was confirmed, with no significant differences between responses to GCOS-24 at the first and second timepoints and good internal consistency. Convergent validity was confirmed between GCOS-24 and measures of satisfaction with life and anxiety but not with measures of health locus of control. For the structural and construct validation, an exploratory factor analysis was performed. The resulting factorial structure of GCOS-24 consists of 6 factors that accumulate 68% of the variance shared by the 21 items that remained in the model. We applied the factor structure of the three validated measures to the available data and analyzed the correlation between factors of GCOS-24 and the other scales. The results showed significant and consistent correlation with factors of the satisfaction with life and anxiety scales but no significant correlation with internal health locus of control. The use of the Spanish adaptation of GCOS-24 in other genetic clinics in Spain will help to validate it further. This study contributes to the international validation of GCOS-24 to evaluate the quality of genetic counseling in Europe.


Asunto(s)
Asesoramiento Genético , Lenguaje , Asesoramiento Genético/métodos , Humanos , Psicometría/métodos , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
10.
Genet Med ; 23(5): 888-899, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33597769

RESUMEN

PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants. METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing. RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies. CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.


Asunto(s)
Trastorno del Espectro Autista , Encefalopatías , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Encéfalo , Homólogo 4 de la Proteína Discs Large/genética , Humanos , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo
11.
Am J Med Genet A ; 185(3): 856-865, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33305909

RESUMEN

Stuve-Wiedemann syndrome (SWS; MIM 601559) is a rare autosomal recessive disease caused by mutations in the leukemia inhibitor factor receptor gene (LIFR). Common clinical and radiological findings are often observed, and high neonatal mortality occurs due to respiratory distress and hyperthermic episodes. Despite initially considered as a lethal disorder during the newborn period, in recent years, several SWS childhood survivors have been reported. We report a detailed clinical and radiological characterization of four unrelated childhood SWS molecularly confirmed patients and review 22 previously reported childhood surviving cases. We contribute to the definition of the childhood survival phenotype of SWS, emphasizing the evolving phenotype, characterized by skeletal abnormalities with typical radiological findings, distinctive dysmorphic features, and dysautonomia. Based on the typical features and clinical course, early diagnosis is possible and crucial to plan appropriate management and prevent potential complications. Genetic confirmation is advisable in order to improve genetic counseling to the patients and their families.


Asunto(s)
Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/genética , Exostosis Múltiple Hereditaria/diagnóstico por imagen , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Osteocondrodisplasias/diagnóstico por imagen , Enfermedades del Desarrollo Óseo/diagnóstico por imagen , Enfermedades Óseas Metabólicas/genética , Preescolar , Consanguinidad , Discapacidades del Desarrollo/genética , Disautonomía Familiar/genética , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/patología , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/deficiencia , Masculino , Hipotonía Muscular/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patología , Fenotipo , Romaní/genética , Sobrevivientes
12.
Am J Med Genet A ; 185(1): 119-133, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098347

RESUMEN

Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype.


Asunto(s)
Eccema/diagnóstico , Eccema/genética , Predisposición Genética a la Enfermedad , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética , Histona Desacetilasas/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Proteínas Represoras/genética , Adolescente , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Eccema/patología , Exoma/genética , Facies , Femenino , Genoma Humano/genética , Genómica/métodos , Trastornos del Crecimiento/patología , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Microcefalia/patología , Fenotipo , Secuenciación del Exoma
13.
Genet Med ; 22(1): 124-131, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31316167

RESUMEN

PURPOSE: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested. We designed a clinical scoring system and diagnostic criteria to support the diagnostic process and guide molecular genetic testing. METHODS: In this retrospective study, we assessed 167 probands referred for FBN2 analysis and classified them into a FBN2-positive (n = 44) and FBN2-negative group (n = 123) following molecular analysis. We developed a 20-point weighted clinical scoring system based on the prevalence of ten main clinical characteristics of CCA in both groups. RESULTS: The total score was significantly different between the groups (P < 0.001) and was indicative for classifying patients into unlikely CCA (total score <7) and likely CCA (total score ≥7) groups. CONCLUSIONS: Our clinical score is helpful for clinical guidance for patients suspected to have CCA, and provides a quantitative tool for phenotyping in research settings.


Asunto(s)
Aracnodactilia/diagnóstico , Contractura/diagnóstico , Fibrilina-2/genética , Análisis de Secuencia de ADN/métodos , Aracnodactilia/genética , Niño , Contractura/genética , Diagnóstico Diferencial , Diagnóstico Precoz , Femenino , Pruebas Genéticas , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Fenotipo , Estudios Retrospectivos , Sensibilidad y Especificidad
14.
Hum Mutat ; 40(8): 1013-1029, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31021519

RESUMEN

SATB2-associated syndrome (SAS) is an autosomal dominant neurodevelopmental disorder caused by alterations in the SATB2 gene. Here we present a review of published pathogenic variants in the SATB2 gene to date and report 38 novel alterations found in 57 additional previously unreported individuals. Overall, we present a compilation of 120 unique variants identified in 155 unrelated families ranging from single nucleotide coding variants to genomic rearrangements distributed throughout the entire coding region of SATB2. Single nucleotide variants predicted to result in the occurrence of a premature stop codon were the most commonly seen (51/120 = 42.5%) followed by missense variants (31/120 = 25.8%). We review the rather limited functional characterization of pathogenic variants and discuss current understanding of the consequences of the different molecular alterations. We present an expansive phenotypic review along with novel genotype-phenotype correlations. Lastly, we discuss current knowledge of animal models and present future prospects. This review should help provide better guidance for the care of individuals diagnosed with SAS.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/genética , Mutación , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Animales , Niño , Preescolar , Codón de Terminación , Modelos Animales de Enfermedad , Femenino , Reordenamiento Génico , Estudios de Asociación Genética , Humanos , Masculino , Mutación Missense , Polimorfismo de Nucleótido Simple
15.
Clin Genet ; 95(6): 726-731, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30628072

RESUMEN

Overgrowth syndromes (OGS) comprise a heterogeneous group of disorders whose main characteristic is that either the weight, height, or head circumference are above the 97th centile or 2 to 3 SD above the mean for age and sex. Additional features, such as facial dysmorphism, developmental delay or intellectual disability (ID), congenital anomalies, neurological problems and an increased risk of neoplasia are usually associated with OGS. Genetic analysis in patients with overlapping clinical features is essential, to distinguish between two or more similar conditions, and to provide appropriate genetic counseling and recommendations for follow up. In the present paper, we report five new patients (from four unrelated families) with an X-linked mental retardation syndrome with overgrowth (XMR93 syndrome), also known as XLID-BRWD3-related syndrome. The main features of these patients include ID, macrocephaly and dysmorphic facial features. XMR93 syndrome is a recently described disorder caused by mutations in the Bromodomain and WD-repeat domain-containing protein 3 (BRWD3) gene. This article underscores the importance of genetic screening by exome sequencing for patients with OGS and ID with unclear clinical diagnosis, and expands the number of reported individuals with XMR93 syndrome, highlighting the clinical features of this unusual disease.


Asunto(s)
Megalencefalia/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Factores de Transcripción/genética , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Discapacidades del Desarrollo , Humanos , Masculino , Megalencefalia/metabolismo , Megalencefalia/fisiopatología , Discapacidad Intelectual Ligada al Cromosoma X/fisiopatología , Mutación , Linaje , Sistema de Registros , Factores de Transcripción/metabolismo , Secuenciación del Exoma
16.
Clin Genet ; 96(6): 493-505, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31397880

RESUMEN

Pathogenic MAGEL2 variants result in the phenotypes of Chitayat-Hall syndrome (CHS), Schaaf-Yang syndrome (SYS) and Prader-Willi syndrome (PWS). We present five patients with mutations in MAGEL2, including the first patient reported with a missense variant, adding to the limited literature. Further, we performed a systematic review of the CHS and SYS literature, assess the overlap between CHS, SYS and PWS, and analyze genotype-phenotype correlations among them. We conclude that there is neither a clinical nor etiological difference between CHS and SYS, and propose that the two syndromes simply be referred to as MAGEL2-related disorders.


Asunto(s)
Anomalías Múltiples/genética , Proteínas/genética , Adulto , Preescolar , Análisis por Conglomerados , Análisis Mutacional de ADN , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mutación/genética , Adulto Joven
18.
Hum Mutat ; 39(1): 103-113, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29024177

RESUMEN

Loss-of-function mutations in the X-linked gene FLNA can lead to abnormal neuronal migration, vascular and cardiac defects, and congenital intestinal pseudo-obstruction (CIPO), the latter characterized by anomalous intestinal smooth muscle layering. Survival in male hemizygotes for such mutations is dependent on retention of residual FLNA function but it is unclear why a subgroup of males with mutations in the 5' end of the gene can present with CIPO alone. Here, we demonstrate evidence for the presence of two FLNA isoforms differing by 28 residues at the N-terminus initiated at ATG+1 and ATG+82 . A male with CIPO (c.18_19del) exclusively expressed FLNA ATG+82 , implicating the longer protein isoform (ATG+1 ) in smooth muscle development. In contrast, mutations leading to reduction of both isoforms are associated with compound phenotypes affecting the brain, heart, and intestine. RNA-seq data revealed three distinct transcription start sites, two of which produce a protein isoform utilizing ATG+1 while the third utilizes ATG+82 . Transcripts sponsoring translational initiation at ATG+1 predominate in intestinal smooth muscle, and are more abundant compared with the level measured in fibroblasts. Together these observations describe a new mechanism of tissue-specific regulation of FLNA that could reflect the differing mechanical requirements of these cell types during development.


Asunto(s)
Filaminas/genética , Estudios de Asociación Genética , Heterogeneidad Genética , Mutación con Pérdida de Función , Fenotipo , Transcripción Genética , Adolescente , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Secuencia Conservada , Análisis Mutacional de ADN , Femenino , Filaminas/química , Filaminas/metabolismo , Tracto Gastrointestinal/metabolismo , Expresión Génica , Humanos , Imagen por Resonancia Magnética , Masculino , Músculo Liso/metabolismo , Isoformas de Proteínas , Adulto Joven
19.
Genet Med ; 20(8): 882-889, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29446767

RESUMEN

PURPOSE: CLAPO syndrome is a rare vascular disorder characterized by capillary malformation of the lower lip, lymphatic malformation predominant on the face and neck, asymmetry, and partial/generalized overgrowth. Here we tested the hypothesis that, although the genetic cause is not known, the tissue distribution of the clinical manifestations in CLAPO seems to follow a pattern of somatic mosaicism. METHODS: We clinically evaluated a cohort of 13 patients with CLAPO and screened 20 DNA blood/tissue samples from 9 patients using high-throughput, deep sequencing. RESULTS: We identified five activating mutations in the PIK3CA gene in affected tissues from 6 of the 9 patients studied; one of the variants (NM_006218.2:c.248T>C; p.Phe83Ser) has not been previously described in developmental disorders. CONCLUSION: We describe for the first time the presence of somatic activating PIK3CA mutations in patients with CLAPO. We also report an update of the phenotype and natural history of the syndrome.


Asunto(s)
Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/fisiopatología , Fosfatidilinositol 3-Quinasa Clase I/genética , Enfermedades Linfáticas/genética , Enfermedades Linfáticas/fisiopatología , Adolescente , Adulto , Niño , Fosfatidilinositol 3-Quinasa Clase I/fisiología , Femenino , Estudios de Asociación Genética/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Mutación , Fosfatidilinositol 3-Quinasas/genética , Estudios Retrospectivos
20.
BMC Med Genet ; 19(1): 36, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29506490

RESUMEN

BACKGROUND: Rubinstein-Taybi syndrome (RSTS) is a rare autosomal dominant neurodevelopmental disorder characterized by broad thumbs and halluces. RSTS is caused by mutations in CREBBP and in EP300 genes in 50-60% and 8%, respectively. Up to now, 76 RSTS-EP300 patients have been described. We present the clinical and molecular characterization of a cohort of RSTS patients carrying EP300 mutations. METHODS: Patients were selected from a cohort of 72 individuals suspected of RSTS after being negative in CREBBP study. MLPA and panel-based NGS EP300 were performed. RESULTS: Eight patients were found to carry EP300 mutations. Phenotypic characteristics included: intellectual disability (generally mild), postnatal growth retardation, infant feeding problems, psychomotor and language delay and typical facial dysmorphisms (microcephaly, downslanting palpebral fissures, columella below the alae nasi, and prominent nose). Broad thumbs and/or halluces were common, but angulated thumbs were only found in two patients. We identified across the gene novel mutations, including large deletion, frameshift mutations, nonsense, missense and splicing alterations, confirming de novo origin in all but one (the mother, possibly underdiagnosed, has short and broad thumbs and had learning difficulties). CONCLUSIONS: The clinical evaluation of our patients corroborates that clinical features in EP300 are less marked than in CREBBP patients although it is difficult to establish a genotype-phenotype correlation although. It is remarkable that these findings are observed in a RSTS-diagnosed cohort; some patients harbouring EP300 mutations could present a different phenotype. Broadening the knowledge about EP300-RSTS phenotype may contribute to improve the management of patients and the counselling to the families.


Asunto(s)
Proteína p300 Asociada a E1A/genética , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/genética , Adolescente , Proteína de Unión a CREB/genética , Niño , Preescolar , Codón sin Sentido , Estudios de Cohortes , Femenino , Mutación del Sistema de Lectura , Estudios de Asociación Genética , Pruebas Genéticas , Humanos , Lactante , Masculino , Mutación Missense , Fenotipo , Empalme del ARN , Eliminación de Secuencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA