Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Infect Immun ; 87(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30559221

RESUMEN

Mycoplasmas are small bacterial commensals or pathogens that commonly colonize host mucosal tissues and avoid rapid clearance, in part by stimulating inflammatory, immunopathogenic responses. We previously characterized a wide array of transcriptomic perturbations in avian host tracheal mucosae infected with virulent, immunopathologic Mycoplasma gallisepticum; however, mechanisms delineating these from protective responses, such as those induced upon vaccination, have not been thoroughly explored. In this study, host transcriptomic responses to two experimental M. gallisepticum vaccines were assessed during the first 2 days of infection. Relative to virulent infection, host metabolic and immune gene responses to both vaccines were greatly decreased, including early innate immune responses critical to disease development and subsequent adaptive immunity. These data specify host genes and potential mechanisms contributing to maladaptive versus beneficial host responses-information critical for design of vaccines efficacious in both limiting inflammation and enabling pathogen clearance.


Asunto(s)
Vacunas Bacterianas/inmunología , Pollos/inmunología , Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum/patogenicidad , Enfermedades de las Aves de Corral/microbiología , Inmunidad Adaptativa , Animales , Femenino , Regulación de la Expresión Génica/inmunología , Infecciones por Mycoplasma/inmunología , Enfermedades de las Aves de Corral/inmunología , Organismos Libres de Patógenos Específicos , Vacunas Atenuadas , Virulencia
2.
PLoS Comput Biol ; 9(9): e1003208, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039564

RESUMEN

Primarily used for metabolic engineering and synthetic biology, genome-scale metabolic modeling shows tremendous potential as a tool for fundamental research and curation of metabolism. Through a novel integration of flux balance analysis and genetic algorithms, a strategy to curate metabolic networks and facilitate identification of metabolic pathways that may not be directly inferable solely from genome annotation was developed. Specifically, metabolites involved in unknown reactions can be determined, and potentially erroneous pathways can be identified. The procedure developed allows for new fundamental insight into metabolism, as well as acting as a semi-automated curation methodology for genome-scale metabolic modeling. To validate the methodology, a genome-scale metabolic model for the bacterium Mycoplasma gallisepticum was created. Several reactions not predicted by the genome annotation were postulated and validated via the literature. The model predicted an average growth rate of 0.358±0.12[Formula: see text], closely matching the experimentally determined growth rate of M. gallisepticum of 0.244±0.03[Formula: see text]. This work presents a powerful algorithm for facilitating the identification and curation of previously known and new metabolic pathways, as well as presenting the first genome-scale reconstruction of M. gallisepticum.


Asunto(s)
Automatización , Modelos Biológicos , Mycoplasma gallisepticum/metabolismo , Algoritmos , Mycoplasma gallisepticum/fisiología
3.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38496428

RESUMEN

Pathogen epidemics are key threats to human and wildlife health. Across systems, host protection from pathogens following initial exposure is often incomplete, resulting in recurrent epidemics through partially-immune hosts. Variation in population-level protection has important consequences for epidemic dynamics, but whether acquired protection influences host heterogeneity in susceptibility and its epidemiological consequences remains unexplored. We experimentally investigated whether prior exposure (none, low-dose, or high-dose) to a bacterial pathogen alters host heterogeneity in susceptibility among songbirds. Hosts with no prior pathogen exposure had little variation in protection, but heterogeneity in susceptibility was significantly augmented by prior pathogen exposure, with the highest variability detected in hosts given high-dose prior exposure. An epidemiological model parameterized with experimental data found that heterogeneity in susceptibility from prior exposure more than halved epidemic sizes compared with a homogeneous population with identical mean protection. However, because infection-induced mortality was also greatly reduced in hosts with prior pathogen exposure, reductions in epidemic size were smaller than expected in hosts with prior exposure. These results highlight the importance of variable protection from prior exposure and/or vaccination in driving host heterogeneity and epidemiological dynamics.

4.
Microbiology (Reading) ; 159(Pt 7): 1459-1470, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23657682

RESUMEN

There is limited understanding of the molecular basis of virulence in the important avian pathogen Mycoplasma gallisepticum. To define genes that may be involved in colonization of chickens, a collection of mutants of the virulent Ap3AS strain of M. gallisepticum were generated by signature-tagged transposon mutagenesis. The collection included mutants with single insertions in the genes encoding the adhesin GapA and the cytadherence-related protein CrmA, and Western blotting confirmed that these mutants did not express these proteins. In two separate in vivo screenings, two GapA-deficient mutants (ST mutants 02-1 and 06-1) were occasionally recovered from birds, suggesting that GapA expression may not always be essential for persistence of strain Ap3AS. CrmA-deficient ST mutant 33-1 colonized birds poorly and had reduced virulence, indicating that CrmA was a significant virulence factor, but was not absolutely essential for colonization. ST mutant 04-1 contained a single transposon insertion in malF, a predicted ABC sugar transport permease, and could not be reisolated even when inoculated by itself into a group of birds, suggesting that expression of MalF was essential for persistence of M. galliseptium strain Ap3AS in infected birds.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum/patogenicidad , Enfermedades de las Aves de Corral/microbiología , Transportadoras de Casetes de Unión a ATP/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pollos/microbiología , Proteínas de Transporte de Monosacáridos/genética , Mutagénesis Insercional , Infecciones por Mycoplasma/microbiología , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/crecimiento & desarrollo , Mycoplasma gallisepticum/metabolismo , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
5.
Avian Dis ; 67(1): 42-48, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37140110

RESUMEN

Ever since 1994, when the bacterial pathogen Mycoplasma gallisepticum jumped from poultry to wild birds, it has been assumed that the primary host species of this pathogen in wild North American birds was the house finch (Haemorhous mexicanus), in which disease prevalence was higher than in any other bird species. Here we tested two hypotheses to explain a recent increase in disease prevalence in purple finches (Haemorhous purpureus) around Ithaca, New York. Hypothesis 1 is that, as M. gallisepticum evolved and became more virulent, it has also become better adapted to other finches. If this is correct, early isolates of M. gallisepticum should cause less-severe eye lesions in purple finches than in house finches, while more-recent isolates should cause eye lesions of similar severity in the two species. Hypothesis 2 is that, as house finch abundance declined following the M. gallisepticum epidemic, purple finches around Ithaca increased in abundance relative to house finches and purple finches are thus more frequently exposed to M. gallisepticum-infected house finches. This would then lead to an increase in M. gallisepticum prevalence in purple finches. Following an experimental infection with an early and a more-recent M. gallisepticum isolate, eye lesions in purple finches were more severe than in house finches. This did not a support Hypothesis 1; similarly, an analysis of Project Feeder Watch data collected around Ithaca did not show differences in changes in purple and house finches' abundance since 2006, a result which does not support Hypothesis 2. We conclude that purple finch populations will, unlike those of house finches, not suffer a severe decline because of a M. gallisepticum epidemic.


¿Son los pinzones purpúreos (Haemorhous purpureus) los próximos huéspedes de una epidemia de conjuntivitis por micoplasma? Desde el año 1994, cuando el patógeno bacteriano Mycoplasma gallisepticum saltó de las aves comerciales a las aves silvestres, se ha supuesto que la principal especie huésped de este patógeno en las aves silvestres de América del Norte era el pinzón mexicano (Haemorhous mexicanus), en el que la prevalencia de la enfermedad era mayor que en cualquier otra especie aviar. En este estudio se analizaron dos hipótesis para explicar un aumento reciente en la prevalencia de la enfermedad en los pinzones purpúreos (Haemorhous purpureus) alrededor de Ithaca, en Nueva York. La hipótesis 1 es que, a medida que M. gallisepticum evolucionó y se volvió más virulento, también se adaptó mejor a otros pinzones. Si esto es correcto, los aislamientos tempranos de M. gallisepticum deberían causar lesiones oculares menos graves en los pinzones purpúreos que en los pinzones mexicanos, mientras que los aislamientos más recientes deberían causar lesiones oculares de gravedad similar en las dos especies. La hipótesis 2 es que, a medida que la abundancia de pinzones mexicanos disminuyó después de la epidemia de M. gallisepticum, los pinzones purpúreos alrededor de Ithaca aumentaron en abundancia en relación con los pinzones mexicanos y, por lo tanto, los pinzones morados están expuestos con mayor frecuencia a los pinzones caseros infectados con M. gallisepticum. Esto conduciría a un aumento de la prevalencia de M. gallisepticum en los pinzones purpúreos. Después de una infección experimental con un aislamiento temprano y uno más reciente de M. gallisepticum, las lesiones oculares en los pinzones purpúreos fueron más graves que en los pinzones mexicanos. Esto no apoyó la Hipótesis 1; de manera similar, un análisis de los datos del Proyecto Feeder Watch recopilados alrededor de Ithaca no mostró diferencias en los cambios de la abundancia de pinzones purpúreos y mexicanos desde 2006, un resultado que no respalda la Hipótesis 2. Se concluye que las poblaciones de pinzones purpúreos, a diferencia de las de los pinzones mexicanos, no sufrieron un declive severo a causa de una epidemia de M. gallisepticum.


Asunto(s)
Enfermedades de las Aves , Conjuntivitis , Pinzones , Infecciones por Mycoplasma , Mycoplasma gallisepticum , Enfermedades de las Aves de Corral , Animales , Infecciones por Mycoplasma/epidemiología , Infecciones por Mycoplasma/veterinaria , Infecciones por Mycoplasma/microbiología , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/microbiología , Conjuntivitis/veterinaria
6.
Environ Sci Technol ; 46(1): 348-59, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22029256

RESUMEN

Grating-coupled surface plasmon resonance imaging (GCSPRI) utilizes an optical diffraction grating embossed on a gold-coated sensor chip to couple collimated incident light into surface plasmons. The angle at which this coupling occurs is sensitive to the capture of analyte at the chip surface. This approach permits the use of disposable biosensor chips that can be mass-produced at low cost and spotted in microarray format to greatly increase multiplexing capabilities. The current GCSPRI instrument has the capacity to simultaneously measure binding at over 1000 unique, discrete regions of interest (ROIs) by utilizing a compact microarray of antibodies or other specific capture molecules immobilized on the sensor chip. In this report, we describe the use of GCSPRI to directly detect multiple analytes over a large dynamic range, including soluble protein toxins, bacterial cells, and viruses, in near real-time. GCSPRI was used to detect a variety of agents that would be useful for diagnostic and environmental sensing purposes, including macromolecular antigens, a nontoxic form of Pseudomonas aeruginosa exotoxin A (ntPE), Bacillus globigii, Mycoplasma hyopneumoniae, Listeria monocytogenes, Escherichia coli, and M13 bacteriophage. These studies indicate that GCSPRI can be used to simultaneously assess the presence of toxins and pathogens, as well as quantify specific antibodies to environmental agents, in a rapid, label-free, and highly multiplexed assay requiring nanoliter amounts of capture reagents.


Asunto(s)
Bacterias/aislamiento & purificación , Análisis por Micromatrices/instrumentación , Análisis por Micromatrices/métodos , Resonancia por Plasmón de Superficie/instrumentación , Resonancia por Plasmón de Superficie/métodos , Animales , Anticuerpos/análisis , Bacterias/citología , Material Particulado/análisis , Solubilidad , Toxinas Biológicas/análisis , Virión/aislamiento & purificación
7.
J Wildl Dis ; 58(4): 716-724, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302353

RESUMEN

Mycoplasma gallisepticum, a pathogen of worldwide economic importance in poultry, is recovered in chickens, especially from the respiratory tract. Some strains, however, are specialized to other tissues and because it jumps from poultry to wild birds, the new strains also cause severe conjunctivitis in new hosts. Nevertheless, most studies of M. gallisepticum in wild birds use choanal swabs or combine choanal and conjunctival swabs to quantify bacterial load. Because the clinical signs associated with M. gallisepticum infection differ markedly between poultry and House Finches (Haemorhous mexicanus), we compared the bacterial load in choanal and conjunctival samples following experimental inoculation of House Finches with M. gallisepticum isolates originating from poultry or from House Finches. This allowed us to test two hypotheses: M. gallisepticum changed tissue tropism, or M. gallisepticum simply expanded its within-host niche. By comparing bacterial loads from choanal and conjunctival swabs in birds inoculated with one of a suite of M. gallisepticum isolates, we found support for hypothesis 2. The choanal loads in House Finches did not differ between isolates, while the conjunctival loads of birds inoculated with poultry isolates were lower than in birds inoculated with House Finch isolates. When measuring the bacterial load of M. gallisepticum in birds, it is important to sample and analyze separately choanal and conjunctival swabs, as quantifying bacterial loads in pooled samples may not provide reliable information on differences in virulence.


Asunto(s)
Mycoplasma gallisepticum , Animales , Pollos
8.
NPJ Vaccines ; 7(1): 86, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906257

RESUMEN

Bacterial lipoproteins are an often-underappreciated class of microbe-associated molecular patterns with potent immunomodulatory activity. We previously reported that vaccination of BALB/c mice with Mycoplasma pneumoniae (Mp) lipid-associated membrane proteins (LAMPs) resulted in lipoprotein-dependent vaccine enhanced disease after challenge with virulent Mp, though the immune responses underpinning this phenomenon remain poorly understood. Herein, we report that lipoprotein-induced VED in a mouse model is associated with elevated inflammatory cytokines TNF-α, IL-1ß, IL-6, IL-17A, and KC in lung lavage fluid and with suppurative pneumonia marked by exuberant neutrophilia in the pulmonary parenchyma. Whole-lung-digest flow cytometry and RNAScope analysis identified multiple cellular sources for IL-17A, and the numbers of IL-17A producing cells were increased in LAMPs-vaccinated/Mp-challenged animals compared to controls. Specific IL-17A or neutrophil depletion reduced disease severity in our VED model-indicating that Mp lipoproteins induce VED in an IL-17A-dependent manner and through exuberant neutrophil recruitment. IL-17A neutralization reduced levels of TNF-α, IL-1ß, IL-6, and KC, indicating that IL-17A preceded other inflammatory cytokines. Surprisingly, we found that IL-17A neutralization impaired bacterial clearance, while neutrophil depletion improved it-indicating that, while IL-17A appears to confer both maladaptive and protective responses, neutrophils play an entirely maladaptive role in VED. Given that lipoproteins are found in virtually all bacteria, the potential for lipoprotein-mediated maladaptive inflammatory responses should be taken into consideration when developing vaccines against bacterial pathogens.

9.
NPJ Vaccines ; 7(1): 130, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36310317

RESUMEN

Development of an effective vaccine for Mycoplasma pneumoniae has been hindered by reports of Vaccine Enhanced Disease (VED) in test subjects vaccinated and challenged in studies conducted in the 1960s. The exact mechanism of disease exacerbation has yet to be fully described, but host immune responses to Lipid-Associated Membrane Proteins (LAMPs) lipoprotein lipid moieties have been implicated. LAMPs-induced exacerbation appears to involve helper T cell recall responses, due in part to their influence on neutrophil recruitment and subsequent inflammatory responses in the lung. Herein, we characterized the functions of host B cell responses to M. pneumoniae LAMPs and delipidated-LAMPs (dLAMPs) by conducting passive transfer and B cell depletion studies to assess their contribution to disease exacerbation or protection using a BALB/c mouse model. We found that antibody responses to M. pneumoniae LAMPs and dLAMPs differ in magnitude, but not in isotype or subclass. Passive transfer, dLAMP denaturation, and monoclonal antibody studies indicate that antibodies do not cause VED, but do appear to contribute to control of bacterial loads in the lungs. Depletion of B cells prior to LAMPs-vaccination results in significantly enhanced pathology in comparison to B cell competent controls, suggesting a possible regulatory role of B cells distinct from antibody secretion. Taken together, our findings suggest that B cell antibody responses to M. pneumoniae contribute to, but are insufficient for protection against challenge on their own, and that other functional properties of B cells are necessary to limit exacerbation of disease in LAMPs-vaccinated mice after infection.

10.
Dis Aquat Organ ; 89(1): 39-49, 2010 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-20391911

RESUMEN

Arctic charr Salvelinus alpinus production facilities, nonproduction water sources and effluents in the United States and Canada were sampled to determine if chlamydiae associated with epitheliocystis were present in water and were associated with inclusions of epitheliocystis in gill tissue. Gills from 607 fish from 13 sites were processed for histopathologic examination and DNA extraction. Water was collected from 21 locations for DNA testing. Eighteen fish from one location had inclusions of epitheliocystis with proliferative and inflammatory gill lesions. Inclusions were stained using the Gimenez technique and, at the ultrastructural level, consisted of intracytoplasmic membrane-bound vacuoles containing reticulate and intermediate bodies in a fibrillar matrix. PCR using Order Chlamydiales-specific primers performed on DNA extracts from 12 of 13 infected fish yielded amplicons that were identical to (GQ302988) or differed at one base from (GQ302987) the 16S ribosomal RNA gene signature sequence of 'Candidatus Piscichlamydia salmonis', which is the chlamydia that was previously identified in epitheliocystis inclusions of farmed Atlantic salmon. In situ hybridization using a approximately 1.5 kb riboprobe corresponding to the 'Candidatus Piscichlamydia salmonis' 16S rRNA genetic sequence (AY462244) confirmed its presence within Arctic charr gill inclusions. DNA isolated from water samples was tested by Chlamydiales-specific PCR and yielded 54 partial 16S rRNA genetic sequences spanning the signature region; however, no 16S rRNA genetic sequences associated with epitheliocystis were identified. This is the first report of 'Candidatus Piscichlamydia salmonis' associated with epitheliocystis in Arctic charr, the first identification of 'Candidatus Piscichlamydia salmonis' from a freshwater production location, and the first reported occurrence in North America.


Asunto(s)
Chlamydiales/clasificación , Chlamydiales/aislamiento & purificación , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Trucha , Animales , ADN Bacteriano/genética , Enfermedades de los Peces/epidemiología , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/microbiología , América del Norte/epidemiología , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética
11.
NPJ Vaccines ; 5(1): 31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32284882

RESUMEN

Vaccine-enhanced disease (VED) occurs as a result of vaccination followed by infection with virulent Mycoplasma pneumoniae. To date VED has prevented development of an efficacious vaccine against this significant human respiratory pathogen. Herein we report that vaccination of BALB/c mice with M. pneumoniae lipid-associated membrane proteins (LAMPs) induces lung lesions consistent with exacerbated disease following challenge, without reducing bacterial loads. Removal of lipid moieties from LAMPs prior to vaccination eliminates VED and reduces bacterial loads after infection. Collectively, these data indicate that lipid moieties of lipoproteins are the causative factors of M. pneumoniae VED.

12.
J Bacteriol ; 190(6): 2206-16, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18192392

RESUMEN

As obligate parasites, Mycoplasma species are continuously exposed to oxidative damage due to host-generated peroxides and reactive oxygen species (ROS). In addition, the production of endogenous oxidants is believed to be a primary virulence mechanism of several Mollicute species, indicating that oxidative stress resistance is crucial to survival of these bacteria in the host milieu. Despite the abundance of oxidants at the site of infection, enzymes responsible for the detoxification of ROS have never been characterized in mycoplasmas. Here we characterize a homolog of the ohr (organic hydroperoxide resistance) family from Mycoplasma gallisepticum (encoding MGA1142). Unlike previously characterized ohr genes, the mga1142 gene is not upregulated in response to oxidative stress but displays a novel pattern of expression. Both organic and inorganic peroxides can act as substrates for MGA1142, but they are degraded with various efficiencies. Furthermore, cumene hydroperoxide, an aromatic peroxide metabolized with high efficiency by other Ohr proteins, was shown to rapidly inactivate MGA1142, accounting for the sensitivity of M. gallisepticum cells to this compound. Comparative modeling of the MGA1142 quaternary structure revealed that the active site of this molecule has a relatively wide conformation. These data indicate that the natural substrate for MGA1142 differs from that for previously characterized Ohr proteins. Triton X-114 partitioning demonstrated that MGA1142 is located in both cytosol and membrane fractions, suggesting that in vivo this molecule plays a role in the detoxification of both endogenous and exogenous peroxides. A model describing how MGA1142 is likely to be oriented in the cell membrane is presented.


Asunto(s)
Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Peróxido de Hidrógeno/farmacología , Mycoplasma gallisepticum/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Northern Blotting , Western Blotting , Electroforesis en Gel Bidimensional , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Mycoplasma gallisepticum/efectos de los fármacos , Mycoplasma gallisepticum/genética , Peroxidasa/metabolismo , Filogenia , Regiones Promotoras Genéticas/genética , Estructura Secundaria de Proteína , Análisis de Secuencia de ADN
13.
J Wildl Dis ; 54(1): 180-185, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053429

RESUMEN

: In 1994 Mycoplasma gallisepticum was found to be the etiologic agent of House Finch ( Haemorhous mexicanus) conjunctivitis, a rapidly expanding epidemic caused by a genetically discrete, House Finch-associated strain of M. gallisepticum (HFMG). While most prominent in House Finches, HFMG has been reported in other members of the family Fringillidae, including American Goldfinches ( Spinus tristis), Purple Finches ( Haemorhous purpureus), Pine Grosbeaks ( Pinicola enucleator), and Evening Grosbeaks ( Coccothraustes vespertinus). Herein we report two new potential host species of HFMG strain, the Lesser Goldfinch ( Spinus psaltria), belonging to the Fringillidae family, and the Western (California) Scrub Jay ( Aphelocoma californica), belonging to the Corvidae family. The latter is one of only two reports of HFMG being found outside the Fringillidae family, and of these is the only one reported outside of captivity. Furthermore, non-HFMG M. gallisepticum was identified in an American Crow ( Corvus brachyrhynchos), indicating presence of additional strains in wild birds. Strain typing of M. gallisepticum isolates was done via HFMG-specific quantitative PCR analysis and validated using random amplified polymorphic DNA analysis. Our results suggested an expanded host range of HFMG strain, and further suggested that the host range of HFMG was not limited to members of the family Fringillidae.


Asunto(s)
Enfermedades de las Aves/microbiología , Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum/aislamiento & purificación , Passeriformes , Reacción en Cadena de la Polimerasa/métodos , Animales , ADN Bacteriano/genética , Infecciones por Mycoplasma/microbiología , Mycoplasma gallisepticum/genética
14.
Dis Aquat Organ ; 76(1): 27-38, 2007 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-17718162

RESUMEN

Infections of branchial epithelium by intracellular gram-negative bacteria, termed epitheliocystis, have limited culture of Arctic charr Salvelinus alpinus. To characterize a bacterium associated with epitheliocystis in cultured charr, gills were sampled for histopathologic examination, conventional and immunoelectron microscopy, in situ hybridization, 16S ribosomal DNA (rDNA) amplification, sequence analysis and phylogenetic inference. Sampling was conducted at the Freshwater Institute (Shepherdstown, West Virginia, USA) during outbreaks of epitheliocystis in April and May 2002. Granular, basophilic, cytoplasmic inclusions in charr gill were shown to stain with Macchiavello, Lendrum's phloxine-tartrazine and Gimenez histochemical techniques. Ultrastructurally, inclusions were membrane-bound and contained round to elongate reticulate bodies that were immunoreactive to an antibody against chlamydial lipopolysaccharide, suggesting the presence of similar epitopes. DNA extracted from gills supported amplification of the most polymorphic and phylogenetically relevant region of the 16S rRNA gene, which had 97 to 100% identity with several uncultured clinical Neochlamydia spp. (order Chlamydiales) Clones WB13 (AY225593.1) and WB258 (AY225594.1). Sequence-specific riboprobes localized to inclusions during in situ hybridization experiments. Taxonomic affiliation was inferred by distance- and parsimony-based phylogenetic analyses of the 16S sequence, which branched with Neochlamydia hartmannellae in the order Chlamydiales with high confidence. This is the first molecular characterization of a chlamydia associated with epitheliocystis in Arctic charr and the fourth Neochlamydia spp. sequence to be associated with epitheliocystis. Presence of a clinical neochlamydial sequence, first identified from a cat, in Arctic charr suggests a possible mammalian and piscine host range for some environmental chlamydiae.


Asunto(s)
Chlamydiales/genética , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Trucha/microbiología , Animales , Chlamydiales/patogenicidad , Chlamydiales/ultraestructura , Enfermedades de los Peces/patología , Branquias/microbiología , Branquias/patología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Inmunohistoquímica/veterinaria , Microscopía Electrónica de Transmisión , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
J Wildl Dis ; 52(3): 669-73, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27285414

RESUMEN

Sampling wild birds for mycoplasma culture has been key to the study of House Finch (Haemorhous mexicanus) conjunctivitis, yielding isolates of Mycoplasma gallisepticum spanning the temporal and geographic ranges of disease from emergence to endemicity. Faced with the challenges and costs of sample collection over time and from remote locations for submission to our laboratory for mycoplasma culture, protocols evolved to achieve a practical optimum. Herein we report making M. gallisepticum isolates from House Finches almost every year since the disease emerged in 1994, and we now have 227 isolates from 17 states. Our wild bird host range for M. gallisepticum isolates includes Blue Jay ( Cyanocitta cristata ), American Goldfinch (Spinus tristis), Lesser Goldfinch (Spinus psaltria), Purple Finch (Haemorhous purpureus), Evening Grosbeak ( Coccothraustes vespertinus ), and herein first reports for Western Scrub-jay ( Aphelocoma californica ), and American Crow ( Corvus brachyrhynchos ). By collecting and identifying isolates from birds with clinical signs similar to those of House Finch conjunctivitis, we also expanded the known host range of Mycoplasma sturni and obtained isolates from additional wild bird species. Accumulating evidence shows that a diverse range of wild bird species may carry or have been exposed to M. gallisepticum in the US, as in Europe and Asia. Therefore, the emergence of a pathogenic M. gallisepticum strain in House Finches may actually be the exception that has allowed us to identify the broader epidemiologic picture.


Asunto(s)
Enfermedades de las Aves/microbiología , Conjuntivitis Bacteriana/veterinaria , Pinzones , Infecciones por Mycoplasma/veterinaria , Mycoplasma/aislamiento & purificación , Animales , Animales Salvajes , Conjuntivitis Bacteriana/epidemiología , Conjuntivitis Bacteriana/microbiología , Mycoplasma/clasificación , Infecciones por Mycoplasma/epidemiología , Infecciones por Mycoplasma/microbiología , América del Norte/epidemiología , Estudios Retrospectivos
16.
Vet Microbiol ; 111(1-2): 51-8, 2005 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-16257143

RESUMEN

Rapid and specific detection of Mycoplasma mycoides subsp. mycoides Small Colony (M. mycoides SC) is important for the effective control of contagious bovine pleuropneumonia. Although the United States has been free of this disease for over 100 years, it is necessary to develop modern diagnostic assays that are sensitive and specific for biological agents that would affect the US agricultural industry following accidental or intentional introduction into the US agricultural population. With this aim in mind, we have identified M. mycoides SC-specific genetic loci and developed TaqMan-based PCR assays for the detection of M. mycoides SC. The TaqMan assay allows for real-time detection of specific, amplified PCR products using portable equipment, enabling testing to be performed in the field. These assays are specific for M. mycoides SC, failing to amplify DNA from other organisms belonging to the M. mycoides cluster or two phylogenetically unrelated bovine mycoplasma species. Standard curves were drawn based on the linear relationships measured between the threshold fluorescence (C(T)) values and a measured quantity of genomic DNA. M. mycoides SC was successfully detected in bronchoalveolar lavage samples obtained from experimentally infected cattle. These TaqMan-based real-time PCR assays will allow for the rapid and specific detection of M. mycoides SC.


Asunto(s)
Enfermedades de los Bovinos/diagnóstico , ADN Bacteriano/análisis , Mycoplasma mycoides/aislamiento & purificación , Pleuroneumonía Contagiosa/diagnóstico , Reacción en Cadena de la Polimerasa/veterinaria , Animales , Secuencia de Bases , Bovinos , Enfermedades de los Bovinos/microbiología , Amplificación de Genes , Datos de Secuencia Molecular , Mycoplasma mycoides/clasificación , Mycoplasma mycoides/genética , Pleuroneumonía Contagiosa/microbiología , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad , Especificidad de la Especie
17.
Vet Microbiol ; 175(2-4): 265-74, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25575879

RESUMEN

Until now only a few genes encoding virulence factors have been characterized in the avian pathogen Mycoplasma gallisepticum. In order to identify candidate targets associated with infection we applied an immunoscreening technique-in vivo induced antigen technology (IVIAT)-to detect immunogens of M. gallisepticum strain Rlow expressed preferentially during in vivo infection. We identified 13 in vivo-induced (IVI) proteins that correspond to different functional categories including: previously reported putative virulence factors (GapA, PlpA, Hlp3, VlhA 1.07 and VlhA 4.01), transport (PotE, MGA_0241 and 0654), translation (L2, L23, ValS), chaperone (GroEL) and a protein with unknown function (MGA_0042). To validate the in vivo antigenic reactivity, 10 IVI proteins were tested by Western blot analysis using serum samples collected from chickens experimentally (with strain Rlow) and naturally (outbreaks, N=3) infected with M. gallisepticum. All IVI proteins tested were immunogenic. To corroborate these results, we tested expression of IVI genes in chickens experimentally infected with M. gallisepticum Rlow, and in MRC-5 human lung fibroblasts cell culture by using relative real time reverse-transcription PCR (RT-PCR). With the exception of MGA_0338, all six genes tested (MGA_1199, 0042, 0654, 0712, 0928 and 0241) were upregulated at least at one time point during experimental infection (2-4 week post-infection). In contrast, the expression of seven out of eight IVI genes (MGA_1199, 0152, 0338, 0042, 0654, 0712, 0928) were downregulated in MRC-5 cell culture at both 2 and 4h PI; MGA_0241 was upregulated 2h PI. Our data suggest that the identified IVI antigens may have important roles in the pathogenesis of M. gallisepticum infection in vivo.


Asunto(s)
Antígenos Bacterianos/metabolismo , Pollos , Regulación Bacteriana de la Expresión Génica/fisiología , Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum/metabolismo , Adsorción , Animales , Línea Celular , Humanos , Infecciones por Mycoplasma/microbiología , Mycoplasma gallisepticum/genética , Enfermedades de las Aves de Corral/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Organismos Libres de Patógenos Específicos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
18.
Vet Microbiol ; 157(1-2): 91-5, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22197303

RESUMEN

Reannotation of the pathogenic Mycoplasma gallisepticum strain R(low) genome identified the hypothetical gene MGA_0329 as a homolog of the sialidase gene MS53_0199 of Mycoplasma synoviae strain MS53. Potent sialidase activity was subsequently quantitated in several M. gallisepticum strains. Because sialidase activity levels correlate significantly with differing M. synoviae strain virulence, we hypothesized this enzyme may also influence the virulence of M. gallisepticum. MGA_0329 was disrupted in strain R(low) to create mutants 6, 358 and P1C5, which resulted in the loss of sialidase activity in all three mutants. Chickens infected with the knockout mutants had significantly less severe (P<0.05) tracheal lesions and tracheal mucosal thickening than chickens infected with equal doses of strain R(low). Significantly fewer (P<0.05) CCU especially of strains 6 and P1C5 were recovered at necropsy. Mini-Tn4001tet plasmid pTF20 carrying a wild-type copy of MGA_0329 with its native promoter was used to complement the genetic lesion in strain P1C5. Three clones derived from P1C5, each having one copy of MGA_0329 stably transposed into a different site in its genome, expressed sialidase restored to wild-type activity levels (1.58×10(-8)U/CFU). Complementation of P1C5 with MGA_0329 did not restore it to wild-type levels of virulence, indicating that the contribution of sialidase to M. gallisepticum virulence is not straightforward.


Asunto(s)
Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum/enzimología , Mycoplasma gallisepticum/patogenicidad , Neuraminidasa/genética , Virulencia , Animales , Pollos/microbiología , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Mutagénesis Insercional , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/patología , Mycoplasma gallisepticum/genética , Mycoplasma synoviae/enzimología
19.
J Vet Diagn Invest ; 23(3): 565-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21908292

RESUMEN

A 2-year-old, female goat from Connecticut was submitted for necropsy with a 5-day history of pyrexia and intermittent neurologic signs, including nystagmus, seizures, and circling. Postmortem examination revealed suppurative meningitis. Histologic examination of the brain revealed that the meninges were diffusely infiltrated by moderate numbers of lymphocytes, macrophages, and fibrin, with scattered foci of dense neutrophilic infiltrate. Culture of pus and brainstem yielded typical mycoplasma colonies. DNA sequencing of the 16S ribosomal RNA gene revealed 99% sequence homology with Mycoplasma mycoides subspecies capri and Mycoplasma mycoides subspecies mycoides Large Colony biotype, which are genetically indistinguishable and likely to be combined as a single subspecies labeled M. mycoides subsp. capri. The present case is unusual in that not only are mycoplasma an uncommon cause of meningitis in animals, but additionally, in that all other reported cases of mycoplasma meningitis in goats, systemic lesions were also present. In the present case, meningitis was the only lesion, thus illustrating the need to consider mycoplasma as a differential diagnosis for meningitis in goats.


Asunto(s)
Enfermedades de las Cabras/microbiología , Meningitis Bacterianas/veterinaria , Mycoplasma mycoides , Pleuroneumonía Contagiosa/complicaciones , Animales , Encéfalo/patología , Femenino , Enfermedades de las Cabras/patología , Cabras/microbiología , Meningitis Bacterianas/etiología , Meningitis Bacterianas/microbiología , Meningitis Bacterianas/patología , Mycoplasma mycoides/genética , Mycoplasma mycoides/aislamiento & purificación , Filogenia , Pleuroneumonía Contagiosa/microbiología , Pleuroneumonía Contagiosa/patología , ARN Ribosómico 16S/genética
20.
Microbiology (Reading) ; 153(Pt 5): 1455-1463, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17464059

RESUMEN

Mycoplasma gallisepticum is an avian pathogen that causes a chronic respiratory disease of chickens and results in significant economic losses to the poultry industry worldwide. Colonization of the host and the establishment of chronic disease are initiated by the cytadherence of M. gallisepticum to the host respiratory epithelium. While several proteins involved in cytadhesion have been characterized, molecules that interact with components of the host extracellular matrix, a process that is central to pathogenesis, are only now being identified. In this study, M. gallisepticum whole cells were shown to bind heparin in a specific and saturable manner. Heparin also significantly inhibited the binding of M. gallisepticum to the human lung fibroblast cell line MRC-5, suggesting a potential role for glycosaminoglycans (GAGs) in cytadherence. M. gallisepticum protein MG1142 (encoded by mga 1142), which displays homology to the osmotically induced (OsmC) family of proteins, binds strongly to heparin, is highly expressed during in vitro culture, and is surface accessible. Recombinant MG1142 bound heparin in a dose-dependent and saturable manner with a dissociation constant (K(d)) of 10+/-1.8 nM, which is within a physiologically significant range, compared to that of other heparin-binding proteins. Binding to heparin was inhibited by the heavily sulfated polysaccharide fucoidan, but not by mucin or chondroitin sulfate A or B, suggesting that electrostatic interactions between the sulfate groups of heparin and the positively charged basic residues of the MG1142 protein are important in binding. The ability of M. gallisepticum to bind GAGs may contribute to host adherence and colonization.


Asunto(s)
Proteínas Bacterianas/metabolismo , Heparina/metabolismo , Proteínas de la Membrana/metabolismo , Mycoplasma gallisepticum/química , Mycoplasma gallisepticum/metabolismo , Sulfatos de Condroitina/metabolismo , Dermatán Sulfato/metabolismo , Fibroblastos/microbiología , Humanos , Mucinas/metabolismo , Polisacáridos/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA