Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
SN Comput Sci ; 3(5): 397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911439

RESUMEN

COVID-19, caused by SARS-CoV-2, has been declared as a global pandemic by WHO. Early diagnosis of COVID-19 patients may reduce the impact of coronavirus using modern computational methods like deep learning. Various deep learning models based on CT and chest X-ray images are studied and compared in this study as an alternative solution to reverse transcription-polymerase chain reactions. This study consists of three stages: planning, conduction, and analysis/reporting. In the conduction stage, inclusion and exclusion criteria are applied to the literature searching and identification. Then, we have implemented quality assessment rules, where over 75 scored articles in the literature were included. Finally, in the analysis/reporting stage, all the papers are reviewed and analysed. After the quality assessment of the individual papers, this study adopted 57 articles for the systematic literature review. From these reviews, the critical analysis of each paper, including the represented matrix for the model evaluation, existing contributions, and motivation, has been tracked with suitable illustrations. We have also interpreted several insights of each paper with appropriate annotation. Further, a set of comparisons has been enumerated with suitable discussion. Convolutional neural networks are the most commonly used deep learning architecture for COVID-19 disease classification and identification from X-ray and CT images. Various prior studies did not include data from a hospital setting nor did they consider data preprocessing before training a deep learning model.

2.
Int J Bioinform Res Appl ; 8(5-6): 325-41, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23060414

RESUMEN

This study investigates the feasibility of using Artificial Neural Network (ANN) and fuzzy logic based techniques to select treatment margins for dynamically moving targets in the radiotherapy treatment of prostate cancer. The use of data from 15 patients relating error effects to the Tumour Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) radiobiological indices was contrasted against the use of data based on the prostate volume receiving 99% of the prescribed dose (V99%) and the rectum volume receiving more than 60Gy (V60). For the same input data, the results of the ANN were compared to results obtained using a fuzzy system, a fuzzy network and current clinically used statistical techniques. Compared to fuzzy and statistical methods, the ANN derived margins were found to be up to 2 mm larger at small and high input errors and up to 3.5 mm larger at medium input error magnitudes.


Asunto(s)
Lógica Difusa , Redes Neurales de la Computación , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA