Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(51): e2221680120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38096407

RESUMEN

Animals integrate sensory information from the environment and display various behaviors in response to external stimuli. In Caenorhabditis elegans hermaphrodites, 33 types of sensory neurons are responsible for chemosensation, olfaction, and mechanosensation. However, the functional roles of all sensory neurons have not been systematically studied due to the lack of facile genetic accessibility. A bipartite cGAL-UAS system has been previously developed to study tissue- or cell-specific functions in C. elegans. Here, we report a toolkit of new cGAL drivers that can facilitate the analysis of a vast majority of the 60 sensory neurons in C. elegans hermaphrodites. We generated 37 sensory neuronal cGAL drivers that drive cGAL expression by cell-specific regulatory sequences or intersection of two distinct regulatory regions with overlapping expression (split cGAL). Most cGAL-drivers exhibit expression in single types of cells. We also constructed 28 UAS effectors that allow expression of proteins to perturb or interrogate sensory neurons of choice. This cGAL-UAS sensory neuron toolkit provides a genetic platform to systematically study the functions of C. elegans sensory neurons.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Receptoras Sensoriales/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33361149

RESUMEN

Acetylcholine (ACh) promotes various cell migrations in vitro, but there are few investigations into this nonsynaptic role of ACh signaling in vivo. Here we investigate the function of a muscarinic receptor on an epithelial cell migration in Caenorhabditis elegans We show that the migratory gonad leader cell, the linker cell (LC), uses an M1/M3/M5-like muscarinic ACh receptor GAR-3 to receive extrasynaptic ACh signaling from cholinergic neurons for its migration. Either the loss of the GAR-3 receptor in the LC or the inhibition of ACh release from cholinergic neurons resulted in migratory path defects. The overactivation of the GAR-3 muscarinic receptor caused the LC to reverse its orientation through its downstream effectors Gαq/egl-30, PLCß/egl-8, and TRIO/unc-73 This reversal response only occurred in the fourth larval stage, which corresponds to the developmental time when the GAR-3::yellow fluorescent protein receptor in the membrane relocalizes from a uniform to an asymmetric distribution. These findings suggest a role for the GAR-3 muscarinic receptor in determining the direction of LC migration.


Asunto(s)
Acetilcolina/metabolismo , Movimiento Celular/fisiología , Receptores Muscarínicos/metabolismo , Acetilcolina/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Células Epiteliales/metabolismo , Contracción Muscular/fisiología , Terminales Presinápticos/metabolismo , Receptores Muscarínicos/fisiología , Transducción de Señal
3.
Nat Methods ; 14(2): 145-148, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27992408

RESUMEN

The GAL4-UAS system is a powerful tool for manipulating gene expression, but its application in Caenorhabditis elegans has not been described. Here we systematically optimize the system's three main components to develop a temperature-optimized GAL4-UAS system (cGAL) that robustly controls gene expression in C. elegans from 15 to 25 °C. We demonstrate this system's utility in transcriptional reporter analysis, site-of-action experiments and exogenous transgene expression; and we provide a basic driver and effector toolkit.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Ingeniería Genética/métodos , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Defecación/genética , Herpesvirus Humano 1/genética , Microscopía Fluorescente , Optogenética , Temperatura
4.
Proc Natl Acad Sci U S A ; 110(29): 11940-5, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818641

RESUMEN

Genetic screens have been widely applied to uncover genetic mechanisms of movement disorders. However, most screens rely on human observations of qualitative differences. Here we demonstrate the application of an automatic imaging system to conduct a quantitative screen for genes regulating the locomotive behavior in Caenorhabditis elegans. Two hundred twenty-seven neuronal signaling genes with viable homozygous mutants were selected for this study. We tracked and recorded each animal for 4 min and analyzed over 4,400 animals of 239 genotypes to obtain a quantitative, 10-parameter behavioral profile for each genotype. We discovered 87 genes whose inactivation causes movement defects, including 50 genes that had never been associated with locomotive defects. Computational analysis of the high-content behavioral profiles predicted 370 genetic interactions among these genes. Network partition revealed several functional modules regulating locomotive behaviors, including sensory genes that detect environmental conditions, genes that function in multiple types of excitable cells, and genes in the signaling pathway of the G protein Gαq, a protein that is essential for animal life and behavior. We developed quantitative epistasis analysis methods to analyze the locomotive profiles and validated the prediction of the γ isoform of phospholipase C as a component in the Gαq pathway. These results provided a system-level understanding of how neuronal signaling genes coordinate locomotive behaviors. This study also demonstrated the power of quantitative approaches in genetic studies.


Asunto(s)
Caenorhabditis elegans/fisiología , Epistasis Genética/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Locomoción/fisiología , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Caenorhabditis elegans/genética , Epistasis Genética/genética , Perfilación de la Expresión Génica/métodos , Locomoción/genética , Interferencia de ARN , Transducción de Señal/genética
5.
MicroPubl Biol ; 20212021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33474529

RESUMEN

Accumulating evidence demonstrates that mutations in ALDH1A3 (the aldehyde dehydrogenase 1 family, member A3) are associated with developmental defects. The ALDH1A3 enzyme catalyzes retinoic acid biosynthesis and is essential to patterning and neuronal differentiation in the development of embryonic nervous system. Several missense mutations in ALDH1A3 have been identified in family studies of autosomal recessive microphthalmia, autism spectrum disorder, and other neurological disorders. However, there has been no evidence from animal models that verify the functional consequence of missense mutations in ALDH1A3. Here, we introduced the equivalent of the ALDH1A3 C174Y variant into the Caenorhabditis elegans ortholog, alh-1, at the corresponding locus. Mutant animals with this missense mutation exhibited decreased fecundity by 50% compared to wild-type animals, indicating disrupted protein function. To our knowledge, this is the first ALDH1A3 C174Y missense model, which might be used to elucidate the effects of ALDH1A3 C174Y missense mutation in the retinoic acid signaling pathway during development.

6.
BMC Biol ; 4: 26, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16911797

RESUMEN

BACKGROUND: The Caenorhabditis elegans male exhibits a stereotypic behavioral pattern when attempting to mate. This behavior has been divided into the following steps: response, backing, turning, vulva location, spicule insertion, and sperm transfer. We and others have begun in-depth analyses of all these steps in order to understand how complex behaviors are generated. Here we extend our understanding of the sperm-transfer step of male mating behavior. RESULTS: Based on observation of wild-type males and on genetic analysis, we have divided the sperm-transfer step of mating behavior into four sub-steps: initiation, release, continued transfer, and cessation. To begin to understand how these sub-steps of sperm transfer are regulated, we screened for ethylmethanesulfonate (EMS)-induced mutations that cause males to transfer sperm aberrantly. We isolated an allele of unc-18, a previously reported member of the Sec1/Munc-18 (SM) family of proteins that is necessary for regulated exocytosis in C. elegans motor neurons. Our allele, sy671, is defective in two distinct sub-steps of sperm transfer: initiation and continued transfer. By a series of transgenic site-of-action experiments, we found that motor neurons in the ventral nerve cord require UNC-18 for the initiation of sperm transfer, and that UNC-18 acts downstream or in parallel to the SPV sensory neurons in this process. In addition to this neuronal requirement, we found that non-neuronal expression of UNC-18, in the male gonad, is necessary for the continuation of sperm transfer. CONCLUSION: Our division of sperm-transfer behavior into sub-steps has provided a framework for the further detailed analysis of sperm transfer and its integration with other aspects of mating behavior. By determining the site of action of UNC-18 in sperm-transfer behavior, and its relation to the SPV sensory neurons, we have further defined the cells and tissues involved in the generation of this behavior. We have shown both a neuronal and non-neuronal requirement for UNC-18 in distinct sub-steps of sperm-transfer behavior. The definition of circuit components is a crucial first step toward understanding how genes specify the neural circuit and hence the behavior.


Asunto(s)
Caenorhabditis elegans/fisiología , Sistema Nervioso Central/fisiología , Conducta Sexual Animal/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Copulación/fisiología , Femenino , Genotipo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Modelos Biológicos , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Mutación/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiología , Espermatozoides/fisiología , Factores de Tiempo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/fisiología
7.
Genetics ; 165(4): 1805-22, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14704167

RESUMEN

egl-30 encodes the single C. elegans ortholog of vertebrate Galphaq family members. We analyzed the expression pattern of EGL-30 and found that it is broadly expressed, with highest expression in the nervous system and in pharyngeal muscle. We isolated dominant, gain-of-function alleles of egl-30 as intragenic revertants of an egl-30 reduction-of-function mutation. Using these gain-of-function mutants and existing reduction-of-function mutants, we examined the site and mode of action of EGL-30. On the basis of pharmacological analysis, it has been determined that egl-30 functions both in the nervous system and in the vulval muscles for egg-laying behavior. Genetic epistasis over mutations that eliminate detectable levels of serotonin reveals that egl-30 requires serotonin to regulate egg laying. Furthermore, pharmacological response assays strongly suggest that EGL-30 may directly couple to a serotonin receptor to mediate egg laying. We also examined genetic interactions with mutations in the gene that encodes the single C. elegans homolog of PLCbeta and mutations in genes that encode signaling molecules downstream of PLCbeta. We conclude that PLCbeta functions in parallel with egl-30 with respect to egg laying or is not the major effector of EGL-30. In contrast, PLCbeta-mediated signaling is likely downstream of EGL-30 with respect to pharyngeal-pumping behavior. Our data indicate that there are multiple signaling pathways downstream of EGL-30 and that different pathways could predominate with respect to the regulation of different behaviors.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Regulación de la Expresión Génica , Músculos/fisiología , Sistema Nervioso/metabolismo , Oviposición/fisiología , Transducción de Señal , Alelos , Animales , Animales Modificados Genéticamente , Conducta Animal , Caenorhabditis elegans/efectos de los fármacos , Epistasis Genética , Femenino , Depuradores de Radicales Libres/farmacología , Genes Dominantes , Isoenzimas/metabolismo , Masculino , Mutación , Oviposición/efectos de los fármacos , Fosfolipasa C beta , Conformación Proteica , Receptores de Serotonina/metabolismo , Serotonina/farmacología , Fosfolipasas de Tipo C/metabolismo , Vulva/inervación , Vulva/fisiología
11.
Cell ; 118(6): 795-806, 2004 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-15369677

RESUMEN

Wnt proteins are intercellular signals that regulate various aspects of animal development. In Caenorhabditis elegans, mutations in lin-17, a Frizzled-class Wnt receptor, and in lin-18 affect cell fate patterning in the P7.p vulval lineage. We found that lin-18 encodes a member of the Ryk/Derailed family of tyrosine kinase-related receptors, recently found to function as Wnt receptors. Members of this family have nonactive kinase domains. The LIN-18 kinase domain is dispensable for LIN-18 function, while the Wnt binding WIF domain is required. We also found that Wnt proteins LIN-44, MOM-2, and CWN-2 redundantly regulate P7.p patterning. Genetic interactions indicate that LIN-17 and LIN-18 function independently of each other in parallel pathways, and different ligands display different receptor specificities. Thus, two independent Wnt signaling pathways, one employing a Ryk receptor and the other a Frizzled receptor, function in parallel to regulate cell fate patterning in the C. elegans vulva.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos/genética , Animales , Secuencia de Bases/genética , Sitios de Unión/fisiología , Tipificación del Cuerpo/genética , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Diferenciación Celular/genética , ADN Complementario/análisis , ADN Complementario/genética , Femenino , Receptores Frizzled , Regulación del Desarrollo de la Expresión Génica/genética , Glicoproteínas/metabolismo , Datos de Secuencia Molecular , Unión Proteica/fisiología , Estructura Terciaria de Proteína/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/aislamiento & purificación , Receptores Acoplados a Proteínas G/genética , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo , Transducción de Señal/genética , Proteínas Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA