RESUMEN
Developing a facile and green strategy to fabricate polymer foams with super hydrophobicity and eco-friendliness for large-scale oil-water separation remains a challenge. In this study, biocompatible polylactic acid polymer foam modified by nanochitosan and stearic acid was used to remove petroleum and organic contaminants in water. All three materials used to prepare and modify this foam are green and inexpensive. F4d foam (prepared by solvent displacement method) and F8d foam (prepared by freeze dryer) can selectively remove oil pollutants in water with a contact angle of 164.01° and 168.51°, respectively. The maximum absorption capacity of oil pollutants by F4d and F8d are related to chloroform with values of 32.7 g/g and 48.51 g/g, respectively. Also, the minimum absorption capacity is related to n-hexane with values of 24.83 g/g and 32.06 g/g. The absorption percentage range of F4d and F8d foams after 15 cycles of absorption-desorption for chloroform is 82.56 % and 87.81 %, respectively, and for n-hexane, is 77.28 % and 85.99 %, respectively. During the continuous water-oil pumping test, the efficiency of foam can be maintained for >15 h, which shows promising hope for large-scale oil pollution cleaning.