RESUMEN
BACKGROUND: The serial interval is a key epidemiological measure that quantifies the time between an infector's and an infectee's onset of symptoms. This measure helps investigate epidemiological links between cases, and is an important parameter in transmission models used to estimate transmissibility and inform control strategies. The emergence of multiple variants of concern (VOC) during the SARS-CoV-2 pandemic has led to uncertainties about potential changes in the serial interval of COVID-19. We estimated the household serial interval of multiple VOC using data collected by the Virus Watch study. This online, prospective, community cohort study followed-up entire households in England and Wales since mid-June 2020. METHODS: This analysis included 5842 symptomatic individuals with confirmed SARS-CoV-2 infection among 2579 households from Sept 1, 2020, to Aug 10, 2022. SARS-CoV-2 variant designation was based upon national surveillance data of variant prevalence by date and geographical region. We used a Bayesian framework to infer who infected whom by exploring all transmission trees compatible with the observed dates of symptoms, given assumptions on the incubation period and generation time distributions using the R package outbreaker2. FINDINGS: We characterised the serial interval of COVID-19 by VOC. The mean serial interval was shortest for omicron BA5 (2·02 days; 95% credible interval [CrI] 1·26-2·84) and longest for alpha (3·37 days; 2·52-4·04). The mean serial interval before alpha (wild-type) was 2·29 days (95% CrI 1·39-2·94), 3·11 days (2·28-3·90) for delta, 2·72 days (2·01-3·47) for omicron BA1, and 2·67 days (1·90-3·46) for omicron BA2. We estimated that 17% (95% CrI 5-26) of serial interval values are negative across all variants. INTERPRETATION: Most methods estimating the reproduction number from incidence time series do not allow for a negative serial interval by construction. Further research is needed to extend these methods and assess biases introduced by not accounting for negative serial intervals. To our knowledge, this study is the first to use a Bayesian framework to estimate the serial interval of all major SARS-CoV-2 VOC from thousands of confirmed household cases. FUNDING: UK Medical Research Council and Wellcome Trust.
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Teorema de Bayes , Estudios de Cohortes , Estudios ProspectivosRESUMEN
BACKGROUND: It is poorly understood which workers lack access to sick pay in England and Wales. This evidence gap has been of particular interest in the context of the Covid-19 pandemic given the relationship between presenteeism and infectious disease transmission. METHOD: This cross-sectional analysis (n = 8874) was nested within a large community cohort study based across England and Wales (Virus Watch). An online survey in February 2021 asked participants in work if they had access to paid sick leave. We used logistic regression to examine sociodemographic factors associated with lacking access to sick pay. RESULTS: Only 66% (n = 5864) of participants reported access to sick pay. South Asian workers (adjusted odds ratio [OR] 1.40, 95% confidence interval [CI] 1.06-1.83) and those from Other minority ethnic backgrounds (OR 2.93, 95% CI 1.54-5.59) were more likely to lack access to sick pay compared to White British workers. Older workers (OR range 1.72 [1.53-1.93]-5.26 [4.42-6.26]), workers in low-income households (OR 2.53, 95% CI 2.15-2.98) and those in transport, trade, and service occupations (OR range 2.03 [1.58-2.61]-5.29 [3.67-7.72]) were also more likely to lack access to sick pay compared respectively to workers aged 25-44, those in high income households and managerial occupations. DISCUSSION: Unwarranted age and ethnic inequalities in sick pay access are suggestive of labour market discrimination. Occupational differences are also cause for concern. Policymakers should consider expanding access to sick pay to mitigate transmission of Covid-19 and other endemic respiratory infections in the community, and in the context of pandemic preparation.
Asunto(s)
COVID-19 , Ausencia por Enfermedad , Humanos , Estudios Transversales , Pandemias , Gales/epidemiología , Estudios de Cohortes , Inglaterra/epidemiologíaRESUMEN
PURPOSE: We aimed to understand which non-household activities increased infection odds and contributed greatest to SARS-CoV-2 infections following the lifting of public health restrictions in England and Wales. PROCEDURES: We undertook multivariable logistic regressions assessing the contribution to infections of activities reported by adult Virus Watch Community Cohort Study participants. We calculated adjusted weighted population attributable fractions (aPAF) estimating which activity contributed greatest to infections. FINDINGS: Among 11 413 participants (493 infections), infection was associated with: leaving home for work (aOR 1.35 (1.11-1.64), aPAF 17%), public transport (aOR 1.27 (1.04-1.57), aPAF 12%), shopping once (aOR 1.83 (1.36-2.45)) vs. more than three times a week, indoor leisure (aOR 1.24 (1.02-1.51), aPAF 10%) and indoor hospitality (aOR 1.21 (0.98-1.48), aPAF 7%). We found no association for outdoor hospitality (1.14 (0.94-1.39), aPAF 5%) or outdoor leisure (1.14 (0.82-1.59), aPAF 1%). CONCLUSION: Essential activities (work and public transport) carried the greatest risk and were the dominant contributors to infections. Non-essential indoor activities (hospitality and leisure) increased risk but contributed less. Outdoor activities carried no statistical risk and contributed to fewer infections. As countries aim to 'live with COVID', mitigating transmission in essential and indoor venues becomes increasingly relevant.
Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Humanos , COVID-19/epidemiología , Salud Pública , Estudios de Cohortes , Gales/epidemiologíaRESUMEN
OBJECTIVES: Risk of SARS-CoV-2 infection varies across occupations; however, investigation into factors underlying differential risk is limited. We aimed to estimate the total effect of occupation on SARS-CoV-2 serological status, whether this is mediated by workplace close contact, and how exposure to poorly ventilated workplaces varied across occupations. METHODS: We used data from a subcohort (n=3775) of adults in the UK-based Virus Watch cohort study who were tested for SARS-CoV-2 anti-nucleocapsid antibodies (indicating natural infection). We used logistic decomposition to investigate the relationship between occupation, contact and seropositivity, and logistic regression to investigate exposure to poorly ventilated workplaces. RESULTS: Seropositivity was 17.1% among workers with daily close contact vs 10.0% for those with no work-related close contact. Compared with other professional occupations, healthcare, indoor trade/process/plant, leisure/personal service, and transport/mobile machine workers had elevated adjusted total odds of seropositivity (1.80 (1.03 to 3.14) - 2.46 (1.82 to 3.33)). Work-related contact accounted for a variable part of increased odds across occupations (1.04 (1.01 to 1.08) - 1.23 (1.09 to 1.40)). Occupations with raised odds of infection after accounting for work-related contact also had greater exposure to poorly ventilated workplaces. CONCLUSIONS: Work-related close contact appears to contribute to occupational variation in seropositivity. Reducing contact in workplaces is an important COVID-19 control measure.
Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anciano , Anticuerpos Antivirales/sangre , Vacuna BNT162 , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/uso terapéutico , ChAdOx1 nCoV-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/sangre , Factores de TiempoRESUMEN
OBJECTIVES: The importance of SARS-CoV-2 transmission via the eyes is unknown, with previous studies mainly focusing on protective eyewear in healthcare settings. This study aimed to test the hypothesis that wearing eyeglasses is associated with a lower risk of COVID-19. METHODS: Participants from the Virus Watch prospective community cohort study responded to a questionnaire on the use of eyeglasses and contact lenses. Infection was confirmed through data linkage, self-reported positive results, and, for a subgroup, monthly capillary antibody testing. Multivariable logistic regression models, controlling for age, sex, income, and occupation, were used to identify the odds of infection depending on frequency and purpose of eyeglasses or contact lenses use. RESULTS: A total of 19,166 participants responded to the questionnaire, with 13,681 (71.3%, CI 70.7-72.0) reporting they wore eyeglasses. Multivariable logistic regression model showed a 15% lower odds of infection for those who reported using eyeglasses always for general use (odds ratio [OR] 0.85, 95% 0.77-0.95, P = 0.002) compared to those who never wore eyeglasses. The protective effect was reduced for those who said wearing eyeglasses interfered with mask-wearing and was absent for contact lens wearers. CONCLUSIONS: People who wear eyeglasses have a moderate reduction in risk of COVID-19 infection, highlighting that eye protection may make a valuable contribution to the reduction of transmission in community and healthcare settings.
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Estudios de Cohortes , Estudios Prospectivos , AnteojosRESUMEN
Background: Migrants in the United Kingdom (UK) may be at higher risk of SARS-CoV-2 exposure; however, little is known about their risk of COVID-19-related hospitalisation during waves 1-3 of the pandemic. Methods: We analysed secondary care data linked to Virus Watch study data for adults and estimated COVID-19-related hospitalisation incidence rates by migration status. To estimate the total effect of migration status on COVID-19 hospitalisation rates, we ran mixed-effect Poisson regression for wave 1 (01/03/2020-31/08/2020; wildtype), and mixed-effect negative binomial regressions for waves 2 (01/09/2020-31/05/2021; Alpha) and 3 (01/06/2020-31/11/2021; Delta). Results of all models were then meta-analysed. Results: Of 30,276 adults in the analyses, 26,492 (87.5 %) were UK-born and 3,784 (12.5 %) were migrants. COVID-19-related hospitalisation incidence rates for UK-born and migrant individuals across waves 1-3 were 2.7 [95 % CI 2.2-3.2], and 4.6 [3.1-6.7] per 1,000 person-years, respectively. Pooled incidence rate ratios across waves suggested increased rate of COVID-19-related hospitalisation in migrants compared to UK-born individuals in unadjusted 1.68 [1.08-2.60] and adjusted analyses 1.35 [0.71-2.60]. Conclusion: Our findings suggest migration populations in the UK have excess risk of COVID-19-related hospitalisations and underscore the need for more equitable interventions particularly aimed at COVID-19 vaccination uptake among migrants.
RESUMEN
Ebola virus disease poses a recurring risk to human health. We conducted a systematic review (PROSPERO CRD42023393345) of Ebola virus disease transmission models and parameters published from database inception to July 7, 2023, from PubMed and Web of Science. Two people screened each abstract and full text. Papers were extracted with a bespoke Access database, 10% were double extracted. We extracted 1280 parameters and 295 models from 522 papers. Basic reproduction number estimates were highly variable, as were effective reproduction numbers, likely reflecting spatiotemporal variability in interventions. Random-effect estimates were 15·4 days (95% CI 13·2-17·5) for the serial interval, 8·5 days (7·7-9·2) for the incubation period, 9·3 days (8·5-10·1) for the symptom-onset-to-death delay, and 13·0 days (10·4-15·7) for symptom-onset-to-recovery. Common effect estimates were similar, albeit with narrower CIs. Case-fatality ratio estimates were generally high but highly variable, which could reflect heterogeneity in underlying risk factors. Although a substantial body of literature exists on Ebola virus disease models and epidemiological parameter estimates, many of these studies focus on the west African Ebola epidemic and are primarily associated with Zaire Ebola virus, which leaves a key gap in our knowledge regarding other Ebola virus species and outbreak contexts.
RESUMEN
Respiratory viruses that were suppressed through previous lockdowns during the COVID-19 pandemic have recently started to co-circulate with SARS-CoV-2. Understanding the clinical characteristics and symptomatology of different respiratory viral infections can help address the challenges related to the identification of cases and the understanding of SARS-CoV-2 variants' evolutionary patterns. Flu Watch (2006-2011) and Virus Watch (2020-2022) are household community cohort studies monitoring the epidemiology of influenza, respiratory syncytial virus, rhinovirus, seasonal coronavirus, and SARS-CoV-2, in England and Wales. This study describes and compares the proportion of symptoms reported during illnesses infected by common respiratory viruses. The SARS-CoV-2 symptom profile increasingly resembles that of other respiratory viruses as new strains emerge. Increased cough, sore throat, runny nose, and sneezing are associated with the emergence of the Omicron strains. As SARS-CoV-2 becomes endemic, monitoring the evolution of its symptomatology associated with new variants will be critical for clinical surveillance.
Asunto(s)
COVID-19 , Infecciones por Enterovirus , Gripe Humana , Virus Sincitial Respiratorio Humano , Humanos , SARS-CoV-2/genética , Rhinovirus/genética , Gripe Humana/epidemiología , Pandemias , Estaciones del Año , COVID-19/epidemiología , Control de Enfermedades TransmisiblesRESUMEN
BACKGROUND: Studies of COVID-19 vaccine effectiveness show increases in COVID-19 cases within 14 days of a first dose, potentially reflecting post-vaccination behaviour changes associated with SARS-CoV-2 transmission before vaccine protection. However, direct evidence for a relationship between vaccination and behaviour is lacking. We aimed to examine the association between vaccination status and self-reported non-household contacts and non-essential activities during a national lockdown in England and Wales. METHODS: Participants (n = 1154) who had received the first dose of a COVID-19 vaccine reported non-household contacts and non-essential activities from February to March 2021 in monthly surveys during a national lockdown in England and Wales. We used a case-crossover study design and conditional logistic regression to examine the association between vaccination status (pre-vaccination vs 14 days post-vaccination) and self-reported contacts and activities within individuals. Stratified subgroup analyses examined potential effect heterogeneity by sociodemographic characteristics such as sex, household income or age group. RESULTS: 457/1154 (39.60 %) participants reported non-household contacts post-vaccination compared with 371/1154 (32.15 %) participants pre-vaccination. 100/1154 (8.67 %) participants reported use of non-essential shops or services post-vaccination compared with 74/1154 (6.41 %) participants pre-vaccination. Post-vaccination status was associated with increased odds of reporting non-household contacts (OR 1.65, 95 % CI 1.31-2.06, p < 0.001) and use of non-essential shops or services (OR 1.50, 95 % CI 1.03-2.17, p = 0.032). This effect varied between men and women and different age groups. CONCLUSION: Participants had higher odds of reporting non-household contacts and use of non-essential shops or services within 14 days of their first COVID-19 vaccine compared to pre-vaccination. Public health emphasis on maintaining protective behaviours during this post-vaccination time period when individuals have yet to develop full protection from vaccination could reduce risk of SARS-CoV-2 infection.
Asunto(s)
COVID-19 , SARS-CoV-2 , Masculino , Humanos , Femenino , COVID-19/epidemiología , COVID-19/prevención & control , Gales/epidemiología , Estudios Cruzados , Vacunas contra la COVID-19 , Control de Enfermedades Transmisibles , Vacunación , Inglaterra/epidemiología , AutoinformeRESUMEN
BACKGROUND: Workers across different occupations vary in their risk of SARS-CoV-2 infection, but the direct contribution of occupation to this relationship is unclear. This study aimed to investigate how infection risk differed across occupational groups in England and Wales up to April 2022, after adjustment for potential confounding and stratification by pandemic phase. METHODS: Data from 15,190 employed/self-employed participants in the Virus Watch prospective cohort study were used to generate risk ratios for virologically- or serologically-confirmed SARS-CoV-2 infection using robust Poisson regression, adjusting for socio-demographic and health-related factors and non-work public activities. We calculated attributable fractions (AF) amongst the exposed for belonging to each occupational group based on adjusted risk ratios (aRR). RESULTS: Increased risk was seen in nurses (aRR = 1.44, 1.25-1.65; AF = 30%, 20-39%), doctors (aRR = 1.33, 1.08-1.65; AF = 25%, 7-39%), carers (1.45, 1.19-1.76; AF = 31%, 16-43%), primary school teachers (aRR = 1.67, 1.42- 1.96; AF = 40%, 30-49%), secondary school teachers (aRR = 1.48, 1.26-1.72; AF = 32%, 21-42%), and teaching support occupations (aRR = 1.42, 1.23-1.64; AF = 29%, 18-39%) compared to office-based professional occupations. Differential risk was apparent in the earlier phases (Feb 2020-May 2021) and attenuated later (June-October 2021) for most groups, although teachers and teaching support workers demonstrated persistently elevated risk across waves. CONCLUSIONS: Occupational differences in SARS-CoV-2 infection risk vary over time and are robust to adjustment for socio-demographic, health-related, and non-workplace activity-related potential confounders. Direct investigation into workplace factors underlying elevated risk and how these change over time is needed to inform occupational health interventions.
RESUMEN
Background: Individuals living in deprived areas in England and Wales undertook essential activities more frequently and experienced higher rates of SARS-CoV-2 infection than less deprived communities during periods of restrictions aimed at controlling the Alpha (B.1.1.7) variant. We aimed to understand whether these deprivation-related differences changed once restrictions were lifted. Methods: Among 11,231 adult Virus Watch Community Cohort Study participants multivariable logistic regressions were used to estimate the relationships between deprivation and self-reported activities and deprivation and infection (self-reported lateral flow or PCR tests and linkage to National Testing data and Second Generation Surveillance System (SGSS)) between August - December 2021, following the lifting of national public health restrictions. Results: Those living in areas of greatest deprivation were more likely to undertake essential activities (leaving home for work (aOR 1.56 (1.33 - 1.83)), using public transport (aOR 1.33 (1.13 - 1.57)) but less likely to undertake non-essential activities (indoor hospitality (aOR 0.82 (0.70 - 0.96)), outdoor hospitality (aOR 0.56 (0.48 - 0.66)), indoor leisure (aOR 0.63 (0.54 - 0.74)), outdoor leisure (aOR 0.64 (0.46 - 0.88)), or visit a hairdresser (aOR 0.72 (0.61 - 0.85))). No statistical association was observed between deprivation and infection (P=0.5745), with those living in areas of greatest deprivation no more likely to become infected with SARS-CoV-2 (aOR 1.25 (0.87 - 1.79). Conclusion: The lack of association between deprivation and infection is likely due to the increased engagement in non-essential activities among the least deprived balancing the increased work-related exposure among the most deprived. The differences in activities highlight stark disparities in an individuals' ability to choose how to limit infection exposure.
Individuals living in deprived areas of England and Wales left home to go to work and used public transport more frequently than people living in less deprived areas of the country when under tight lockdown restrictions. They were also more likely to develop SARS-CoV-2 infection. Understanding whether these differences changed once restrictions were lifted is important to understand whether deprivation-related discrepancies in infection risk changed throughout the pandemic. We found that, after the removal of lockdown restrictions, people living in areas of the greatest deprivation continued to leave home for work or use public transport more frequently than those not living in areas of deprivation but they were less likely to visit either indoor or outdoor hospitality or leisure venues such as cafes, restaurants, bars, cinemas, theatres or visit a hairdresser or beautician than people living in areas with little deprivation. They were no longer more likely than those living in areas with little deprivation to become infected with SARS-CoV-2. This is likely because people living in areas with little deprivation were visiting hospitality and leisure venues more frequently than during lockdown and were increasing their exposure to infection in these settings, balancing out the increased infection risk posed through work and public transport to those living in deprived areas. The fact that people living in areas of deprivation were most likely exposed to SARS-CoV-2 infection through essential activities like work and public transport use while people living in areas with little deprivation were most likely exposed to infection through non-essential activities such as visiting a restaurant, pub, cinema or theatre, highlights stark disparities in an individuals' ability to choose how to limit infection exposure based on their deprivation status.
RESUMEN
Background: Understanding how non-household activities contributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections under different levels of national health restrictions is vital. Methods: Among adult Virus Watch participants in England and Wales, we used multivariable logistic regressions and adjusted-weighted population attributable fractions (aPAF) assessing the contribution of work, public transport, shopping, and hospitality and leisure activities to infections. Results: Under restrictions, among 17,256 participants (502 infections), work [adjusted odds ratio (aOR) 2.01 (1.65-2.44), (aPAF) 30% (22-38%)] and transport [(aOR 1.15 (0.94-1.40), aPAF 5% (-3-12%)], were risk factors for SARS-CoV-2 but shopping, hospitality and leisure were not. Following the lifting of restrictions, among 11,413 participants (493 infections), work [(aOR 1.35 (1.11-1.64), aPAF 17% (6-26%)] and transport [(aOR 1.27 (1.04-1.57), aPAF 12% (2-22%)] contributed most, with indoor hospitality [(aOR 1.21 (0.98-1.48), aPAF 7% (-1-15%)] and leisure [(aOR 1.24 (1.02-1.51), aPAF 10% (1-18%)] increasing. During the Omicron variant, with individuals more socially engaged, among 11,964 participants (2335 infections), work [(aOR 1.28 (1.16-1.41), aPAF (11% (7-15%)] and transport [(aOR 1.16 (1.04-1.28), aPAF 6% (2-9%)] remained important but indoor hospitality [(aOR 1.43 (1.26-1.62), aPAF 20% (13-26%)] and leisure [(aOR 1.35 (1.22-1.48), aPAF 10% (7-14%)] dominated. Conclusions: Work and public transport were important to transmissions throughout the pandemic with hospitality and leisure's contribution increasing as restrictions were lifted, highlighting the importance of restricting leisure and hospitality alongside advising working from home, when facing a highly infectious and virulent respiratory infection.
Establishing which activities and venues that were restricted in England and Wales during lockdowns were the most likely to lead to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections will help us understand how useful the restrictions were and will help us to develop proportional responses to future public health threats. We found that during periods of intense restrictions (October 2020May 2021) many people became infected with SARS-CoV-2 if they left home to go to work or used public transport. During the period after most public health restrictions were lifted (Septembermid-December 2021), while many people continued to become infected at work or if they used public transport, indoor hospitality and indoor leisure venues became increasingly important as places where people became infected. During the Omicron wave of the pandemic (December 2021April 2022), by which point there were very few restrictions on people's activities and many people were visiting hospitality and leisure venues with increasing frequency, people continued to become infected at work and on public transport, but hospitality and leisure venues were nearly as important places where people became infected. As essential activities led to most cases during periods of tight restrictions and leisure and hospitality activities became increasingly important under periods when rules were more relaxed, it is important to recognise how vital it was to encourage people to work from home, reduce public transport use and restrict visits to leisure and hospitality settings when the country was faced with a fast-spreading virus which killed many people. Outdoor use of leisure and hospitality venues appeared to be safer than indoor use.
RESUMEN
BACKGROUND: The serial interval is a key epidemiological measure that quantifies the time between the onset of symptoms in an infector-infectee pair. It indicates how quickly new generations of cases appear, thus informing on the speed of an epidemic. Estimating the serial interval requires to identify pairs of infectors and infectees. Yet, most studies fail to assess the direction of transmission between cases and assume that the order of infections - and thus transmissions - strictly follows the order of symptom onsets, thereby imposing serial intervals to be positive. Because of the long and highly variable incubation period of SARS-CoV-2, this may not always be true (i.e an infectee may show symptoms before their infector) and negative serial intervals may occur. This study aims to estimate the serial interval of different SARS-CoV-2 variants whilst accounting for negative serial intervals. METHODS: This analysis included 5 842 symptomatic individuals with confirmed SARS-CoV-2 infection amongst 2 579 households from September 2020 to August 2022 across England & Wales. We used a Bayesian framework to infer who infected whom by exploring all transmission trees compatible with the observed dates of symptoms, based on a wide range of incubation period and generation time distributions compatible with estimates reported in the literature. Serial intervals were derived from the reconstructed transmission pairs, stratified by variants. RESULTS: We estimated that 22% (95% credible interval (CrI) 8-32%) of serial interval values are negative across all VOC. The mean serial interval was shortest for Omicron BA5 (2.02 days, 1.26-2.84) and longest for Alpha (3.37 days, 2.52-4.04). CONCLUSIONS: This study highlights the large proportion of negative serial intervals across SARS-CoV-2 variants. Because the serial interval is widely used to estimate transmissibility and forecast cases, these results may have critical implications for epidemic control.
Asunto(s)
COVID-19 , Epidemias , Humanos , SARS-CoV-2 , COVID-19/epidemiología , Teorema de BayesRESUMEN
BACKGROUND: Migrants are over-represented in SARS-CoV-2 infections globally; however, evidence is limited for migrants in England and Wales. Household overcrowding is a risk factor for SARS-CoV-2 infection, with migrants more likely to live in overcrowded households than UK-born individuals. We aimed to estimate the total effect of migration status on SARS-CoV-2 infection and to what extent household overcrowding mediated this effect. METHODS: We included a subcohort of individuals from the Virus Watch prospective cohort study during the second SARS-CoV-2 wave (1 September 2020-30 April 2021) who were aged ≥18 years, self-reported the number of rooms in their household and had no evidence of SARS-CoV-2 infection pre-September 2020. We estimated total, indirect and direct effects using Buis' logistic decomposition regression controlling for age, sex, ethnicity, clinical vulnerability, occupation, income and whether they lived with children. RESULTS: In total, 23 478 individuals were included. 9.07% (187/2062) of migrants had evidence of infection during the study period vs 6.27% (1342/21 416) of UK-born individuals. Migrants had 22% higher odds of infection during the second wave (total effect; OR 1.22, 95% CI 1.01 to 1.47). Household overcrowding accounted for approximately 36% (95% CI -4% to 77%) of these increased odds (indirect effect, OR 1.07, 95% CI 1.03 to 1.12; proportion accounted for: indirect effect on log odds scale/total effect on log odds scale=0.36). CONCLUSION: Migrants had higher odds of SARS-CoV-2 infection during the second wave compared with UK-born individuals and household overcrowding explained 36% of these increased odds. Policy interventions to reduce household overcrowding for migrants are needed as part of efforts to tackle health inequalities during the pandemic and beyond.
Asunto(s)
COVID-19 , Migrantes , Adolescente , Adulto , Humanos , COVID-19/epidemiología , Análisis de Mediación , Estudios Prospectivos , SARS-CoV-2 , Masculino , Femenino , Composición FamiliarRESUMEN
BACKGROUND: The Omicron B.1.1.529 variant increased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in doubly vaccinated individuals, particularly in the Oxford-AstraZeneca COVID-19 vaccine (ChAdOx1) recipients. To tackle infections, the UK's booster vaccination programmes used messenger ribonucleic acid (mRNA) vaccines irrespective of an individual's primary course vaccine type, and prioritized the clinically vulnerable. These mRNA vaccines included the Pfizer-BioNTech COVID-19 vaccine (BNT162b2) the Moderna COVID-19 vaccine (mRNA-1273). There is limited understanding of the effectiveness of different primary vaccination courses on mRNA booster vaccines against SARs-COV-2 infections and how time-varying confounders affect these evaluations. METHODS: Trial emulation was applied to a prospective community observational cohort in England and Wales to reduce time-varying confounding-by-indication driven by prioritizing vaccination based upon age, vulnerability and exposure. Trial emulation was conducted by meta-analysing eight adult cohort results whose booster vaccinations were staggered between 16 September 2021 and 05 January 2022 and followed until 23 January 2022. Time from booster vaccination until SARS-CoV-2 infection, loss of follow-up or end of study was modelled using Cox proportional hazard models and adjusted for age, sex, minority ethnic status, clinically vulnerability and deprivation. RESULTS: A total of 19â159 participants were analysed, with 11â709 ChAdOx1 primary courses and 7450 BNT162b2 primary courses. Median age, clinical vulnerability status and infection rates fluctuate through time. In mRNA-boosted adults, 7.4% (n = 863) of boosted adults with a ChAdOx1 primary course experienced a SARS-CoV-2 infection compared with 7.7% (n = 571) of those who had BNT162b2 as a primary course. The pooled adjusted hazard ratio (aHR) was 1.01 with a 95% confidence interval (CI) of: 0.90 to 1.13. CONCLUSION: After an mRNA booster dose, we found no difference in protection comparing those with a primary course of BNT162b2 with those with a ChAdOx1 primary course. This contrasts with pre-booster findings where previous research shows greater effectiveness of BNT162b2 than ChAdOx1 in preventing infection.
Asunto(s)
COVID-19 , Adulto , Humanos , Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios Prospectivos , ARN Mensajero , SARS-CoV-2 , VacunaciónRESUMEN
BACKGROUND: Evidence suggests that individuals may change adherence to public health policies aimed at reducing the contact, transmission, and spread of the SARS-CoV-2 virus after they receive their first SARS-CoV-2 vaccination when they are not fully vaccinated. OBJECTIVE: We aimed to estimate changes in median daily travel distance of our cohort from their registered addresses before and after receiving a SARS-CoV-2 vaccine. METHODS: Participants were recruited into Virus Watch starting in June 2020. Weekly surveys were sent out to participants, and vaccination status was collected from January 2021 onward. Between September 2020 and February 2021, we invited 13,120 adult Virus Watch participants to contribute toward our tracker subcohort, which uses the GPS via a smartphone app to collect data on movement. We used segmented linear regression to estimate the median daily travel distance before and after the first self-reported SARS-CoV-2 vaccine dose. RESULTS: We analyzed the daily travel distance of 249 vaccinated adults. From 157 days prior to vaccination until the day before vaccination, the median daily travel distance was 9.05 (IQR 8.06-10.09) km. From the day of vaccination to 105 days after vaccination, the median daily travel distance was 10.08 (IQR 8.60-12.42) km. From 157 days prior to vaccination until the vaccination date, there was a daily median decrease in mobility of 40.09 m (95% CI -50.08 to -31.10; P<.001). After vaccination, there was a median daily increase in movement of 60.60 m (95% CI 20.90-100; P<.001). Restricting the analysis to the third national lockdown (January 4, 2021, to April 5, 2021), we found a median daily movement increase of 18.30 m (95% CI -19.20 to 55.80; P=.57) in the 30 days prior to vaccination and a median daily movement increase of 9.36 m (95% CI 38.6-149.00; P=.69) in the 30 days after vaccination. CONCLUSIONS: Our study demonstrates the feasibility of collecting high-volume geolocation data as part of research projects and the utility of these data for understanding public health issues. Our various analyses produced results that ranged from no change in movement after vaccination (during the third national lock down) to an increase in movement after vaccination (considering all periods, up to 105 days after vaccination), suggesting that, among Virus Watch participants, any changes in movement distances after vaccination are small. Our findings may be attributable to public health measures in place at the time such as movement restrictions and home working that applied to the Virus Watch cohort participants during the study period.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Gales , SARS-CoV-2 , Estudios de Cohortes , Sistemas de Información Geográfica , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles , Inglaterra , Vacunación , AutoinformeRESUMEN
The 2023 Marburg virus disease outbreaks in Equatorial Guinea and Tanzania highlighted the importance of better understanding this lethal pathogen. We did a systematic review (PROSPERO CRD42023393345) of peer-reviewed articles reporting historical outbreaks, modelling studies, and epidemiological parameters focused on Marburg virus disease. We searched PubMed and Web of Science from database inception to March 31, 2023. Two reviewers evaluated all titles and abstracts with consensus-based decision making. To ensure agreement, 13 (31%) of 42 studies were double-extracted and a custom-designed quality assessment questionnaire was used for risk of bias assessment. We present detailed information on 478 reported cases and 385 deaths from Marburg virus disease. Analysis of historical outbreaks and seroprevalence estimates suggests the possibility of undetected Marburg virus disease outbreaks, asymptomatic transmission, or cross-reactivity with other pathogens, or a combination of these. Only one study presented a mathematical model of Marburg virus transmission. We estimate an unadjusted, pooled total random effect case fatality ratio of 61·9% (95% CI 38·8-80·6; I2=93%). We identify epidemiological parameters relating to transmission and natural history, for which there are few estimates. This systematic review and the accompanying database provide a comprehensive overview of Marburg virus disease epidemiology and identify key knowledge gaps, contributing crucial information for mathematical models to support future Marburg virus disease epidemic responses.
RESUMEN
BACKGROUND: Differential exposure to public activities may contribute to stark deprivation-related inequalities in SARS-CoV-2 infection and outcomes but has not been directly investigated. We set out to investigate whether participants in Virus Watch-a large community cohort study based in England and Wales-reported differential exposure to public activities and non-household contacts during the autumn-winter phase of the COVID-19 pandemic according to postcode-level socioeconomic deprivation. METHODS: Participants (n=20 120-25 228 across surveys) reported their daily activities during 3 weekly periods in late November 2020, late December 2020 and mid-February 2021. Deprivation was quantified based on participants' residential postcode using English or Welsh Index of Multiple Deprivation quintiles. We used Poisson mixed-effect models with robust standard errors to estimate the relationship between deprivation and risk of exposure to public activities during each survey period. RESULTS: Relative to participants in the least deprived areas, participants in the most deprived areas exhibited elevated risk of exposure to vehicle sharing (adjusted risk ratio (aRR) range across time points: 1.73-8.52), public transport (aRR: 3.13-5.73), work or education outside of the household (aRR: 1.09-1.21), essential shops (aRR: 1.09-1.13) and non-household contacts (aRR: 1.15-1.19) across multiple survey periods. CONCLUSION: Differential exposure to essential public activities-such as attending workplaces and visiting essential shops-is likely to contribute to inequalities in infection risk and outcomes. Public health interventions to reduce exposure during essential activities and financial and practical support to enable low-paid workers to stay at home during periods of intense transmission may reduce COVID-related inequalities.
Asunto(s)
COVID-19 , COVID-19/epidemiología , Estudios de Cohortes , Inglaterra/epidemiología , Disparidades en el Estado de Salud , Humanos , Pandemias , SARS-CoV-2 , Gales/epidemiologíaRESUMEN
A range of studies globally demonstrate that the effectiveness of SARS-CoV-2 vaccines wane over time, but the total effect of anti-S antibody levels on risk of SARS-CoV-2 infection and whether this varies by vaccine type is not well understood. Here we show that anti-S levels peak three to four weeks following the second dose of vaccine and the geometric mean of the samples is nine fold higher for BNT162b2 than ChAdOx1. Increasing anti-S levels are associated with a reduced risk of SARS-CoV-2 infection (Hazard Ratio 0.85; 95%CIs: 0.79-0.92). We do not find evidence that this antibody relationship with risk of infection varies by second dose vaccine type (BNT162b2 vs. ChAdOx1). In keeping with our anti-S antibody data, we find that people vaccinated with ChAdOx1 had 1.64 times the odds (95% confidence interval 1.45-1.85) of a breakthrough infection compared to BNT162b2. We anticipate our findings to be useful in the estimation of the protective effect of anti-S levels on risk of infection due to Delta. Our findings provide evidence about the relationship between antibody levels and protection for different vaccines and will support decisions on optimising the timing of booster vaccinations and identifying individuals who should be prioritised for booster vaccination, including those who are older, clinically extremely vulnerable, or received ChAdOx1 as their primary course. Our finding that risk of infection by anti-S level does not interact with vaccine type, but that individuals vaccinated with ChAdOx1 were at higher risk of infection, provides additional support for the use of using anti-S levels for estimating vaccine efficacy.