Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 184(11): 3022-3040.e28, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33961781

RESUMEN

Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Proteoma/genética , Biología Computacional/métodos , Células HCT116/metabolismo , Células HEK293/metabolismo , Humanos , Espectrometría de Masas/métodos , Mapas de Interacción de Proteínas/fisiología , Proteoma/metabolismo , Proteómica/métodos
2.
Cell ; 183(7): 1848-1866.e26, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33301708

RESUMEN

Obesity is a major cancer risk factor, but how differences in systemic metabolism change the tumor microenvironment (TME) and impact anti-tumor immunity is not understood. Here, we demonstrate that high-fat diet (HFD)-induced obesity impairs CD8+ T cell function in the murine TME, accelerating tumor growth. We generate a single-cell resolution atlas of cellular metabolism in the TME, detailing how it changes with diet-induced obesity. We find that tumor and CD8+ T cells display distinct metabolic adaptations to obesity. Tumor cells increase fat uptake with HFD, whereas tumor-infiltrating CD8+ T cells do not. These differential adaptations lead to altered fatty acid partitioning in HFD tumors, impairing CD8+ T cell infiltration and function. Blocking metabolic reprogramming by tumor cells in obese mice improves anti-tumor immunity. Analysis of human cancers reveals similar transcriptional changes in CD8+ T cell markers, suggesting interventions that exploit metabolism to improve cancer immunotherapy.


Asunto(s)
Inmunidad , Neoplasias/inmunología , Neoplasias/metabolismo , Obesidad/metabolismo , Microambiente Tumoral , Adiposidad , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Proliferación Celular , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Células HEK293 , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Cinética , Linfocitos Infiltrantes de Tumor , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Análisis de Componente Principal , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteómica
3.
Mol Cell ; 82(1): 90-105.e13, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34942119

RESUMEN

Neurodevelopmental cognitive disorders provide insights into mechanisms of human brain development. Here, we report an intellectual disability syndrome caused by the loss of APC7, a core component of the E3 ubiquitin ligase anaphase promoting complex (APC). In mechanistic studies, we uncover a critical role for APC7 during the recruitment and ubiquitination of APC substrates. In proteomics analyses of the brain from mice harboring the patient-specific APC7 mutation, we identify the chromatin-associated protein Ki-67 as an APC7-dependent substrate of the APC in neurons. Conditional knockout of the APC coactivator protein Cdh1, but not Cdc20, leads to the accumulation of Ki-67 protein in neurons in vivo, suggesting that APC7 is required for the function of Cdh1-APC in the brain. Deregulated neuronal Ki-67 upon APC7 loss localizes predominantly to constitutive heterochromatin. Our findings define an essential function for APC7 and Cdh1-APC in neuronal heterochromatin regulation, with implications for understanding human brain development and disease.


Asunto(s)
Subunidad Apc7 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Encéfalo/enzimología , Heterocromatina/metabolismo , Discapacidad Intelectual/enzimología , Células-Madre Neurales/enzimología , Neurogénesis , Adolescente , Animales , Antígenos CD , Subunidad Apc7 del Ciclosoma-Complejo Promotor de la Anafase/genética , Conducta Animal , Encéfalo/crecimiento & desarrollo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Heterocromatina/genética , Humanos , Lactante , Discapacidad Intelectual/patología , Discapacidad Intelectual/fisiopatología , Discapacidad Intelectual/psicología , Inteligencia , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitosis , Mutación , Células-Madre Neurales/patología , Proteolisis , Transducción de Señal , Síndrome , Ubiquitinación , Adulto Joven
4.
Mol Cell Proteomics ; : 100801, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880243

RESUMEN

T cell activation is a complex biological process of naïve cells maturing into effector cells. Proteomic and phospho-proteomic approaches have provided critical insights into this process, yet it is not always clear how changes in individual proteins or phosphorylation sites have functional significance. Here, we developed the Phosphorylation Integrated Thermal Shift Assay (PITSA) that combines the measurement of protein or phosphorylation site abundance and thermal stability into a single TMT experiment and apply this method to study T cell activation. We quantified the abundance and thermal stability of over 7,500 proteins and 5,000 phosphorylation sites, and identified significant differences in chromatin-related, TCR signaling, DNA repair, and proliferative phosphoproteins. PITSA may be applied to a wide range of biological contexts to generate hypotheses as to which proteins or phosphorylation sites are functionally regulated in a given system, as well as the mechanisms by which this regulation may occur.

5.
Nat Methods ; 19(11): 1371-1375, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36280721

RESUMEN

Mass-spectrometry-based phosphoproteomics has become indispensable for understanding cellular signaling in complex biological systems. Despite the central role of protein phosphorylation, the field still lacks inexpensive, regenerable, and diverse phosphopeptides with ground-truth phosphorylation positions. Here, we present Iterative Synthetically Phosphorylated Isomers (iSPI), a proteome-scale library of human-derived phosphoserine-containing phosphopeptides that is inexpensive, regenerable, and diverse, with precisely known positions of phosphorylation. We demonstrate possible uses of iSPI, including use as a phosphopeptide standard, a tool to evaluate and optimize phosphorylation-site localization algorithms, and a benchmark to compare performance across data analysis pipelines. We also present AScorePro, an updated version of the AScore algorithm specifically optimized for phosphorylation-site localization in higher energy fragmentation spectra, and the FLR viewer, a web tool for phosphorylation-site localization, to enable community use of the iSPI resource. iSPI and its associated data constitute a useful, multi-purpose resource for the phosphoproteomics community.


Asunto(s)
Fosfopéptidos , Proteoma , Humanos , Proteoma/metabolismo , Fosfopéptidos/metabolismo , Fosfoserina/metabolismo , Proteómica , Espectrometría de Masas , Fosforilación
6.
J Proteome Res ; 20(5): 2487-2496, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33630598

RESUMEN

Protein phosphorylation has long been recognized as an essential regulator of protein activity, structure, complex formation, and subcellular localization among other cellular mechanisms. However, interpretation of the changes in protein phosphorylation is difficult. To address this difficulty, we measured protein and phosphorylation site changes across 11 points of a time course and developed a method for categorizing phosphorylation site behavior relative to protein level changes using the diauxic shift in yeast as a model and TMT11 sample multiplexing. We classified quantified proteins into behavioral categories that reflected differences in kinase activity, protein complex structure, and growth and metabolic pathway regulation across different phases of the diauxic shift. These data also provide a valuable resource for the study of fermentative versus respiratory growth and set a new benchmark for temporal quantitative proteomics and phosphoproteomics for the diauxic shift in Saccharomyces cerevisiae. Data are available via ProteomeXchange with identifier PXD022741.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fermentación , Regulación Fúngica de la Expresión Génica , Fosforilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nature ; 518(7537): 89-93, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25607356

RESUMEN

Genetically modified organisms (GMOs) are increasingly used in research and industrial systems to produce high-value pharmaceuticals, fuels and chemicals. Genetic isolation and intrinsic biocontainment would provide essential biosafety measures to secure these closed systems and enable safe applications of GMOs in open systems, which include bioremediation and probiotics. Although safeguards have been designed to control cell growth by essential gene regulation, inducible toxin switches and engineered auxotrophies, these approaches are compromised by cross-feeding of essential metabolites, leaked expression of essential genes, or genetic mutations. Here we describe the construction of a series of genomically recoded organisms (GROs) whose growth is restricted by the expression of multiple essential genes that depend on exogenously supplied synthetic amino acids (sAAs). We introduced a Methanocaldococcus jannaschii tRNA:aminoacyl-tRNA synthetase pair into the chromosome of a GRO derived from Escherichia coli that lacks all TAG codons and release factor 1, endowing this organism with the orthogonal translational components to convert TAG into a dedicated sense codon for sAAs. Using multiplex automated genome engineering, we introduced in-frame TAG codons into 22 essential genes, linking their expression to the incorporation of synthetic phenylalanine-derived amino acids. Of the 60 sAA-dependent variants isolated, a notable strain harbouring three TAG codons in conserved functional residues of MurG, DnaA and SerS and containing targeted tRNA deletions maintained robust growth and exhibited undetectable escape frequencies upon culturing ∼10(11) cells on solid media for 7 days or in liquid media for 20 days. This is a significant improvement over existing biocontainment approaches. We constructed synthetic auxotrophs dependent on sAAs that were not rescued by cross-feeding in environmental growth assays. These auxotrophic GROs possess alternative genetic codes that impart genetic isolation by impeding horizontal gene transfer and now depend on the use of synthetic biochemical building blocks, advancing orthogonal barriers between engineered organisms and the environment.


Asunto(s)
Aminoácidos/síntesis química , Aminoácidos/farmacología , Contención de Riesgos Biológicos/métodos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Viabilidad Microbiana/efectos de los fármacos , Biología Sintética/métodos , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Dominio Catalítico/genética , Codón/genética , Medios de Cultivo/química , Medios de Cultivo/farmacología , Ambiente , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Transferencia de Gen Horizontal/genética , Genes Esenciales/genética , Código Genético/genética , Ingeniería Genética/métodos , Genoma Bacteriano/genética , Viabilidad Microbiana/genética , Datos de Secuencia Molecular , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/crecimiento & desarrollo , Organismos Modificados Genéticamente/metabolismo , Factores de Terminación de Péptidos/genética , Fenilalanina/química , Fenilalanina/metabolismo , Multimerización de Proteína/genética , ARN de Transferencia/genética
8.
Proc Natl Acad Sci U S A ; 115(38): E8996-E9005, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181290

RESUMEN

Insulin resistance drives the development of type 2 diabetes (T2D). In liver, diacylglycerol (DAG) is a key mediator of lipid-induced insulin resistance. DAG activates protein kinase C ε (PKCε), which phosphorylates and inhibits the insulin receptor. In rats, a 3-day high-fat diet produces hepatic insulin resistance through this mechanism, and knockdown of hepatic PKCε protects against high-fat diet-induced hepatic insulin resistance. Here, we employed a systems-level approach to uncover additional signaling pathways involved in high-fat diet-induced hepatic insulin resistance. We used quantitative phosphoproteomics to map global in vivo changes in hepatic protein phosphorylation in chow-fed, high-fat-fed, and high-fat-fed with PKCε knockdown rats to distinguish the impact of lipid- and PKCε-induced protein phosphorylation. This was followed by a functional siRNA-based screen to determine which dynamically regulated phosphoproteins may be involved in canonical insulin signaling. Direct PKCε substrates were identified by motif analysis of phosphoproteomics data and validated using a large-scale in vitro kinase assay. These substrates included the p70S6K substrates RPS6 and IRS1, which suggested cross talk between PKCε and p70S6K in high-fat diet-induced hepatic insulin resistance. These results identify an expanded set of proteins through which PKCε may drive high-fat diet-induced hepatic insulin resistance that may direct new therapeutic approaches for T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Animales , Animales Modificados Genéticamente , Diabetes Mellitus Tipo 2/etiología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Fosforilación , Proteína Quinasa C-epsilon/genética , Proteómica/métodos , ARN Interferente Pequeño/metabolismo , Ratas , Receptor de Insulina/metabolismo , Proteína S6 Ribosómica/metabolismo , Transducción de Señal/fisiología
9.
Am J Physiol Cell Physiol ; 318(3): C486-C501, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31913699

RESUMEN

AMP-activated protein kinase (AMPK) activation promotes early stages of epithelial junction assembly. AMPK activation in MDCK renal epithelial cells facilitates localization of the junction-associated proteins aPKCζ and Par3 to the plasma membrane and promotes conversion of Cdc42, a key regulator of epithelial polarization and junction assembly, to its active GTP bound state. Furthermore, Par3 is an important regulator of AMPK-mediated aPKCζ localization. Both aPKCζ and Par3 serve as intermediates in AMPK-mediated junction assembly, with inhibition of aPKCζ activity or Par3 knockdown disrupting AMPK's ability to facilitate zonula occludens (ZO-1) localization. AMPK phosphorylates the adherens junction protein afadin and regulates its interaction with the tight-junction protein zonula occludens-1. Afadin is phosphorylated at two critical sites, S228 (residing within an aPKCζ consensus site) and S1102 (residing within an AMPK consensus site), that are differentially regulated during junction assembly and that exert different effects on the process. Expression of phospho-defective mutants (S228A and S1102A) perturbed ZO-1 localization to the plasma membrane during AMPK-induced junction assembly. Expression of S228A increased the ZO-1/afadin interaction, while S1102A reduced this interaction during extracellular calcium-induced junction assembly. Inhibition of aPKCζ activity also increased the ZO-1/afadin interaction. Taken together, these data suggest that aPKCζ phosphorylation of afadin terminates the ZO-1/afadin interaction and thus permits the later stages of junction assembly.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Membrana Celular/enzimología , Uniones Estrechas/enzimología , Animales , Membrana Celular/química , Perros , Células de Riñón Canino Madin Darby , Ratones , Fosforilación/fisiología , Proteína Quinasa C/metabolismo , Uniones Estrechas/química , Proteína de la Zonula Occludens-1/metabolismo
10.
J Proteome Res ; 16(10): 3722-3731, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28861998

RESUMEN

Recent advances in mass spectrometry-based proteomics have revealed translation of previously nonannotated microproteins from thousands of small open reading frames (smORFs) in prokaryotic and eukaryotic genomes. Facile methods to determine cellular functions of these newly discovered microproteins are now needed. Here, we couple semiquantitative comparative proteomics with whole-genome database searching to identify two nonannotated, homologous cold shock-regulated microproteins in Escherichia coli K12 substr. MG1655, as well as two additional constitutively expressed microproteins. We apply molecular genetic approaches to confirm expression of these cold shock proteins (YmcF and YnfQ) at reduced temperatures and identify the noncanonical ATT start codons that initiate their translation. These proteins are conserved in related Gram-negative bacteria and are predicted to be structured, which, in combination with their cold shock upregulation, suggests that they are likely to have biological roles in the cell. These results reveal that previously unknown factors are involved in the response of E. coli to lowered temperatures and suggest that further nonannotated, stress-regulated E. coli microproteins may remain to be found. More broadly, comparative proteomics may enable discovery of regulated, and therefore potentially functional, products of smORF translation across many different organisms and conditions.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/genética , Escherichia coli/genética , Proteínas/genética , Proteómica , Proteínas y Péptidos de Choque por Frío/aislamiento & purificación , Anotación de Secuencia Molecular/métodos , Proteínas/aislamiento & purificación
11.
J Physiol ; 594(17): 4945-66, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27068441

RESUMEN

KEY POINTS: STE20 (Sterile 20)/SPS-1 related proline/alanine-rich kinase (SPAK) and oxidative stress-response kinase-1 (OSR1) phosphorylate and activate the renal Na(+) -K(+) -2Cl(-) cotransporter 2 (NKCC2) and Na(+) Cl(-) cotransporter (NCC). Mouse models suggest that OSR1 mainly activates NKCC2-mediated sodium transport along the thick ascending limb, while SPAK mainly activates NCC along the distal convoluted tubule, but the kinases may compensate for each other. We hypothesized that disruption of both kinases would lead to polyuria and severe salt-wasting, and generated SPAK/OSR1 double knockout mice to test this. Despite a lack of SPAK and OSR1, phosphorylated NKCC2 abundance was still high, suggesting the existence of an alternative activating kinase. Compensatory changes in SPAK/OSR1-independent phosphorylation sites on both NKCC2 and NCC and changes in sodium transport along the collecting duct were also observed. Potassium restriction revealed that SPAK and OSR1 play essential roles in the emerging model that NCC activation is central to sensing changes in plasma [K(+) ]. ABSTRACT: STE20 (Sterile 20)/SPS-1 related proline/alanine-rich kinase (SPAK) and oxidative stress-response kinase-1 (OSR1) activate the renal cation cotransporters Na(+) -K(+) -2Cl(-) cotransporter (NKCC2) and Na(+) -Cl(-) cotransporter (NCC) via phosphorylation. Knockout mouse models suggest that OSR1 mainly activates NKCC2, while SPAK mainly activates NCC, with possible cross-compensation. We tested the hypothesis that disrupting both kinases causes severe polyuria and salt-wasting by generating SPAK/OSR1 double knockout (DKO) mice. DKO mice displayed lower systolic blood pressure compared with SPAK knockout (SPAK-KO) mice, but displayed no severe phenotype even after dietary salt restriction. Phosphorylation of NKCC2 at SPAK/OSR1-dependent sites was lower than in SPAK-KO mice, but still significantly greater than in wild type mice. In the renal medulla, there was significant phosphorylation of NKCC2 at SPAK/OSR1-dependent sites despite a complete absence of SPAK and OSR1, suggesting the existence of an alternative activating kinase. The distal convoluted tubule has been proposed to sense plasma [K(+) ], with NCC activation serving as the primary effector pathway that modulates K(+) secretion, by metering sodium delivery to the collecting duct. Abundance of phosphorylated NCC (pNCC) is dramatically lower in SPAK-KO mice than in wild type mice, and the additional disruption of OSR1 further reduced pNCC. SPAK-KO and kidney-specific OSR1 single knockout mice maintained plasma [K(+) ] following dietary potassium restriction, but DKO mice developed severe hypokalaemia. Unlike mice lacking SPAK or OSR1 alone, DKO mice displayed an inability to phosphorylate NCC under these conditions. These data suggest that SPAK and OSR1 are essential components of the effector pathway that maintains plasma [K(+) ].


Asunto(s)
Túbulos Renales Distales/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Presión Sanguínea , Homeostasis , Túbulos Renales Distales/fisiología , Masculino , Ratones , Ratones Noqueados , Potasio/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo
14.
J Biol Chem ; 288(28): 20135-50, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23744065

RESUMEN

Insulin stimulates glucose uptake in 3T3-L1 adipocytes in part by causing endoproteolytic cleavage of TUG (tether containing a ubiquitin regulatory X (UBX) domain for glucose transporter 4 (GLUT4)). Cleavage liberates intracellularly sequestered GLUT4 glucose transporters for translocation to the cell surface. To test the role of this regulation in muscle, we used mice with muscle-specific transgenic expression of a truncated TUG fragment, UBX-Cter. This fragment causes GLUT4 translocation in unstimulated 3T3-L1 adipocytes. We predicted that transgenic mice would have GLUT4 translocation in muscle during fasting. UBX-Cter expression caused depletion of PIST (PDZ domain protein interacting specifically with TC10), which transmits an insulin signal to TUG. Whereas insulin stimulated TUG proteolysis in control muscles, proteolysis was constitutive in transgenic muscles. Fasting transgenic mice had decreased plasma glucose and insulin concentrations compared with controls. Whole-body glucose turnover was increased during fasting but not during hyperinsulinemic clamp studies. In muscles with the greatest UBX-Cter expression, 2-deoxyglucose uptake during fasting was similar to that in control muscles during hyperinsulinemic clamp studies. Fasting transgenic mice had increased muscle glycogen, and GLUT4 targeting to T-tubule fractions was increased 5.7-fold. Whole-body oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure were increased by 12-13%. After 3 weeks on a high fat diet, the decreased fasting plasma glucose in transgenic mice compared with controls was more marked, and increased glucose turnover was not observed; the transgenic mice continued to have an increased metabolic rate. We conclude that insulin stimulates TUG proteolysis to translocate GLUT4 in muscle, that this pathway impacts systemic glucose homeostasis and energy metabolism, and that the effects of activating this pathway are maintained during high fat diet-induced insulin resistance in mice.


Asunto(s)
Proteínas Portadoras/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras Transductoras de Señales , Animales , Glucemia/metabolismo , Dióxido de Carbono/metabolismo , Proteínas Portadoras/genética , Desoxiglucosa/metabolismo , Ayuno/sangre , Femenino , Glucógeno/metabolismo , Proteínas de la Matriz de Golgi , Hipoglucemiantes/sangre , Hipoglucemiantes/farmacología , Immunoblotting , Insulina/sangre , Insulina/farmacología , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Transgénicos , Músculo Esquelético/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos
15.
Dev Cell ; 58(23): 2666-2683.e9, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37875116

RESUMEN

Mutations in the degradative ubiquitin ligase anaphase-promoting complex (APC) alter neurodevelopment by impairing proteasomal protein clearance, but our understanding of their molecular and cellular pathogenesis remains limited. Here, we employ the proteomic-based discovery of APC substrates in APC mutant mouse brain and human cell lines and identify the chromosome-passenger complex (CPC), topoisomerase 2a (Top2a), and Ki-67 as major chromatin factors targeted by the APC during neuronal differentiation. These substrates accumulate in phosphorylated form, suggesting that they fail to be eliminated after mitosis during terminal differentiation. The accumulation of the CPC kinase Aurora B within constitutive heterochromatin and hyperphosphorylation of its target histone 3 are corrected in the mutant brain by pharmacologic Aurora B inhibition. Surprisingly, the reduction of Ki-67, but not H3S10ph, rescued the function of constitutive heterochromatin in APC mutant neurons. These results expand our understanding of how ubiquitin signaling regulates chromatin during neurodevelopment and identify potential therapeutic targets in APC-related disorders.


Asunto(s)
Anafase , Cromatina , Ratones , Animales , Humanos , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Heterocromatina , Fosfoproteínas/metabolismo , Antígeno Ki-67/metabolismo , Proteómica , Ubiquitinación , Mitosis , Ubiquitina/metabolismo , Proteínas de Ciclo Celular/metabolismo
16.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37092553

RESUMEN

Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.


Asunto(s)
Células Madre Pluripotentes Inducidas , Pubertad Precoz , Humanos , Femenino , Ratones , Animales , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Hipotálamo/metabolismo , Pubertad , Hormona Liberadora de Gonadotropina/metabolismo , Pubertad Precoz/genética , Pubertad Precoz/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
17.
Cancer Res ; 81(16): 4346-4359, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34185676

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with low survival rate and a lack of biomarkers and targeted treatments. Here, we target pyruvate kinase M2 (PKM2), a key metabolic component of oncogenesis. In patients with TNBC, PKM2pS37 was identified as a prominent phosphoprotein corresponding to the aggressive breast cancer phenotype that showed a characteristic nuclear staining pattern and prognostic value. Phosphorylation of PKM2 at S37 was connected with a cyclin-dependent kinase (CDK) pathway in TNBC cells. In parallel, pyruvate kinase activator TEPP-46 bound PKM2pS37 and reduced its nuclear localization. In a TNBC mouse xenograft model, treatment with either TEPP-46 or the potent CDK inhibitor dinaciclib reduced tumor growth and diminished PKM2pS37. Combinations of dinaciclib with TEPP-46 reduced cell invasion, impaired redox balance, and triggered cancer cell death. Collectively, these data support an approach to identify PKM2pS37-positive TNBC and target the PKM2 regulatory axis as a potential treatment. SIGNIFICANCE: PKM2 phosphorylation marks aggressive breast cancer cell phenotypes and targeting PKM2pS37 could be an effective therapeutic approach for treating triple-negative breast cancer.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Hormonas Tiroideas/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Biomarcadores de Tumor , Línea Celular Tumoral , Colágeno/química , Óxidos N-Cíclicos/farmacología , Combinación de Medicamentos , Genoma Humano , Humanos , Indolizinas/farmacología , Laminina/química , Células MCF-7 , Ratones , Invasividad Neoplásica , Trasplante de Neoplasias , Neoplasias/patología , Oxidación-Reducción , Fenotipo , Fosforilación , Isoformas de Proteínas , Proteoglicanos/química , Proteómica/métodos , Piridazinas/farmacología , Compuestos de Piridinio/farmacología , Pirroles/farmacología , Piruvato Quinasa/metabolismo , Proteínas de Unión a Hormona Tiroide
18.
Cell Rep ; 29(11): 3394-3404.e9, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31825824

RESUMEN

Pyruvate kinase is an important enzyme in glycolysis and a key metabolic control point. We recently observed a pyruvate kinase liver isoform (PKL) phosphorylation site at S113 that correlates with insulin resistance in rats on a 3 day high-fat diet (HFD) and suggests additional control points for PKL activity. However, in contrast to the classical model of PKL regulation, neither authentically phosphorylated PKL at S12 nor S113 alone is sufficient to alter enzyme kinetics or structure. Instead, we show that cyclin-dependent kinases (CDKs) are activated by the HFD and responsible for PKL phosphorylation at position S113 in addition to other targets. These CDKs control PKL nuclear retention, alter cytosolic PKL activity, and ultimately influence glucose production. These results change our view of PKL regulation and highlight a previously unrecognized pathway of hepatic CDK activity and metabolic control points that may be important in insulin resistance and type 2 diabetes.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Gluconeogénesis , Hepatocitos/metabolismo , Piruvato Quinasa/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Células Cultivadas , Dieta Alta en Grasa , Glucosa/metabolismo , Resistencia a la Insulina , Masculino , Fosforilación , Piruvato Quinasa/química , Ratas , Ratas Sprague-Dawley
19.
J Clin Invest ; 126(11): 4361-4371, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27760050

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D), but whether NAFLD plays a causal role in the pathogenesis of T2D is uncertain. One proposed mechanism linking NAFLD to hepatic insulin resistance involves diacylglycerol-mediated (DAG-mediated) activation of protein kinase C-ε (PKCε) and the consequent inhibition of insulin receptor (INSR) kinase activity. However, the molecular mechanism underlying PKCε inhibition of INSR kinase activity is unknown. Here, we used mass spectrometry to identify the phosphorylation site Thr1160 as a PKCε substrate in the functionally critical INSR kinase activation loop. We hypothesized that Thr1160 phosphorylation impairs INSR kinase activity by destabilizing the active configuration of the INSR kinase, and our results confirmed this prediction by demonstrating severely impaired INSR kinase activity in phosphomimetic T1160E mutants. Conversely, the INSR T1160A mutant was not inhibited by PKCε in vitro. Furthermore, mice with a threonine-to-alanine mutation at the homologous residue Thr1150 (InsrT1150A mice) were protected from high fat diet-induced hepatic insulin resistance. InsrT1150A mice also displayed increased insulin signaling, suppression of hepatic glucose production, and increased hepatic glycogen synthesis compared with WT controls during hyperinsulinemic clamp studies. These data reveal a critical pathophysiological role for INSR Thr1160 phosphorylation and provide further mechanistic links between PKCε and INSR in mediating NAFLD-induced hepatic insulin resistance.


Asunto(s)
Grasas de la Dieta/efectos adversos , Resistencia a la Insulina , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Sustitución de Aminoácidos , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Grasas de la Dieta/farmacología , Glucógeno/biosíntesis , Glucógeno/genética , Hígado/patología , Ratones , Ratones Mutantes , Mutación Missense , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Fosforilación , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Receptor de Insulina/genética
20.
ACS Chem Biol ; 9(11): 2502-7, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25272187

RESUMEN

Protein phosphorylation is a central biological mechanism for cellular adaptation to environmental changes. Dysregulation of phosphorylation signaling is implicated in a wide variety of diseases. Thus, the ability to detect and quantify protein phosphorylation is highly desirable for both diagnostic and research applications. Here we present a general strategy for detecting phosphopeptide-protein interactions in Escherichia coli. We first redesign a model tetratricopeptide repeat (TPR) protein to recognize phosphoserine in a sequence-specific fashion and characterize the interaction with its target phosphopeptide in vitro. We then combine in vivo site-specific incorporation of phosphoserine with split mCherry assembly to observe the designed phosphopeptide-protein interaction specificity in E. coli. This in vivo strategy for detecting and characterizing phosphopeptide-protein interactions has numerous potential applications for the study of natural interactions and the design of novel ones.


Asunto(s)
Escherichia coli/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA