Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 186(9): 1846-1862.e26, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37028428

RESUMEN

The use of probiotics by cancer patients is increasing, including among those undergoing immune checkpoint inhibitor (ICI) treatment. Here, we elucidate a critical microbial-host crosstalk between probiotic-released aryl hydrocarbon receptor (AhR) agonist indole-3-aldehyde (I3A) and CD8 T cells within the tumor microenvironment that potently enhances antitumor immunity and facilitates ICI in preclinical melanoma. Our study reveals that probiotic Lactobacillus reuteri (Lr) translocates to, colonizes, and persists within melanoma, where via its released dietary tryptophan catabolite I3A, it locally promotes interferon-γ-producing CD8 T cells, thereby bolstering ICI. Moreover, Lr-secreted I3A was both necessary and sufficient to drive antitumor immunity, and loss of AhR signaling within CD8 T cells abrogated Lr's antitumor effects. Further, a tryptophan-enriched diet potentiated both Lr- and ICI-induced antitumor immunity, dependent on CD8 T cell AhR signaling. Finally, we provide evidence for a potential role of I3A in promoting ICI efficacy and survival in advanced melanoma patients.


Asunto(s)
Limosilactobacillus reuteri , Melanoma , Microambiente Tumoral , Humanos , Dieta , Inhibidores de Puntos de Control Inmunológico , Limosilactobacillus reuteri/metabolismo , Melanoma/terapia , Triptófano/metabolismo , Linfocitos T CD8-positivos/inmunología , Receptores de Hidrocarburo de Aril/agonistas
2.
Immunity ; 56(8): 1862-1875.e9, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37478853

RESUMEN

Loss of oral tolerance (LOT) to gluten, driven by dendritic cell (DC) priming of gluten-specific T helper 1 (Th1) cell immune responses, is a hallmark of celiac disease (CeD) and can be triggered by enteric viral infections. Whether certain commensals can moderate virus-mediated LOT remains elusive. Here, using a mouse model of virus-mediated LOT, we discovered that the gut-colonizing protist Tritrichomonas (T.) arnold promotes oral tolerance and protects against reovirus- and murine norovirus-mediated LOT, independent of the microbiota. Protection was not attributable to antiviral host responses or T. arnold-mediated innate type 2 immunity. Mechanistically, T. arnold directly restrained the proinflammatory program in dietary antigen-presenting DCs, subsequently limiting Th1 and promoting regulatory T cell responses. Finally, analysis of fecal microbiomes showed that T. arnold-related Parabasalid strains are underrepresented in human CeD patients. Altogether, these findings will motivate further exploration of oral-tolerance-promoting protists in CeD and other immune-mediated food sensitivities.


Asunto(s)
Antígenos , Inmunidad Innata , Animales , Ratones , Humanos , Dieta , Glútenes , Células Dendríticas , Tolerancia Inmunológica
3.
EMBO Rep ; 25(10): 4281-4310, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39191946

RESUMEN

Aberrant mitochondrial fission/fusion dynamics are frequently associated with pathologies, including cancer. We show that alternative splice variants of the fission protein Drp1 (DNM1L) contribute to the complexity of mitochondrial fission/fusion regulation in tumor cells. High tumor expression of the Drp1 alternative splice variant lacking exon 16 relative to other transcripts is associated with poor outcome in ovarian cancer patients. Lack of exon 16 results in Drp1 localization to microtubules and decreased association with mitochondrial fission sites, culminating in fused mitochondrial networks, enhanced respiration, changes in metabolism, and enhanced pro-tumorigenic phenotypes in vitro and in vivo. These effects are inhibited by siRNAs designed to specifically target the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the pathophysiological importance of Drp1 alternative splicing, highlight the divergent functions and consequences of changing the relative expression of Drp1 splice variants in tumor cells, and strongly warrant consideration of alternative splicing in future studies focused on Drp1.


Asunto(s)
Empalme Alternativo , Dinaminas , GTP Fosfohidrolasas , Proteínas Asociadas a Microtúbulos , Mitocondrias , Dinámicas Mitocondriales , Proteínas Mitocondriales , Neoplasias Ováricas , Humanos , Dinaminas/genética , Dinaminas/metabolismo , Dinámicas Mitocondriales/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Femenino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Línea Celular Tumoral , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Animales , Progresión de la Enfermedad , Exones/genética , Ratones , Regulación Neoplásica de la Expresión Génica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Microtúbulos/metabolismo , Apoptosis/genética
4.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L189-L202, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810239

RESUMEN

Children are susceptible to influenza infections and can experience severe disease presentation due to a lack of or limited pre-existing immunity. Despite the disproportionate impact influenza has on this population, there is a lack of focus on pediatric influenza research, particularly when it comes to identifying the pathogenesis of long-term outcomes that persist beyond the point of viral clearance. In this study, juvenile outbred male and female mice were infected with influenza and analyzed following viral clearance to determine how sex impacts the persistent inflammatory responses to influenza. It was found that females maintained a broader cytokine response in the lung following clearance of influenza, with innate, type I and type II cytokine signatures in almost all mice. Males, on the other hand, had higher levels of IL-6 and other macrophage-related cytokines, but no evidence of a type I or type II response. The immune landscape was similar in the lungs between males and females postinfection, but males had a higher regulatory T cell to TH1 ratio compared with female mice. Cytokine production positively correlated with the frequency of TH1 cells and exudate macrophages, as well as the number of cells in the bronchoalveolar lavage fluid. Furthermore, female lungs were enriched for metabolites involved in the glycolytic pathway, suggesting glycolysis is higher in female lungs compared with males after viral clearance. These data suggest juvenile female mice have persistent and excessive lung inflammation beyond the point of viral clearance, whereas juvenile males had a more immunosuppressive phenotype.NEW & NOTEWORTHY This study identifies sex-based differences in persistent lung inflammation following influenza infection in an outbred, juvenile animal model of pediatric infection. These findings indicate the importance of considering sex and age as variable in infectious disease research.


Asunto(s)
Citocinas , Infecciones por Orthomyxoviridae , Neumonía , Caracteres Sexuales , Animales , Femenino , Masculino , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/metabolismo , Ratones , Citocinas/metabolismo , Neumonía/virología , Neumonía/patología , Neumonía/inmunología , Neumonía/metabolismo , Pulmón/virología , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/virología , Factores Sexuales
5.
Artículo en Inglés | MEDLINE | ID: mdl-37382868

RESUMEN

PURPOSE: Diastolic dysfunction is an increasingly common cardiac pathology linked to heart failure with preserved ejection fraction. Previous studies have implicated glucagon-like peptide 1 (GLP-1) receptor agonists as potential therapies for improving diastolic dysfunction. In this study, we investigate the physiologic and metabolic changes in a mouse model of angiotensin II (AngII)-mediated diastolic dysfunction with and without the GLP-1 receptor agonist liraglutide (Lira). METHODS: Mice were divided into sham, AngII, or AngII+Lira therapy for 4 weeks. Mice were monitored for cardiac function, weight change, and blood pressure at baseline and after 4 weeks of treatment. After 4 weeks of treatment, tissue was collected for histology, protein analysis, targeted metabolomics, and protein synthesis assays. RESULTS: AngII treatment causes diastolic dysfunction when compared to sham mice. Lira partially prevents this dysfunction. The improvement in function in Lira mice is associated with dramatic changes in amino acid accumulation in the heart. Lira mice also have improved markers of protein translation by Western blot and increased protein synthesis by puromycin assay, suggesting that increased protein turnover protects against fibrotic remodeling and diastolic dysfunction seen in the AngII cohort. Lira mice also lost lean muscle mass compared to the AngII cohort, raising concerns about peripheral muscle scavenging as a source of the increased amino acids in the heart. CONCLUSIONS: Lira therapy protects against AngII-mediated diastolic dysfunction, at least in part by promoting amino acid uptake and protein turnover in the heart. Liraglutide therapy is associated with loss of mean muscle mass, and long-term studies are warranted to investigate sarcopenia and frailty with liraglutide therapy in the setting of diastolic disease.

6.
J Allergy Clin Immunol ; 131(6): 1504-12, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23506843

RESUMEN

BACKGROUND: Bronchoalveolar lavage (BAL) fluid prostaglandin D2(PGD2) levels are increased in patients with severe, poorly controlled asthma in association with epithelial mast cells (MCs). PGD2, which is generated by hematopoietic prostaglandin D synthase (HPGDS), acts on 3 G protein-coupled receptors, including chemoattractant receptor-homologous molecule expressed on TH2 lymphocytes (CRTH2) and PGD2 receptor 1 (DP1). However, much remains to be understood regarding the presence and activation of these pathway elements in asthmatic patients. OBJECTIVE: We sought to compare the expression and activation of PGD2 pathway elements in bronchoscopically obtained samples from healthy control subjects and asthmatic patients across a range of disease severity and control, as well as in relation to TH2 pathway elements. METHODS: Epithelial cells and BAL fluid were evaluated for HPGDS (quantitative real-time PCR/immunohistochemistry [IHC]) and PGD2 (ELISA/liquid chromatography mass spectrometry) in relation to levels of MC proteases. Expression of the 2 inflammatory cell receptors DP1 and CRTH2 was evaluated on luminal cells. These PGD2 pathway markers were then compared with asthma severity, level of control, and markers of TH2 inflammation (blood eosinophils and fraction of exhaled nitric oxide). RESULTS: Confirming previous results, BAL fluid PGD2 levels were highest in patients with severe asthma (overall P = .0001). Epithelial cell compartment HPGDS mRNA and IHC values differed among groups (P = .008 and P < .0001, respectively) and correlated with MC protease mRNA. CRTH2 mRNA and IHC values were highest in patients with severe asthma (P = .001 and P = .0001, respectively). Asthma exacerbations, poor asthma control, and TH2 inflammatory markers were associated with higher PGD2, HPGDS, and CRTH2 levels. CONCLUSION: The current study identifies coordinated upregulation of the PGD2 pathway in patients with severe, poorly controlled, TH2-high asthma despite corticosteroid use.


Asunto(s)
Asma/inmunología , Asma/metabolismo , Prostaglandina D2/metabolismo , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Transducción de Señal , Adulto , Asma/prevención & control , Líquido del Lavado Bronquioalveolar/inmunología , Estudios de Casos y Controles , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Masculino , Persona de Mediana Edad , Receptores Inmunológicos/genética , Receptores de Prostaglandina/genética , Mucosa Respiratoria/metabolismo , Células Th2/inmunología , Células Th2/metabolismo , Regulación hacia Arriba , Adulto Joven
7.
bioRxiv ; 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39386600

RESUMEN

BACKGROUND: Chimeric antigen receptor T cell (CART) therapy has seen great clinical success. However, up to 50% of leukemia patients relapse and long-term survivor data indicate that CART cell persistence is key to enforcing relapse-free survival. Unfortunately, ex vivo expansion protocols often drive metabolic and functional exhaustion, reducing in vivo efficacy. Preclinical models have demonstrated that redirecting metabolism ex vivo can improve in vivo T cell function and we hypothesized that exposure to an agonist targeting the metabolic regulator AMP-activated protein kinase (AMPK), would create CARTs capable of both efficient leukemia clearance and increased in vivo persistence. METHODS: CART cells were generated from healthy human via lentiviral transduction. Following activation, cells were exposed to either Compound 991 or DMSO for 96 hours, followed by a 48-hour washout. During and after agonist treatment, T cells were harvested for metabolic and functional assessments. To test in vivo efficacy, immunodeficient mice were injected with luciferase+ NALM6 leukemia cells, followed one week later by either 991- or DMSO-expanded CARTs. Leukemia burden and anti-leukemia efficacy was assessed via radiance imaging and overall survival. RESULTS: Human T cells expanded in Compound 991 activated AMPK without limiting cellular expansion and gained both mitochondrial density and improved handling of reactive oxygen species (ROS). Importantly, receipt of 991-exposed CARTs significantly improved in vivo leukemia clearance, prolonged recipient survival, and increased CD4+ T cell yields at early times post-injection. Ex vivo, 991 agonist treatment mimicked nutrient starvation, increased autophagic flux, and promoted generation of mitochondrially-protective metabolites. DISCUSSION: Ex vivo expansion processes are necessary to generate sufficient cell numbers, but often promote sustained activation and differentiation, negatively impacting in vivo persistence and function. Here, we demonstrate that promoting AMPK activity during CART expansion metabolically reprograms cells without limiting T cell yield, enhances in vivo anti-leukemia efficacy, and improves CD4+ in vivo persistence. Importantly, AMPK agonism achieves these results without further modifying the expansion media, changing the CART construct, or genetically altering the cells. Altogether, these data highlight AMPK agonism as a potent and readily translatable approach to improve the metabolic profile and overall efficacy of cancer-targeting T cells.

8.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370667

RESUMEN

The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid (lipoxin A4, LXA4), there are expanding concerns about the biological formation, detection and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. Herein, the generation and actions of LXA4 and its primary 15-oxo metabolite were assessed in control, LPS-activated and arachidonic acid supplemented RAW 264.7 macrophages. Despite protein expression of all enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable. Moreover, synthetic LXA4 and the membrane permeable 15-oxo-LXA4 methyl ester that is rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2, as opposed to the FPR2 ligand WKYMVm. Alternatively, 15-oxo-LXA4, an electrophilic α,ß-unsaturated ketone, alkylates nucleophilic amino acids such as cysteine to modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2 (Nrf2)-regulated gene expression of anti-inflammatory and repair genes and inhibited nuclear factor (NF)-κB-regulated pro-inflammatory mediator expression. LXA4 did not impact these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions. Rather, if LXA4 were present in sufficient concentrations, this, and other more abundant mono- and poly-hydroxylated unsaturated fatty acids can be readily oxidized to electrophilic α,ß-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.

9.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37790404

RESUMEN

Aberrant mitochondrial fission/fusion dynamics have been reported in cancer cells. While post translational modifications are known regulators of the mitochondrial fission/fusion machinery, we show that alternative splice variants of the fission protein Drp1 (DNM1L) have specific and unique roles in cancer, adding to the complexity of mitochondrial fission/fusion regulation in tumor cells. Ovarian cancer specimens express an alternative splice transcript variant of Drp1 lacking exon 16 of the variable domain, and high expression of this splice variant relative to other transcripts is associated with poor patient outcome. Unlike the full-length variant, expression of Drp1 lacking exon 16 leads to decreased association of Drp1 to mitochondrial fission sites, more fused mitochondrial networks, enhanced respiration, and TCA cycle metabolites, and is associated with a more metastatic phenotype in vitro and in vivo. These pro-tumorigenic effects can also be inhibited by specific siRNA-mediated inhibition of the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the significance of the pathophysiological consequences of Drp1 alternative splicing and divergent functions of Drp1 splice variants, and strongly warrant consideration of Drp1 splicing in future studies.

10.
J Clin Invest ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687608

RESUMEN

Dicarboxylic fatty acids are generated in the liver and kidney in a minor pathway called fatty acid ω-oxidation. The effects of consuming dicarboxylic fatty acids as an alternative source of dietary fat have not been explored. Here, we fed dodecanedioic acid, a 12-carbon dicarboxylic (DC12), to mice at 20% of daily caloric intake for nine weeks. DC12 increased metabolic rate, reduced body fat, reduced liver fat, and improved glucose tolerance. We observed DC12-specific breakdown products in liver, kidney, muscle, heart, and brain, indicating that oral DC12 escaped first-pass liver metabolism and was utilized by many tissues. In tissues expressing the "a" isoform of acyl-CoA oxidase-1 (ACOX1), a key peroxisomal fatty acid oxidation enzyme, DC12 was chain shortened to the TCA cycle intermediate succinyl-CoA. In tissues with low peroxisomal fatty acid oxidation capacity, DC12 was oxidized by mitochondria. In vitro, DC12 was catabolized even by adipose tissue and was not stored intracellularly. We conclude that DC12 and other dicarboxylic acids may be useful for combatting obesity and for treating metabolic disorders.

11.
Cell Rep ; 43(1): 113557, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38113141

RESUMEN

Metabolic reprogramming in pediatric diffuse midline glioma is driven by gene expression changes induced by the hallmark histone mutation H3K27M, which results in aberrantly permissive activation of oncogenic signaling pathways. Previous studies of diffuse midline glioma with altered H3K27 (DMG-H3K27a) have shown that the RAS pathway, specifically through its downstream kinase, extracellular-signal-related kinase 5 (ERK5), is critical for tumor growth. Further downstream effectors of ERK5 and their role in DMG-H3K27a metabolic reprogramming have not been explored. We establish that ERK5 is a critical regulator of cell proliferation and glycolysis in DMG-H3K27a. We demonstrate that ERK5 mediates glycolysis through activation of transcription factor MEF2A, which subsequently modulates expression of glycolytic enzyme PFKFB3. We show that in vitro and mouse models of DMG-H3K27a are sensitive to the loss of PFKFB3. Multi-targeted drug therapy against the ERK5-PFKFB3 axis, such as with small-molecule inhibitors, may represent a promising therapeutic approach in patients with pediatric diffuse midline glioma.


Asunto(s)
Glioma , Histonas , Animales , Niño , Humanos , Ratones , Quinasas MAP Reguladas por Señal Extracelular , Glioma/genética , Glucólisis , Histonas/genética , Fosfofructoquinasa-2 , Monoéster Fosfórico Hidrolasas , Transducción de Señal
12.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961201

RESUMEN

DNA damage and cellular metabolism are intricately linked with bidirectional feedback. Two of the main effectors of the DNA damage response and control of cellular metabolism are ATR and mTORC1, respectively. Prior work has placed ATR upstream of mTORC1 during replication stress, yet the direct mechanism for how mTORC1 is activated in this context remain unclear. We previously published that p16-low cells have mTORC1 hyperactivation, which in part promotes their proliferation. Using this model, we found that ATR, but not ATM, is upstream of mTORC1 activation via de novo cholesterol synthesis and is associated with increased lanosterol synthase (LSS). Indeed, p16-low cells showed increased cholesterol abundance. Additionally, knockdown of either ATR or LSS decreased mTORC1 activity. Decreased mTORC1 activity due to ATR knockdown was rescued by cholesterol supplementation. Finally, using both LSS inhibitors and multiple FDA-approved de novo cholesterol synthesis inhibitors, we found that the de novo cholesterol biosynthesis pathway is a metabolic vulnerability of p16-low cells. Together, our data provide new evidence coupling the DNA damage response and cholesterol metabolism and demonstrate the feasibility of using FDA-approved cholesterol-lowering drugs in tumors with loss of p16.

13.
Artículo en Inglés | MEDLINE | ID: mdl-37293566

RESUMEN

Obesity and associated changes to the gut microbiome worsen airway inflammation and hyperresponsiveness in asthma. Obesogenic host-microbial metabolomes have altered production of metabolites that may influence lung function and inflammatory responses in asthma. To understand the interplay of the gut microbiome, metabolism, and host inflammation in obesity-associated asthma, we used a multi-omics approach to profile the gut-lung axis in the setting of allergic airway disease and diet-induced obesity. We evaluated an immunomodulator, nitro-oleic acid (NO2-OA), as a host- and microbial-targeted treatment intervention for obesity-associated allergic asthma. Allergic airway disease was induced using house dust mite and cholera toxin adjuvant in C57BL6/J mice with diet-induced obesity to model obesity-associated asthma. Lung function was measured by flexiVent following a week of NO2-OA treatment and allergen challenge. 16S rRNA gene (from DNA, taxa presence) and 16S rRNA (from RNA, taxa activity) sequencing, metabolomics, and host gene expression were paired with a Treatment-Measured-Response model as a data integration framework for identifying latent/hidden relationships with linear regression among variables identified from high-dimensional meta-omics datasets. Targeting both the host and gut microbiota, NO2-OA attenuated airway inflammation, improved lung elastance, and modified the gut microbiome. Meta-omics data integration and modeling determined that gut-associated inflammation, metabolites, and functionally active gut microbiota were linked to lung function outcomes. Using Treatment-Measured-Response modeling and meta-omics profiling of the gut-lung axis, we uncovered a previously hidden network of interactions between gut levels of amino acid metabolites involved in elastin and collagen synthesis, gut microbiota, NO2-OA, and lung elastance. Further targeted metabolomics analyses revealed that obese mice with allergic airway disease had higher levels of proline and hydroxyproline in the lungs. NO2-OA treatment reduced proline biosynthesis by downregulation of pyrroline-5-carboxylate reductase 1 (PYCR1) expression. These findings are relevant to human disease: adults with mild-moderate asthma and BMI ≥ 25 had higher plasma hydroxyproline levels. Our results suggest that changes to structural proteins in the lung airways and parenchyma may contribute to heightened lung elastance and serve as a potential therapeutic target for obese allergic asthma.

14.
Crit Care Explor ; 5(11): e0974, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38304708

RESUMEN

BACKGROUND: Sepsis is a common and deadly syndrome, accounting for more than 11 million deaths annually. To mature a deeper understanding of the host and pathogen mechanisms contributing to poor outcomes in sepsis, and thereby possibly inform new therapeutic targets, sophisticated, and expensive biorepositories are typically required. We propose that remnant biospecimens are an alternative for mechanistic sepsis research, although the viability and scientific value of such remnants are unknown. METHODS AND RESULTS: The Remnant Biospecimen Investigation in Sepsis study is a prospective cohort study of 225 adults (age ≥ 18 yr) presenting to the emergency department with community sepsis, defined as sepsis-3 criteria within 6 hours of arrival. The primary objective was to determine the scientific value of a remnant biospecimen repository in sepsis linked to clinical phenotyping in the electronic health record. We will study candidate multiomic readouts of sepsis biology, governed by a conceptual model, and determine the precision, accuracy, integrity, and comparability of proteins, small molecules, lipids, and pathogen sequencing in remnant biospecimens compared with paired biospecimens obtained according to research protocols. Paired biospecimens will include plasma from sodium-heparin, EDTA, sodium fluoride, and citrate tubes. CONCLUSIONS: The study has received approval from the University of Pittsburgh Human Research Protection Office (Study 21120013). Recruitment began on October 25, 2022, with planned release of primary results anticipated in 2024. Results will be made available to the public, the funders, critical care societies, laboratory medicine scientists, and other researchers.

15.
Anal Chem ; 83(4): 1363-9, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21268609

RESUMEN

Stable isotope dilution mass spectrometry (MS) represents the gold standard for quantification of endogenously formed cellular metabolites. Although coenzyme A (CoA) and acyl-CoA thioester derivatives are central players in numerous metabolic pathways, the lack of a commercially available isotopically labeled CoA limits the development of rigorous MS-based methods. In this study, we adapted stable isotope labeling by amino acids in cell culture (SILAC) methodology to biosynthetically generate stable isotope labeled CoA and thioester analogues for use as internal standards in liquid chromatography/multiple reaction monitoring mass spectrometry (LC/MRM-MS) assays. This was accomplished by incubating murine hepatocytes (Hepa 1c1c7) in media in which pantothenate (a precursor of CoA) was replaced with [(13)C(3)(15)N(1)]-pantothenate. Efficient incorporation into various CoA species was optimized to >99% [(13)C(3)(15)N(1)]-pantothenate after three passages of the murine cells in culture. Charcoal-dextran-stripped fetal bovine serum (FBS) was found to be more efficient for serum supplementation than dialyzed or undialyzed FBS, due to lower contaminating unlabeled pantothenate content. Stable isotope labeled CoA species were extracted and utilized as internal standards for CoA thioester analysis in cell culture models. This methodology of stable isotope labeling by essential nutrients in cell culture (SILEC) can serve as a paradigm for using vitamins and other essential nutrients to generate stable isotope standards that cannot be readily synthesized.


Asunto(s)
Coenzima A/química , Marcaje Isotópico/métodos , Ácido Pantoténico/química , Animales , Células Cultivadas , Cromatografía Liquida , Coenzima A/biosíntesis , Coenzima A/aislamiento & purificación , Ésteres , Hepatocitos/citología , Hepatocitos/metabolismo , Ratones , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray
16.
Chem Res Toxicol ; 24(1): 89-98, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21028851

RESUMEN

Environmental carcinogens, such as polycyclic aromatic hydrocarbons (PAHs), require metabolic activation to DNA-reactive metabolites in order to exert their tumorigenic effects. Benzo[a]pyrene (B[a]P), a prototypic PAH, is metabolized by cytochrome P450 (P450) 1A1/1B1 and epoxide hydrolase to (-)-B[a]P-7,8-dihydro-7,8-diol (B[a]P-7,8-dihydrodiol). B[a]P-7,8-dihydrodiol then undergoes further P4501A1/1B1-mediated metabolism to the ultimate carcinogen, (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydro-B[a]P (B[a]PDE), which forms DNA-adducts primarily with 2'-deoxyguanosine (dGuo) to form (+)-anti-trans-B[a]PDE-N(2)-dGuo (B[a]PDE-dGuo) in DNA. Pretreatment of cells with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to induce P4501A1/1B1 mRNA expression through the aryl hydrocarbon receptor (AhR) pathway. This causes increased B[a]PDE-dGuo formation in liver cells. In contrast, TCDD induction of H358 lung cells surprisingly caused a decrease in (-)-B[a]P-7,8-dihydrodiol-mediated (+)-B[a]PDE-dGuo adduct formation when compared with the non-TCDD-induced cells. Furthermore, treatment of the TCDD-induced cells with (±)-B[a]PDE also resulted in decreased (+)-B[a]PDE-dGuo adduct formation when compared with the non-TCDD-induced cells. These data suggested that it was a detoxification pathway that had been up-regulated rather than an activation pathway that had been down-regulated. LC-MS was used to analyze B[a]PDE-dGuo and B[a]PDE-GSH-adducts in H358 lung and HepG2 liver cells. There was a significant increase in the (-)-B[a]PDE-GSH-adduct with high enantiomeric excess after treatment of the TCDD-induced H358 cells with (±)-B[a]PDE when compared with the noninduced cells. This could explain why increased activation of (-)-B[a]P-7,8-dihydrodiol through TCDD up-regulation of P4501A1/1B1 did not lead to increased (+)-B[a]PDE-dGuo adducts in the H358 lung cells. In addition, TCDD did not induce B[a]PDE-GSH-adduct formation in HepG2 liver cells. (±)-B[a]PDE-GSH-adducts were formed at much lower levels in both TCDD-induced and noninduced HepG2 cells when compared with (-)-B[a]PDE-GSH-adducts in the H358 lung cells. Therefore, our study has revealed that there is a subtle balance between activation and detoxification of B[a]P in lung-derived compared with liver-derived cells and that this determines how much DNA damage occurs.


Asunto(s)
Benzo(a)pireno/metabolismo , Aductos de ADN/análisis , Glutatión/química , Pulmón/metabolismo , Dibenzodioxinas Policloradas/farmacología , Benzo(a)pireno/química , Benzo(a)pireno/toxicidad , Línea Celular , Cromatografía Líquida de Alta Presión , Sistema Enzimático del Citocromo P-450/metabolismo , Desoxiguanosina/química , Epóxido Hidrolasas/metabolismo , Humanos , Pulmón/efectos de los fármacos , Dibenzodioxinas Policloradas/química , Receptores de Hidrocarburo de Aril/metabolismo , Espectrometría de Masa por Ionización de Electrospray
17.
Rapid Commun Mass Spectrom ; 25(1): 115-21, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21154658

RESUMEN

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a carcinogenic nitrosamine produced upon curing tobacco. It is present in tobacco smoke and undergoes metabolism to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in the lungs. NNAL undergoes further uridine diphosphate glucuronosyltransferase (UGT)-mediated metabolism to give N- and O-glucuronide metabolites, which together with free (non-conjugated) NNAL are then excreted in the urine. The ability to conduct validated analyses of free and conjugated NNAL in human urine is important in order to assess inter-individual differences in lung cancer risk from exposure to cigarette smoke. The use of stable isotope dilution (SID) methodology in combination with liquid chromatography/multiple reaction monitoring/mass spectrometry (LC/MRM-MS) provides the highest bioanalytical specificity possible for such analyses. We describe a novel derivatization procedure, which results in the formation of a pre-ionized N-propyl-NNAL derivative. The increased LC/MS sensitivity arising from this derivative then makes it possible to analyze free NNAL in only 0.25 mL urine. This substantial reduction in urine volume when compared with other methods that have been developed will help preserve the limited amounts of stored urine samples that are available from on-going longitudinal biomarker studies. The new high sensitivity SID LC/MRM-MS assay was employed to determine free and conjugated NNAL concentrations in urine samples from 60 individual disease-free smokers. Effects of inter-individual differences in urinary creatinine clearance on NNAL concentrations were then assessed and three metabolizer phenotypes were identified in the 60 subjects from the ratio of urinary NNAL glucuronides/free NNAL. Poor metabolizers (PMs, 14 subjects) with a ratio of NNAL glucuronides/free NNAL <2 (mean = 1.3), intermediate metabolizers (IMs, 36 subjects) with a ratio between 2 and 5 (mean = 3.4), and extensive metabolizers (EMs, 10 subjects) with a ratio >5 (mean = 11.1).


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Nitrosaminas/orina , Piridinas/orina , Biomarcadores de Tumor/química , Biomarcadores de Tumor/orina , Estudios de Casos y Controles , Creatinina/química , Aductos de ADN , Estabilidad de Medicamentos , Humanos , Marcaje Isotópico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/orina , Nitrosaminas/química , Fenotipo , Piridinas/química , Reproducibilidad de los Resultados , Factores de Riesgo , Sensibilidad y Especificidad , Fumar
20.
Nucleic Acids Res ; 31(21): e135, 2003 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-14576335

RESUMEN

A new method for rapid purification and structural analysis of oligoribonucleotides of 19 and 20 nt is applied to RNA hairpins SL3 and SL2, which are stable secondary structures present on the psi recognition element of HIV-1. This approach uses ion-pairing reversed-phase liquid chromatography (IP-RPLC) to achieve the separation of the stem-loop from the transcription mix. Evidence is presented that IP-RPLC is sensitive to the different conformers of these secondary structures. The purity of each stem-loop was confirmed by mass spectrometry and PAGE. IP-RPLC purification was found to be superior to PAGE in terms of time, safety and, most importantly, purity.


Asunto(s)
Cromatografía Liquida/métodos , VIH-1/genética , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/aislamiento & purificación , Secuencias Reguladoras de Ácido Ribonucleico/genética , Secuencia de Bases , Electroforesis en Gel de Poliacrilamida , Oligorribonucleótidos/química , Oligorribonucleótidos/genética , Oligorribonucleótidos/aislamiento & purificación , ARN Lider Empalmado/química , ARN Lider Empalmado/genética , ARN Lider Empalmado/aislamiento & purificación , ARN Viral/genética , Espectrometría de Masa por Ionización de Electrospray , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA