Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 320(5): G768-G779, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33655764

RESUMEN

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive disease caused by thymidine phosphorylase (TP) enzyme defect. As gastrointestinal changes do not revert in patients undergone TP replacement therapy, one can postulate that other unexplored mechanisms contribute to MNGIE pathophysiology. Hence, we focused on the local TP angiogenic potential that has never been considered in MNGIE. In this study, we investigated the enteric submucosal microvasculature and the effect of hypoxia on fibrosis and enteric neurons density in jejunal full-thickness biopsies collected from patients with MNGIE. Orcein staining was used to count blood vessels based on their size. Fibrosis was assessed using the Sirius Red and Fast Green method. Hypoxia and neoangiogenesis were determined via hypoxia-inducible-factor-1α (HIF-1α) and vascular endothelial cell growth factor (VEGF) protein expression, respectively. Neuron-specific enolase was used to label enteric neurons. Compared with controls, patients with MNGIE showed a decreased area of vascular tissue, but a twofold increase of submucosal vessels/mm2 with increased small size and decreased medium and large size vessels. VEGF positive vessels, fibrosis index, and HIF-1α protein expression were increased, whereas there was a diminished thickness of the longitudinal muscle layer with an increased interganglionic distance and reduced number of myenteric neurons. We demonstrated the occurrence of an angiopathy in the GI tract of patients with MNGIE. Neoangiogenetic changes, as detected by the abundance of small size vessels in the jejunal submucosa, along with hypoxia provide a morphological basis to explain neuromuscular alterations, vasculature breakdown, and ischemic abnormalities in MNGIE.NEW & NOTEWORTHY Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is characterized by a genetically driven defect of thymidine phosphorylase, a multitask enzyme playing a role also in angiogenesis. Indeed, major gastrointestinal bleedings are life-threatening complications of MNGIE. Thus, we focused on jejunal submucosal vasculature and showed intestinal microangiopathy as a novel feature occurring in this disease. Notably, vascular changes were associated with neuromuscular abnormalities, which may explain gut dysfunction and help to develop future therapeutic approaches in MNGIE.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Seudoobstrucción Intestinal/metabolismo , Encefalomiopatías Mitocondriales/metabolismo , Distrofia Muscular Oculofaríngea/metabolismo , Neovascularización Patológica/metabolismo , Oftalmoplejía/congénito , Tracto Gastrointestinal/patología , Humanos , Seudoobstrucción Intestinal/patología , Encefalomiopatías Mitocondriales/patología , Distrofia Muscular Oculofaríngea/patología , Neovascularización Patológica/patología , Oftalmoplejía/metabolismo , Oftalmoplejía/patología , Timidina Fosforilasa/metabolismo
2.
Nucleic Acids Res ; 47(16): 8720-8733, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31276587

RESUMEN

Expression of human mitochondrial DNA is indispensable for proper function of the oxidative phosphorylation machinery. The mitochondrial genome encodes 22 tRNAs, 2 rRNAs and 11 mRNAs and their post-transcriptional modification constitutes one of the key regulatory steps during mitochondrial gene expression. Cytosine-5 methylation (m5C) has been detected in mitochondrial transcriptome, however its biogenesis has not been investigated in details. Mammalian NOP2/Sun RNA Methyltransferase Family Member 2 (NSUN2) has been characterized as an RNA methyltransferase introducing m5C in nuclear-encoded tRNAs, mRNAs and microRNAs and associated with cell proliferation and differentiation, with pathogenic variants in NSUN2 being linked to neurodevelopmental disorders. Here we employ spatially restricted proximity labelling and immunodetection to demonstrate that NSUN2 is imported into the matrix of mammalian mitochondria. Using three genetic models for NSUN2 inactivation-knockout mice, patient-derived fibroblasts and CRISPR/Cas9 knockout in human cells-we show that NSUN2 is necessary for the generation of m5C at positions 48, 49 and 50 of several mammalian mitochondrial tRNAs. Finally, we show that inactivation of NSUN2 does not have a profound effect on mitochondrial tRNA stability and oxidative phosphorylation in differentiated cells. We discuss the importance of the newly discovered function of NSUN2 in the context of human disease.


Asunto(s)
5-Metilcitosina/metabolismo , Eccema/genética , Trastornos del Crecimiento/genética , Discapacidad Intelectual/genética , Metiltransferasas/genética , Microcefalia/genética , Procesamiento Postranscripcional del ARN , ARN Mitocondrial/genética , ARN de Transferencia/genética , Animales , Sistemas CRISPR-Cas , Eccema/metabolismo , Eccema/patología , Facies , Fibroblastos/metabolismo , Fibroblastos/patología , Edición Génica , Técnicas de Inactivación de Genes , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/patología , Células HEK293 , Humanos , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Metilación , Metiltransferasas/deficiencia , Ratones , Ratones Noqueados , Microcefalia/metabolismo , Microcefalia/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Conformación de Ácido Nucleico , Fosforilación Oxidativa , Cultivo Primario de Células , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , ARN de Transferencia/metabolismo
3.
Am J Hum Genet ; 101(4): 525-538, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28942965

RESUMEN

Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp-/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp-/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.


Asunto(s)
Cardiomiopatías/genética , Proteínas Portadoras/genética , Transporte de Electrón/fisiología , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Adulto , Edad de Inicio , Anciano , Alelos , Secuencia de Aminoácidos , Animales , Cardiomiopatías/complicaciones , Cardiomiopatías/patología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células Cultivadas , Preescolar , Estudios de Cohortes , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Recién Nacido , Masculino , Ratones , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Linaje , Conformación Proteica , Homología de Secuencia , Índice de Severidad de la Enfermedad , Adulto Joven
4.
Mol Genet Metab ; 129(1): 26-34, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31787496

RESUMEN

NUBPL (Nucleotide-binding protein like) protein encodes a member of the Mrp/NBP35 ATP-binding proteins family, deemed to be involved in mammalian complex I (CI) assembly process. Exome sequencing of a patient presenting with infantile-onset hepatopathy, renal tubular acidosis, developmental delay, short stature, leukoencephalopathy with minimal cerebellar involvement and multiple OXPHOS deficiencies revealed the presence of two novel pathogenic compound heterozygous variants in NUBPL (p.Phe242Leu/p.Leu104Pro). We investigated patient's and control immortalised fibroblasts and demonstrated that both the peripheral and the membrane arms of complex I are undetectable in mutant NUBPL cells, resulting in virtually absent CI holocomplex and loss of enzyme activity. In addition, complex III stability was moderately affected as well. Lentiviral-mediated expression of the wild-type NUBPL cDNA rescued both CI and CIII assembly defects, confirming the pathogenicity of the variants. In conclusion, this is the first report describing a complex multisystemic disorder due to NUBPL defect. In addition, we confirmed the role of NUBPL in Complex I assembly associated with secondary effect on Complex III stability and we demonstrated a defect of mtDNA-related translation which suggests a potential additional role of NUBPL in mtDNA expression.


Asunto(s)
Variación Genética , Heterocigoto , Leucoencefalopatías/genética , Proteínas Mitocondriales/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , ADN Mitocondrial , Femenino , Humanos , Lactante , Recién Nacido , Leucoencefalopatías/diagnóstico , Imagen por Resonancia Magnética , Masculino , Mitocondrias/patología , Mutación , Adulto Joven
5.
Ann Neurol ; 86(2): 293-303, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31125140

RESUMEN

OBJECTIVE: Thymidine kinase 2, encoded by the nuclear gene TK2, is required for mitochondrial DNA maintenance. Autosomal recessive TK2 mutations cause depletion and multiple deletions of mtDNA that manifest predominantly as a myopathy usually beginning in childhood and progressing relentlessly. We investigated the safety and efficacy of deoxynucleoside monophosphate and deoxynucleoside therapies. METHODS: We administered deoxynucleoside monophosphates and deoxynucleoside to 16 TK2-deficient patients under a compassionate use program. RESULTS: In 5 patients with early onset and severe disease, survival and motor functions were better than historically untreated patients. In 11 childhood and adult onset patients, clinical measures stabilized or improved. Three of 8 patients who were nonambulatory at baseline gained the ability to walk on therapy; 4 of 5 patients who required enteric nutrition were able to discontinue feeding tube use; and 1 of 9 patients who required mechanical ventilation became able to breathe independently. In motor functional scales, improvements were observed in the 6-minute walk test performance in 7 of 8 subjects, Egen Klassifikation in 2 of 3, and North Star Ambulatory Assessment in all 5 tested. Baseline elevated serum growth differentiation factor 15 levels decreased with treatment in all 7 patients tested. A side effect observed in 8 of the 16 patients was dose-dependent diarrhea, which did not require withdrawal of treatment. Among 12 other TK2 patients treated with deoxynucleoside, 2 adults developed elevated liver enzymes that normalized following discontinuation of therapy. INTERPRETATION: This open-label study indicates favorable side effect profiles and clinical efficacy of deoxynucleoside monophosphate and deoxynucleoside therapies for TK2 deficiency. ANN NEUROL 2019;86:293-303.


Asunto(s)
Ensayos de Uso Compasivo/métodos , Desoxirribonucleósidos/uso terapéutico , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/enzimología , Timidina Quinasa/deficiencia , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Prueba de Paso/métodos
6.
Hum Mol Genet ; 26(21): 4257-4266, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973171

RESUMEN

Defects in nuclear-encoded proteins of the mitochondrial translation machinery cause early-onset and tissue-specific deficiency of one or more OXPHOS complexes. Here, we report a 7-year-old Italian boy with childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes. Multiple OXPHOS defects and decreased mtDNA copy number (40%) were detected in muscle homogenate. Clinical features combined with low level of plasma citrulline were highly suggestive of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, however, the common m.3243 A > G mutation was excluded. Targeted exome sequencing of genes encoding the mitochondrial proteome identified a damaging mutation, c.567 G > A, affecting a highly conserved amino acid residue (p.Gly189Arg) of the MRM2 protein. MRM2 has never before been linked to a human disease and encodes an enzyme responsible for 2'-O-methyl modification at position U1369 in the human mitochondrial 16S rRNA. We generated a knockout yeast model for the orthologous gene that showed a defect in respiration and the reduction of the 2'-O-methyl modification at the equivalent position (U2791) in the yeast mitochondrial 21S rRNA. Complementation with the mrm2 allele carrying the equivalent yeast mutation failed to rescue the respiratory phenotype, which was instead completely rescued by expressing the wild-type allele. Our findings establish that defective MRM2 causes a MELAS-like phenotype, and suggests the genetic screening of the MRM2 gene in patients with a m.3243 A > G negative MELAS-like presentation.


Asunto(s)
Síndrome MELAS/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Niño , ADN Mitocondrial/genética , Humanos , Síndrome MELAS/diagnóstico , Masculino , Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Mutación , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Saccharomyces cerevisiae/genética
7.
Am J Hum Genet ; 99(4): 831-845, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27640307

RESUMEN

ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane protein implicated in mitochondrial dynamics, nucleoid organization, protein translation, cell growth, and cholesterol metabolism. We identified a recurrent de novo ATAD3A c.1582C>T (p.Arg528Trp) variant by whole-exome sequencing (WES) in five unrelated individuals with a core phenotype of global developmental delay, hypotonia, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. We also describe two families with biallelic variants in ATAD3A, including a homozygous variant in two siblings, and biallelic ATAD3A deletions mediated by nonallelic homologous recombination (NAHR) between ATAD3A and gene family members ATAD3B and ATAD3C. Tissue-specific overexpression of borR534W, the Drosophila mutation homologous to the human c.1582C>T (p.Arg528Trp) variant, resulted in a dramatic decrease in mitochondrial content, aberrant mitochondrial morphology, and increased autophagy. Homozygous null bor larvae showed a significant decrease of mitochondria, while overexpression of borWT resulted in larger, elongated mitochondria. Finally, fibroblasts of an affected individual exhibited increased mitophagy. We conclude that the p.Arg528Trp variant functions through a dominant-negative mechanism that results in small mitochondria that trigger mitophagy, resulting in a reduction in mitochondrial content. ATAD3A variation represents an additional link between mitochondrial dynamics and recognizable neurological syndromes, as seen with MFN2, OPA1, DNM1L, and STAT2 mutations.


Asunto(s)
Adenosina Trifosfatasas/genética , Alelos , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Mutación , Enfermedades del Sistema Nervioso/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adulto , Animales , Axones/patología , Cardiomiopatías/genética , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Discapacidades del Desarrollo/genética , Drosophila melanogaster/genética , Femenino , Fibroblastos , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Hipotonía Muscular/genética , Músculos/patología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuronas/patología , Atrofia Óptica/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Síndrome , Adulto Joven
8.
Brain ; 141(1): 55-62, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29182774

RESUMEN

The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease.


Asunto(s)
Proteínas de Unión al ADN/genética , Salud de la Familia , Pérdida Auditiva/genética , Proteínas Mitocondriales/genética , Mutación/genética , Adolescente , Niño , Preescolar , Análisis Mutacional de ADN , Complejo II de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Pérdida Auditiva/complicaciones , Heterocigoto , Humanos , Lactante , Masculino , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Músculo Esquelético/ultraestructura , Adulto Joven
9.
J Med Genet ; 55(8): 515-521, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29602790

RESUMEN

BACKGROUND: Thymine kinase 2 (TK2) is a mitochondrial matrix protein encoded in nuclear DNA and phosphorylates the pyrimidine nucleosides: thymidine and deoxycytidine. Autosomal recessive TK2 mutations cause a spectrum of disease from infantile onset to adult onset manifesting primarily as myopathy. OBJECTIVE: To perform a retrospective natural history study of a large cohort of patients with TK2 deficiency. METHODS: The study was conducted by 42 investigators across 31 academic medical centres. RESULTS: We identified 92 patients with genetically confirmed diagnoses of TK2 deficiency: 67 from literature review and 25 unreported cases. Based on clinical and molecular genetics findings, we recognised three phenotypes with divergent survival: (1) infantile-onset myopathy (42.4%) with severe mitochondrial DNA (mtDNA) depletion, frequent neurological involvement and rapid progression to early mortality (median post-onset survival (POS) 1.00, CI 0.58 to 2.33 years); (2) childhood-onset myopathy (40.2%) with mtDNA depletion, moderate-to-severe progression of generalised weakness and median POS at least 13 years; and (3) late-onset myopathy (17.4%) with mild limb weakness at onset and slow progression to respiratory insufficiency with median POS of 23 years. Ophthalmoparesis and facial weakness are frequent in adults. Muscle biopsies show multiple mtDNA deletions often with mtDNA depletion. CONCLUSIONS: In TK2 deficiency, age at onset, rate of weakness progression and POS are important variables that define three clinical subtypes. Nervous system involvement often complicates the clinical course of the infantile-onset form while extraocular muscle and facial involvement are characteristic of the late-onset form. Our observations provide essential information for planning future clinical trials in this disorder.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas Mitocondriales/deficiencia , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Timidina Quinasa/deficiencia , Adolescente , Adulto , Edad de Inicio , Anciano , Niño , Preescolar , Femenino , Genes Recesivos , Pruebas Genéticas , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Enfermedades Musculares/mortalidad , Mutación , Fenotipo , Estudios Retrospectivos , Análisis de Supervivencia , Adulto Joven
10.
Biochem Soc Trans ; 46(5): 1247-1261, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30301846

RESUMEN

Preclinical work aimed at developing new therapies for mitochondrial diseases has recently given new hopes and opened unexpected perspectives for the patients affected by these pathologies. In contrast, only minor progresses have been achieved so far in the translation into the clinics. Many challenges are still ahead, including the need for a better characterization of the pharmacological effects of the different approaches and the design of appropriate clinical trials with robust outcome measures for this extremely heterogeneous, rare, and complex group of disorders. In this review, we will discuss the most important achievements and the major challenges in this very dynamic research field.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/terapia , Animales , Antioxidantes/química , Ensayos Clínicos como Asunto , Dieta Cetogénica , Terapia Genética , Humanos , Hipoxia , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/patología , Mutación , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Sirolimus/farmacología
11.
Ann Neurol ; 81(5): 641-652, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28318037

RESUMEN

OBJECTIVE: Thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial pyrimidine salvage pathway, is essential for mitochondrial DNA (mtDNA) maintenance. Mutations in the nuclear gene, TK2, cause TK2 deficiency, which manifests predominantly in children as myopathy with mtDNA depletion. Molecular bypass therapy with the TK2 products, deoxycytidine monophosphate (dCMP) and deoxythymidine monophosphate (dTMP), prolongs the life span of Tk2-deficient (Tk2-/- ) mice by 2- to 3-fold. Because we observed rapid catabolism of the deoxynucleoside monophosphates to deoxythymidine (dT) and deoxycytidine (dC), we hypothesized that: (1) deoxynucleosides might be the major active agents and (2) inhibition of deoxycytidine deamination might enhance dTMP+dCMP therapy. METHODS: To test these hypotheses, we assessed two therapies in Tk2-/- mice: (1) dT+dC and (2) coadministration of the deaminase inhibitor, tetrahydrouridine (THU), with dTMP+dCMP. RESULTS: We observed that dC+dT delayed disease onset, prolonged life span of Tk2-deficient mice and restored mtDNA copy number as well as respiratory chain enzyme activities and levels. In contrast, dCMP+dTMP+THU therapy decreased life span of Tk2-/- animals compared to dCMP+dTMP. INTERPRETATION: Our studies demonstrate that deoxynucleoside substrate enhancement is a novel therapy, which may ameliorate TK2 deficiency in patients. Ann Neurol 2017;81:641-652.


Asunto(s)
Antimetabolitos/farmacología , Desoxicitidina Monofosfato/farmacología , Errores Innatos del Metabolismo/tratamiento farmacológico , Enfermedades Mitocondriales/tratamiento farmacológico , Tetrahidrouridina/farmacología , Timidina Quinasa/deficiencia , Timidina/farmacología , Animales , Antimetabolitos/administración & dosificación , ADN Mitocondrial/efectos de los fármacos , Desoxicitidina Monofosfato/administración & dosificación , Modelos Animales de Enfermedad , Quimioterapia Combinada , Errores Innatos del Metabolismo/enzimología , Ratones , Ratones Transgénicos , Enfermedades Mitocondriales/enzimología , Tetrahidrouridina/administración & dosificación , Timidina/administración & dosificación
12.
Hum Mol Genet ; 24(3): 714-26, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25274776

RESUMEN

A member of the four-and-a-half-LIM (FHL) domain protein family, FHL1, is highly expressed in human adult skeletal and cardiac muscle. Mutations in FHL1 have been associated with diverse X-linked muscle diseases: scapuloperoneal (SP) myopathy, reducing body myopathy, X-linked myopathy with postural muscle atrophy, rigid spine syndrome (RSS) and Emery-Dreifuss muscular dystrophy. In 2008, we identified a missense mutation in the second LIM domain of FHL1 (c.365 G>C, p.W122S) in a family with SP myopathy. We generated a knock-in mouse model harboring the c.365 G>C Fhl1 mutation and investigated the effects of this mutation at three time points (3-5 months, 7-10 months and 18-20 months) in hemizygous male and heterozygous female mice. Survival was comparable in mutant and wild-type animals. We observed decreased forelimb strength and exercise capacity in adult hemizygous male mice starting from 7 to 10 months of age. Western blot analysis showed absence of Fhl1 in muscle at later stages. Thus, adult hemizygous male, but not heterozygous female, mice showed a slowly progressive phenotype similar to human patients with late-onset muscle weakness. In contrast to SP myopathy patients with the FHL1 W122S mutation, mutant mice did not manifest cytoplasmic inclusions (reducing bodies) in muscle. Because muscle weakness was evident prior to loss of Fhl1 protein and without reducing bodies, our findings indicate that loss of function is responsible for the myopathy in the Fhl1 W122S knock-in mice.


Asunto(s)
Miembro Anterior/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Emery-Dreifuss/patología , Miocardio/patología , Edad de Inicio , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Hemicigoto , Heterocigoto , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Distrofia Muscular de Emery-Dreifuss/epidemiología , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Mutación Missense
13.
Am J Hum Genet ; 93(5): 906-14, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24119684

RESUMEN

We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case. In vitro and in vivo complementation studies with fibroblasts from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.


Asunto(s)
Anemia Macrocítica/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Adolescente , Animales , Niño , Eritropoyesis/genética , Exoma , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Mitocondriales/genética , Mutación , Pez Cebra/genética
14.
Proc Natl Acad Sci U S A ; 110(33): 13552-7, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23898205

RESUMEN

Isolated methylmalonic acidemia (MMA), caused by deficiency of the mitochondrial enzyme methylmalonyl-CoA mutase (MUT), is often complicated by end stage renal disease that is resistant to conventional therapies, including liver transplantation. To establish a viable model of MMA renal disease, Mut was expressed in the liver of Mut(-/-) mice as a stable transgene under the control of an albumin (INS-Alb-Mut) promoter. Mut(-/-);Tg(INS-Alb-Mut) mice, although completely rescued from neonatal lethality that was displayed by Mut(-/-) mice, manifested a decreased glomerular filtration rate (GFR), chronic tubulointerstitial nephritis and ultrastructural changes in the proximal tubule mitochondria associated with aberrant tubular function, as demonstrated by single-nephron GFR studies. Microarray analysis of Mut(-/-);Tg(INS-Alb-Mut) kidneys identified numerous biomarkers, including lipocalin-2, which was then used to monitor the response of the GFR to antioxidant therapy in the mouse model. Renal biopsies and biomarker analysis from a large and diverse patient cohort (ClinicalTrials.gov identifier: NCT00078078) precisely replicated the findings in the animals, establishing Mut(-/-);Tg(INS-Alb-Mut) mice as a unique model of MMA renal disease. Our studies suggest proximal tubular mitochondrial dysfunction is a key pathogenic mechanism of MMA-associated kidney disease, identify lipocalin-2 as a biomarker of increased oxidative stress in the renal tubule, and demonstrate that antioxidants can attenuate the renal disease of MMA.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Túbulos Renales Proximales/fisiopatología , Metilmalonil-CoA Mutasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Antioxidantes/uso terapéutico , Biomarcadores/metabolismo , Western Blotting , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Fluoresceína-5-Isotiocianato , Genotipo , Tasa de Filtración Glomerular/genética , Humanos , Inmunohistoquímica , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo , Ratones , Ratones Noqueados , Análisis por Micromatrices , Microscopía Electrónica de Transmisión , Nefritis Intersticial/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transgenes/genética , Ubiquinona/farmacología
15.
Brain ; 137(Pt 5): 1337-49, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24727567

RESUMEN

Balanced pools of deoxyribonucleoside triphosphate precursors are required for DNA replication, and alterations of this balance are relevant to human mitochondrial diseases including mitochondrial neurogastrointestinal encephalopathy. In this disease, autosomal recessive TYMP mutations cause severe reductions of thymidine phosphorylase activity; marked elevations of the pyrimidine nucleosides thymidine and deoxyuridine in plasma and tissues, and somatic multiple deletions, depletion and site-specific point mutations of mitochondrial DNA. Thymidine phosphorylase and uridine phosphorylase double knockout mice recapitulated several features of these patients including thymidine phosphorylase activity deficiency, elevated thymidine and deoxyuridine in tissues, mitochondrial DNA depletion, respiratory chain defects and white matter changes. However, in contrast to patients with this disease, mutant mice showed mitochondrial alterations only in the brain. To test the hypothesis that elevated levels of nucleotides cause unbalanced deoxyribonucleoside triphosphate pools and, in turn, pathogenic mitochondrial DNA instability, we have stressed double knockout mice with exogenous thymidine and deoxyuridine, and assessed clinical, neuroradiological, histological, molecular, and biochemical consequences. Mutant mice treated with exogenous thymidine and deoxyuridine showed reduced survival, body weight, and muscle strength, relative to untreated animals. Moreover, in treated mutants, leukoencephalopathy, a hallmark of the disease, was enhanced and the small intestine showed a reduction of smooth muscle cells and increased fibrosis. Levels of mitochondrial DNA were depleted not only in the brain but also in the small intestine, and deoxyribonucleoside triphosphate imbalance was observed in the brain. The relative proportion, rather than the absolute amount of deoxyribonucleoside triphosphate, was critical for mitochondrial DNA maintenance. Thus, our results demonstrate that stress of exogenous pyrimidine nucleosides enhances the mitochondrial phenotype of our knockout mice. Our mouse studies provide insights into the pathogenic role of thymidine and deoxyuridine imbalance in mitochondrial neurogastrointestinal encephalopathy and an excellent model to study new therapeutic approaches.


Asunto(s)
Desoxirribonucleósidos/efectos adversos , Seudoobstrucción Intestinal/inducido químicamente , Seudoobstrucción Intestinal/genética , Encefalomiopatías Mitocondriales/inducido químicamente , Encefalomiopatías Mitocondriales/genética , Factores de Edad , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Encéfalo/patología , Desoxirribonucleósidos/metabolismo , Modelos Animales de Enfermedad , Seudoobstrucción Intestinal/mortalidad , Seudoobstrucción Intestinal/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Mitocondriales/etiología , Enfermedades Mitocondriales/genética , Encefalomiopatías Mitocondriales/mortalidad , Encefalomiopatías Mitocondriales/fisiopatología , Actividad Motora/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Oculofaríngea , Oftalmoplejía/congénito , Trastornos Psicomotores/etiología , Trastornos Psicomotores/genética , Succinato Deshidrogenasa/metabolismo , Timidina/efectos adversos , Timidina/metabolismo , Timidina Fosforilasa/deficiencia , Uridina Fosforilasa/deficiencia
16.
FASEB J ; 27(2): 612-21, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23150520

RESUMEN

Primary human CoQ(10) deficiencies are clinically heterogeneous diseases caused by mutations in PDSS2 and other genes required for CoQ(10) biosynthesis. Our in vitro studies of PDSS2 mutant fibroblasts, with <20% CoQ(10) of control cells, revealed reduced activity of CoQ(10)-dependent complex II+III and ATP synthesis, without amplification of reactive oxygen species (ROS), markers of oxidative damage, or antioxidant defenses. In contrast, COQ2 and ADCK3 mutant fibroblasts, with 30-50% CoQ(10) of controls, showed milder bioenergetic defects but significantly increased ROS and oxidation of lipids and proteins. We hypothesized that absence of oxidative stress markers and cell death in PDSS2 mutant fibroblasts were due to the extreme severity of CoQ(10) deficiency. Here, we have investigated in vivo effects of Pdss2 deficiency in affected and unaffected organs of CBA/Pdss2(kd/kd) mice at presymptomatic, phenotypic-onset, and end-stages of the disease. Although Pdss2 mutant mice manifest widespread CoQ(9) deficiency and mitochondrial respiratory chain abnormalities, only affected organs show increased ROS production, oxidative stress, mitochondrial DNA depletion, and reduced citrate synthase activity, an index of mitochondrial mass. Our data indicate that kidney-specific loss of mitochondria triggered by oxidative stress may be the cause of renal failure in Pdss2(kd/kd) mice.


Asunto(s)
Transferasas Alquil y Aril/deficiencia , Transferasas Alquil y Aril/genética , Mitocondrias/metabolismo , Ubiquinona/deficiencia , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Transporte de Electrón , Fibroblastos/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos CBA , Ratones Mutantes , Estrés Oxidativo , Distribución Tisular
17.
Eur J Hum Genet ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702428

RESUMEN

COQ7 pathogenetic variants cause primary CoQ10 deficiency and a clinical phenotype of encephalopathy, peripheral neuropathy, or multisystemic disorder. Early diagnosis is essential for promptly starting CoQ10 supplementation. Here, we report novel compound heterozygous variants in the COQ7 gene responsible for a prenatal onset (20 weeks of gestation) of hypertrophic cardiomyopathy and intestinal dysmotility in a Bangladesh consanguineous family with two affected siblings. The main clinical findings were dysmorphisms, recurrent intestinal occlusions that required ileostomy, left ventricular non-compaction cardiomyopathy, ascending aorta dilation, arterial hypertension, renal dysfunction, diffuse skin desquamation, axial hypotonia, neurodevelopmental delay, and growth retardation. Exome sequencing revealed compound heterozygous rare variants in the COQ7 gene, c.613_617delGCCGGinsCAT (p.Ala205HisfsTer48) and c.403A>G (p.Met135Val). In silico analysis and functional in vitro studies confirmed the pathogenicity of the variants responsible for abolished activities of complexes I + III and II + III in muscle homogenate, severe decrease of CoQ10 levels, and reduced basal and maximal respiration in patients' fibroblasts. The first proband deceased at 14 months of age, whereas supplementation with a high dose of CoQ10 (30 mg/kg/day) since the first days of life modified the clinical course in the second child, showing a recovery of milestones acquirement at the last follow-up (18 months of age). Our study expands the clinical spectrum of primary CoQ10 deficiency due to COQ7 gene defects and highlights the essential role of multidisciplinary and combined approaches for a timely diagnosis.

18.
Brain Commun ; 6(3): fcae160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756539

RESUMEN

Autosomal recessive pathogenetic variants in the DGUOK gene cause deficiency of deoxyguanosine kinase activity and mitochondrial deoxynucleotides pool imbalance, consequently, leading to quantitative and/or qualitative impairment of mitochondrial DNA synthesis. Typically, patients present early-onset liver failure with or without neurological involvement and a clinical course rapidly progressing to death. This is an international multicentre study aiming to provide a retrospective natural history of deoxyguanosine kinase deficient patients. A systematic literature review from January 2001 to June 2023 was conducted. Physicians of research centres or clinicians all around the world caring for previously reported patients were contacted to provide followup information or additional clinical, biochemical, histological/histochemical, and molecular genetics data for unreported cases with a confirmed molecular diagnosis of deoxyguanosine kinase deficiency. A cohort of 202 genetically confirmed patients, 36 unreported, and 166 from a systematic literature review, were analyzed. Patients had a neonatal onset (≤ 1 month) in 55.7% of cases, infantile (>1 month and ≤ 1 year) in 32.3%, pediatric (>1 year and ≤18 years) in 2.5% and adult (>18 years) in 9.5%. Kaplan-Meier analysis showed statistically different survival rates (P < 0.0001) among the four age groups with the highest mortality for neonatal onset. Based on the clinical phenotype, we defined four different clinical subtypes: hepatocerebral (58.8%), isolated hepatopathy (21.9%), hepatomyoencephalopathy (9.6%), and isolated myopathy (9.6%). Muscle involvement was predominant in adult-onset cases whereas liver dysfunction causes morbidity and mortality in early-onset patients with a median survival of less than 1 year. No genotype-phenotype correlation was identified. Liver transplant significantly modified the survival rate in 26 treated patients when compared with untreated. Only six patients had additional mild neurological signs after liver transplant. In conclusion, deoxyguanosine kinase deficiency is a disease spectrum with a prevalent liver and brain tissue specificity in neonatal and infantile-onset patients and muscle tissue specificity in adult-onset cases. Our study provides clinical, molecular genetics and biochemical data for early diagnosis, clinical trial planning and immediate intervention with liver transplant and/or nucleoside supplementation.

19.
Biochim Biophys Acta ; 1820(5): 625-31, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22274133

RESUMEN

BACKGROUND: Although causative mutations have been identified for numerous mitochondrial disorders, few disease-modifying treatments are available. Two examples of treatable mitochondrial disorders are coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). SCOPE OF REVIEW: Here, we describe clinical and molecular features of CoQ(10) deficiencies and MNGIE and explain how understanding their pathomechanisms have led to rationale therapies. Primary CoQ(10) deficiencies, due to mutations in genes required for ubiquinone biosynthesis, and secondary deficiencies, caused by genetic defects not directly related to CoQ(10) biosynthesis, often improve with CoQ(10) supplementation. In vitro and in vivo studies of CoQ(10) deficiencies have revealed biochemical alterations that may account for phenotypic differences among patients and variable responses to therapy. In contrast to the heterogeneous CoQ(10) deficiencies, MNGIE is a single autosomal recessive disease due to mutations in the TYMP gene encoding thymidine phosphorylase (TP). In MNGIE, loss of TP activity causes toxic accumulations of the nucleosides thymidine and deoxyuridine that are incorporated by the mitochondrial pyrimidine salvage pathway and cause deoxynucleoside triphosphate pool imbalances, which, in turn cause mtDNA instability. Allogeneic hematopoetic stem cell transplantation to restore TP activity and eliminate toxic metabolites is a promising therapy for MNGIE. MAJOR CONCLUSIONS: CoQ(10) deficiencies and MNGIE demonstrate the feasibility of treating specific mitochondrial disorders through replacement of deficient metabolites or via elimination of excessive toxic molecules. GENERAL SIGNIFICANCE: Studies of CoQ(10) deficiencies and MNGIE illustrate how understanding the pathogenic mechanisms of mitochondrial diseases can lead to meaningful therapies. This article is part of a Special Issue entitled: Biochemistry of Mitochondria, Life and Intervention 2010.


Asunto(s)
Enfermedades Mitocondriales/terapia , Encefalomiopatías Mitocondriales/terapia , Timidina Fosforilasa/deficiencia , Ubiquinona/análogos & derivados , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Ubiquinona/deficiencia
20.
Brain ; 135(Pt 11): 3404-15, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23043144

RESUMEN

The molecular diagnosis of mitochondrial disorders still remains elusive in a large proportion of patients, but advances in next generation sequencing are significantly improving our chances to detect mutations even in sporadic patients. Syndromes associated with mitochondrial DNA multiple deletions are caused by different molecular defects resulting in a wide spectrum of predominantly adult-onset clinical presentations, ranging from progressive external ophthalmoplegia to multi-systemic disorders of variable severity. The mutations underlying these conditions remain undisclosed in half of the affected subjects. We applied next-generation sequencing of known mitochondrial targets (MitoExome) to probands presenting with adult-onset mitochondrial myopathy and harbouring mitochondrial DNA multiple deletions in skeletal muscle. We identified autosomal recessive mutations in the DGUOK gene (encoding mitochondrial deoxyguanosine kinase), which has previously been associated with an infantile hepatocerebral form of mitochondrial DNA depletion. Mutations in DGUOK occurred in five independent subjects, representing 5.6% of our cohort of patients with mitochondrial DNA multiple deletions, and impaired both muscle DGUOK activity and protein stability. Clinical presentations were variable, including mitochondrial myopathy with or without progressive external ophthalmoplegia, recurrent rhabdomyolysis in a young female who had received a liver transplant at 9 months of age and adult-onset lower motor neuron syndrome with mild cognitive impairment. These findings reinforce the concept that mutations in genes involved in deoxyribonucleotide metabolism can cause diverse clinical phenotypes and suggest that DGUOK should be screened in patients harbouring mitochondrial DNA deletions in skeletal muscle.


Asunto(s)
ADN Mitocondrial/genética , Eliminación de Gen , Enfermedades Mitocondriales/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , ADN Mitocondrial/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/diagnóstico , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA