Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Glob Chang Biol ; 26(12): 6702-6714, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33090598

RESUMEN

Measuring the status and trends of biodiversity is critical for making informed decisions about the conservation, management or restoration of species, habitats and ecosystems. Defining the reference state against which status and change are measured is essential. Typically, reference states describe historical conditions, yet historical conditions are challenging to quantify, may be difficult to falsify, and may no longer be an attainable target in a contemporary ecosystem. We have constructed a conceptual framework to help inform thinking and discussion around the philosophical underpinnings of reference states and guide their application. We characterize currently recognized historical reference states and describe them as Pre-Human, Indigenous Cultural, Pre-Intensification and Hybrid-Historical. We extend the conceptual framework to include contemporary reference states as an alternative theoretical perspective. The contemporary reference state framework is a major conceptual shift that focuses on current ecological patterns and identifies areas with higher biodiversity values relative to other locations within the same ecosystem, regardless of the disturbance history. We acknowledge that past processes play an essential role in driving contemporary patterns of diversity. The specific context for which we design the contemporary conceptual frame is underpinned by an overarching goal-to maximize biodiversity conservation and restoration outcomes in existing ecosystems. The contemporary reference state framework can account for the inherent differences in the diversity of biodiversity values (e.g. native species richness, habitat complexity) across spatial scales, communities and ecosystems. In contrast to historical reference states, contemporary references states are measurable and falsifiable. This 'road map of reference states' offers perspective needed to define and assess the status and trends in biodiversity and habitats. We demonstrate the contemporary reference state concept with an example from south-eastern Australia. Our framework provides a tractable way for policy-makers and practitioners to navigate biodiversity assessments to maximize conservation and restoration outcomes in contemporary ecosystems.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Benchmarking , Biodiversidad , Humanos , Australia del Sur
2.
Glob Chang Biol ; 24(2): e643-e654, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29112791

RESUMEN

We quantified net changes to the area and quality of native vegetation after the introduction of biodiversity offsetting in New South Wales, Australia-a policy intended to "prevent broad-scale clearing of native vegetation unless it improves or maintains environmental values." Over 10 years, a total of 21,928 ha of native vegetation was approved for clearing under this policy and 83,459 ha was established as biodiversity offsets. We estimated that no net loss in the area of native vegetation under this policy will not occur for 146 years. This is because 82% of the total area offset was obtained by averting losses to existing native vegetation and the rate that these averted losses accrue was over-estimated in the policy. There were predicted net gains in 10 of the 14 attributes used to assess the quality of habitat. An overall net gain in the quality of habitat was assessed under this policy by substituting habitat attributes that are difficult to restore (e.g. mature trees) with habitat attributes for which restoration is relatively easy (e.g. tree seedlings). Long-term rates of annual deforestation did not significantly change across the study area after biodiversity offsetting was introduced. Overall, the policy examined here provides no net loss of biodiversity: (i) many generations into the future, which is not consistent with intergenerational equity; and (ii) by substituting different habitat attributes, so gains are not equivalent to losses. We recommend a number of changes to biodiversity offsetting policy to overcome these issues.


Asunto(s)
Biodiversidad , Restauración y Remediación Ambiental , Árboles , Nueva Gales del Sur
3.
Conserv Biol ; 30(5): 1027-37, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27040452

RESUMEN

Multibillion dollar investments in land restoration make it critical that conservation goals are achieved cost-effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate landscape-scale, temporally dynamic biodiversity outcomes from restoration and improve on traditional approaches that focus on the most species-rich plantings. We investigated whether it is possible to apply a complementarity-based approach to evaluate the extent to which an existing network of restoration plantings meets representation targets. Using a case study of woodland birds of conservation concern in southeastern Australia, we compared complementarity-based selections of plantings based on temporally dynamic species occurrences with selections based on static species occurrences and selections based on ranking plantings by species richness. The dynamic complementarity approach, which incorporated species occurrences over 5 years, resulted in higher species occurrences and proportion of targets met compared with the static complementarity approach, in which species occurrences were taken at a single point in time. For equivalent cost, the dynamic complementarity approach also always resulted in higher average minimum percent occurrence of species maintained through time and a higher proportion of the bird community meeting representation targets compared with the species-richness approach. Plantings selected under the complementarity approaches represented the full range of planting attributes, whereas those selected under the species-richness approach were larger in size. Our results suggest that future restoration policy should not attempt to achieve all conservation goals within individual plantings, but should instead capitalize on restoration opportunities as they arise to achieve collective value of multiple plantings across the landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, and landscape context lead to considerably better outcomes than conventional restoration objectives of site-scale species richness and are crucial for allocating restoration investment wisely to reach desired conservation goals.


Asunto(s)
Biodiversidad , Aves , Conservación de los Recursos Naturales , Animales , Australia , Ecosistema
4.
J Environ Manage ; 179: 58-65, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27173891

RESUMEN

Global patterns of development suggest that as more projects are initiated, business will need to find acceptable measures to conserve biodiversity. The application of environmental offsets allows firms to combine their economic interests with the environment and society. This article presents the results of a multi-stakeholder analysis related to the design of offsets principles, policies, and regulatory processes, using a large infrastructure projects context. The results indicate that business was primarily interested in using direct offsets and other compensatory measures, known internationally as indirect offsets, to acquit their environmental management obligations. In contrast, the environmental sector argued that highly principled and scientifically robust offsets programs should be implemented and maintained for enduring environmental protection. Stakeholder consensus stressed the importance of offsets registers with commensurate monitoring and enforcement. Our findings provide instructive insights into the countervailing views of offsets policy stakeholders.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ambiente , Australia , Biodiversidad , Ecosistema , Política Ambiental , Humanos
5.
Oecologia ; 177(3): 733-746, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25376157

RESUMEN

Fine-scale vegetation cover is a common variable used to explain animal occurrence, but we know less about the effects of fine-scale vegetation heterogeneity. Theoretically, fine-scale vegetation heterogeneity is an important driver of biodiversity because it captures the range of resources available in a given area. In this study we investigated how bird species richness and birds grouped by various ecological traits responded to vegetation cover and heterogeneity. We found that both fine-scale vegetation cover (of tall trees, medium-sized trees and shrubs) and heterogeneity (of tall trees, and shrubs) were important predictors of bird richness, but the direction of the response of bird richness to shrub heterogeneity differed between sites with different proportions of tall tree cover. For example, bird richness increased with shrub heterogeneity in sites with high levels of tall tree cover, but declined in sites with low levels of tall tree cover. Our findings indicated that an increase in vegetation heterogeneity will not always result in an increase in resources and niches, and associated higher species richness. We also found birds grouped by traits responded in a predictable way to vegetation heterogeneity. For example, we found small birds benefited from increased shrub heterogeneity supporting the textual discontinuity hypothesis and non-arboreal (ground or shrub) nesting species were associated with high vegetation cover (low heterogeneity). Our results indicated that focusing solely on increasing vegetation cover (e.g. through restoration) may be detrimental to particular animal groups. Findings from this investigation can help guide habitat management for different functional groups of birds.


Asunto(s)
Biodiversidad , Aves , Ecología , Ecosistema , Árboles , Animales , Fenotipo
6.
Ecol Appl ; 24(6): 1275-88, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-29160651

RESUMEN

Scale is a key concept in ecology, but the statistically based quantification of scale effects has often proved difficult. This is exemplified by the challenges of quantifying relationships between biodiversity and vegetation cover at different spatial scales to guide restoration and conservation efforts in agricultural environments. We used data from 2002 to 2010 on 184 sites (viz., site scale) nested within 46 farms (the farm scale), nested within 23 landscapes (the landscape scale). We found cross-sectional relationships with the amount of vegetation cover that were typically positive for woodland birds and negative for open-country birds. However, for some species, relationships differed between spatial scales, suggesting differences in nesting and foraging requirements. There was a 3.5% increase in the amount of native vegetation cover in our study region between 2002 and 2010, and our analyses revealed that some open country species responded negatively to these temporal changes, typically at the farm and/or site scale, but not the landscape scale. Species generally exhibited stronger cross-sectional relationships with the amount of vegetation cover than relationships between changes in occupancy and temporal changes in vegetation cover. This unexpected result can be attributed to differences in habitat use by birds of existing vegetation cover (typically old-growth woodland) vs. plantings and natural regeneration, which are the main contributors to temporal increases in vegetation cover. By taking a multi-scaled empirical approach, we have identified species-specific, scale-dependent responses to vegetation cover. These findings are of considerable practical importance for understanding which species will respond to different scales of protection of existing areas of native vegetation, efforts to increase the amount of native vegetation over time, and both approaches together.


Asunto(s)
Aves/fisiología , Monitoreo del Ambiente/métodos , Bosques , Agricultura , Distribución Animal , Animales , Australia , Conservación de los Recursos Naturales , Estudios Transversales , Modelos Biológicos , Dinámica Poblacional , Factores de Tiempo
7.
Artículo en Inglés | MEDLINE | ID: mdl-38856004

RESUMEN

Tree hollows support a specialised species-rich fauna. We review the habitat requirements of saproxylic (= deadwood dependent) invertebrates which occupy tree hollows. We focus on studies quantifying relationships between species occurrence patterns and characteristics of tree hollows, hollow trees, and the surrounding landscape. We also explore the processes influencing species occurrence patterns by reviewing studies on the spatio-temporal dynamics of populations, including their dispersal and genetic structure. Our literature search in the database Scopus identified 52 relevant publications, all of which were studies from Europe. The dominant taxonomic group studied was beetles. Invertebrates in hollow trees were often more likely to be recorded in trees with characteristics reflecting a large amount of resources or a stable and warm microclimate, such as a large diameter, large amounts of wood mould (= loose material accumulated in the hollows mainly consisting of decaying wood), a high level of sun exposure, and with entrance holes that are large and either at a low or high height, and in dry hollows, with entrances not directed upwards. A stable microclimate is probably a key factor why some species of saproxylic invertebrates are confined to tree hollows. Other factors that are different in comparison to downed dead wood is the fact that hollows at a given height from the ground provide shelter from ground-living predators, that hollows persist for longer, and that the content of nutrients might be enhanced by the accumulation of dead leaves, insect frass, and remains from dead insects. Several studies have identified a positive relationship between species occupancy per tree and the amount of habitat in the surrounding landscape, with a variation in the spatial scale at which characteristics of the surrounding landscape had the strongest effect over spatial scales from 200 to 3000 m. We found empirical support for the extinction threshold hypothesis, which predicts that the frequency of species presence per tree is greater if a certain number of trees are aggregated into a few large clusters of hollow trees rather than distributed among many small clusters. Observed thresholds in species occurrence patterns can be explained by colonisation-extinction dynamics, with species occupancy per tree influenced by variation in rates of immigration. Consistent with this assumption, field studies suggest that dispersal rate and range can be low for invertebrates occupying tree hollows, although higher in a warmer climate. For one species in which population dynamics has been studied over 25 years (Osmoderma eremita), the observed population dynamics have characteristics of a "habitat-tracking metapopulation", as local extinctions from trees occur possibly because those trees become unsuitable as well as due to stochastic processes in small populations. The persistence of invertebrate fauna confined to tree hollows may be improved by prolonging the standing life of existing hollow trees. It is also important to recruit new generations of hollow trees, preferably close to existing larger groups of hollow trees. Thus, the spatio-temporal dynamics of hollow trees is crucial for the invertebrate fauna that rely upon them.

8.
Conserv Biol ; 27(4): 796-807, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23647073

RESUMEN

Although the concept of connectivity is decades old, it remains poorly understood and defined, and some argue that habitat quality and area should take precedence in conservation planning instead. However, fragmented landscapes are often characterized by linear features that are inherently connected, such as streams and hedgerows. For these, both representation and connectivity targets may be met with little effect on the cost, area, or quality of the reserve network. We assessed how connectivity approaches affect planning outcomes for linear habitat networks by using the stock-route network of Australia as a case study. With the objective of representing vegetation communities across the network at a minimal cost, we ran scenarios with a range of representation targets (10%, 30%, 50%, and 70%) and used 3 approaches to account for connectivity (boundary length modifier, Euclidean distance, and landscape-value [LV]). We found that decisions regarding the target and connectivity approach used affected the spatial allocation of reserve systems. At targets ≥50%, networks designed with the Euclidean distance and LV approaches consisted of a greater number of small reserves. Hence, by maximizing both representation and connectivity, these networks compromised on larger contiguous areas. However, targets this high are rarely used in real-world conservation planning. Approaches for incorporating connectivity into the planning of linear reserve networks that account for both the spatial arrangement of reserves and the characteristics of the intervening matrix highlight important sections that link the landscape and that may otherwise be overlooked.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Demografía , Ecosistema , Modelos Biológicos , Plantas , Australia , Técnicas de Apoyo para la Decisión , Geografía , Especificidad de la Especie
9.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210082, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373929

RESUMEN

Wildfires have the potential to add considerably to the already significant challenge of achieving effective forest restoration in the UN Decade on Ecosystem Restoration. While fire can sometimes promote forest restoration (e.g. by creating otherwise rare, early successional habitats), it can thwart it in others (e.g. by depleting key patch types and stand structures). Here we outline key considerations in facilitating restoration of some tall wet temperate forest ecosystems and some boreal forest ecosystems where the typical fire regime is rare high-severity stand-replacing fire. Some of these ecosystems are experiencing altered fire regimes such as increased fire extent, severity and/or frequency. Achieving good restoration outcomes in such ecosystems demands understanding fire regimes and their impacts on vegetation and other elements of biodiversity and then selecting ecosystem-appropriate management interventions. Potential actions range from doing nothing (as the ecosystem already maintains full post-fire regenerative capacity) to interventions prior to a conflagration like prescribed burning to limit the risks of high-severity fire, excluding activities that impair post-fire recovery (e.g. post-fire logging), and artificial seeding where natural regeneration fails. The most ecologically effective actions will be ecosystem-specific and context-specific and informed by knowledge of the ecosystem in question (such as plant life-history attributes) and inter-relationships with attributes like vegetation condition at the time it is burnt (e.g. young versus old forest). This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Incendios , Incendios Forestales , Ecosistema , Bosques , Biodiversidad
10.
Ecol Lett ; 11(1): 78-91, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17927771

RESUMEN

The management of landscapes for biological conservation and ecologically sustainable natural resource use are crucial global issues. Research for over two decades has resulted in a large literature, yet there is little consensus on the applicability or even the existence of general principles or broad considerations that could guide landscape conservation. We assess six major themes in the ecology and conservation of landscapes. We identify 13 important issues that need to be considered in developing approaches to landscape conservation. They include recognizing the importance of landscape mosaics (including the integration of terrestrial and aquatic areas), recognizing interactions between vegetation cover and vegetation configuration, using an appropriate landscape conceptual model, maintaining the capacity to recover from disturbance and managing landscapes in an adaptive framework. These considerations are influenced by landscape context, species assemblages and management goals and do not translate directly into on-the-ground management guidelines but they should be recognized by researchers and resource managers when developing guidelines for specific cases. Two crucial overarching issues are: (i) a clearly articulated vision for landscape conservation and (ii) quantifiable objectives that offer unambiguous signposts for measuring progress.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ambiente , Ecosistema , Modelos Biológicos
11.
Ecol Evol ; 8(22): 10952-10963, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30519419

RESUMEN

Our understanding of the impacts of time since fire on reptiles remains limited, partly because there are relatively few locations where long-term, spatially explicit fire histories are available. Such information is important given the large proportion of some landscapes that are managed with frequent prescribed fire to meet fuel management objectives. We conducted a space-for-time study across a landscape in southeastern Australia where the known fire history spanned 6 months to at least 96 years. Four methods were used to survey reptiles in 81 forest and woodland sites to investigate how time since fire (TSF), habitat, and environmental variables affect reptile richness, abundance, and composition. We used generalized linear models, generalized linear mixed-effects models, PERMANOVA, and SIMPER to identify relationships between the reptile assemblage (richness, abundance, and composition, respectively) and TSF, habitat, and environmental variables. All three reptile metrics were associated with TSF. Reptile richness and abundance were significantly higher in sites >96 years postfire than younger fire ages (0.5-12 years). Reptile composition at long-unburned sites was dissimilar to sites burned more recently but was similar between sites burned 0.5-2 and 6-12 years prior to sampling. Synthesis and applications. Long-unburned forests and woodlands were disproportionately more important for reptile richness and abundance than areas burned 6 months to 12 years prior to sampling. This is important given that long-unburned areas represent <8% of our study area. Our results therefore suggest that reptiles would benefit from protecting remaining long-unburned areas from fire and transitioning a greater proportion of the study area to long-unburned. However, some compositional differences between the long-unburned sites and sites 0.5-12 years postfire indicate that maintaining a diversity in fire ages is important for conserving reptile diversity.

12.
PLoS One ; 10(9): e0138681, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26394327

RESUMEN

Vegetation heterogeneity is an inherent feature of most ecosystems, characterises the structure of habitat, and is considered an important driver of species distribution patterns. However, quantifying fine-scale heterogeneity of vegetation cover can be time consuming, and therefore it is seldom measured. Here, we determine if heterogeneity is worthwhile measuring, in addition to the amount of cover, when examining species distribution patterns. Further, we investigated the effect of the surrounding landscape heterogeneity on species occupancy. We tested the effect of cover and heterogeneity of trees and shrubs, and the context of the surrounding landscape (number of habitats and distance to an ecotone) on site occupancy of three mammal species (the black wallaby [Wallabia bicolor], the long-nosed bandicoot [Perameles nasuta], and the bush rat [Rattus fuscipes]) within a naturally heterogeneous landscape in a temperate region of Australia. We found that fine-scale heterogeneity of vegetation attributes is an important driver of mammal occurrence of two of these species. Further, we found that, although all three species responded positively to vegetation heterogeneity, different mammals vary in their response to different types of vegetation heterogeneity measurement. For example, the black wallaby responded to the proximity of an ecotone, and the bush rat and the long-nosed bandicoot responded to fine-scale heterogeneity of small tree cover, whereas none of the mammals responded to broad scale heterogeneity (i.e., the number of habitat types). Our results highlight the influence of methodological decisions, such as how heterogeneity vegetation is measured, in quantifying species responses to habitat structures. The findings confirm the importance of choosing meaningful heterogeneity measures when modelling the factors influencing occupancy of the species of interest.


Asunto(s)
Ecosistema , Mamíferos/fisiología , Plantas/metabolismo , Árboles/fisiología , Animales , Australia , Geografía , Macropodidae/fisiología , Mamíferos/clasificación , Marsupiales/fisiología , Modelos Teóricos , Análisis Multivariante , Plantas/clasificación , Ratas , Especificidad de la Especie , Árboles/clasificación
13.
Sci Total Environ ; 473-474: 338-49, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24378926

RESUMEN

Despite strong demand for information to support the sustainable use of Australia's natural resources and conserve environmental values and despite considerable effort and investment, nation-wide environmental data collection and analysis remains a substantially unmet challenge. We review progress in producing national environmental reports and accounts, identify challenges and opportunities, and analyse the potential role of research in addressing these. Australia's low and concentrated population density and the short history since European settlement contribute to the lack of environmental data. There are additional factors: highly diverse data requirements and standards, disagreement on information priorities, poorly measurable management objectives, lack of coordination, over-reliance on researchers and businesses for data collection, lack of business engagement, and short-term, project-based activities. New opportunities have arisen to overcome some of these challenges: enhanced monitoring networks, standardisation, data management and modelling, greater commitment to share and integrate data, community monitoring, increasing acceptance of environmental and sustainability indicators, and progress in environmental accounting practices. Successes in generating climate, water and greenhouse gas information appear to be attributable to an unambiguous data requirement, considerable investment, and legislative instruments that enhance data sharing and create a clearly defined role for operational agencies. Based on the analysis presented, we suggest six priorities for research: (1) common definitions and standards for information that address management objectives, (2) ecological measures that are scalable from local to national level, (3) promotion of long-term data collection and reporting by researchers, (4) efficient satellite and sensor network technologies and data analysis methods, (5) environmental modelling approaches that can reconcile multiple data sources, and (6) experimental accounting to pursue consistent, credible and relevant information structures and to identify new data requirements. Opportunities exist to make progress in each of these areas and help secure a more sustainable future.


Asunto(s)
Conservación de los Recursos Naturales , Monitoreo del Ambiente/métodos , Australia , Recolección de Datos , Monitoreo del Ambiente/normas
14.
PLoS One ; 9(6): e99403, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24941258

RESUMEN

Large old trees are disproportionate providers of structural elements (e.g. hollows, coarse woody debris), which are crucial habitat resources for many species. The decline of large old trees in modified landscapes is of global conservation concern. Once large old trees are removed, they are difficult to replace in the short term due to typically prolonged time periods needed for trees to mature (i.e. centuries). Few studies have investigated the decline of large old trees in urban landscapes. Using a simulation model, we predicted the future availability of native hollow-bearing trees (a surrogate for large old trees) in an expanding city in southeastern Australia. In urban greenspace, we predicted that the number of hollow-bearing trees is likely to decline by 87% over 300 years under existing management practices. Under a worst case scenario, hollow-bearing trees may be completely lost within 115 years. Conversely, we predicted that the number of hollow-bearing trees will likely remain stable in semi-natural nature reserves. Sensitivity analysis revealed that the number of hollow-bearing trees perpetuated in urban greenspace over the long term is most sensitive to the: (1) maximum standing life of trees; (2) number of regenerating seedlings ha(-1); and (3) rate of hollow formation. We tested the efficacy of alternative urban management strategies and found that the only way to arrest the decline of large old trees requires a collective management strategy that ensures: (1) trees remain standing for at least 40% longer than currently tolerated lifespans; (2) the number of seedlings established is increased by at least 60%; and (3) the formation of habitat structures provided by large old trees is accelerated by at least 30% (e.g. artificial structures) to compensate for short term deficits in habitat resources. Immediate implementation of these recommendations is needed to avert long term risk to urban biodiversity.


Asunto(s)
Conservación de los Recursos Naturales , Árboles/crecimiento & desarrollo , Territorio de la Capital Australiana , Planificación de Ciudades , Simulación por Computador , Modelos Logísticos , Urbanización
15.
PLoS One ; 9(5): e97036, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24810286

RESUMEN

With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will allow scientists, managers and planners better understand and predict both species responses across edges and impacts of development in mosaic landscapes.


Asunto(s)
Bosques , Mamíferos , Modelos Estadísticos , Urbanización , Animales , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Desarrollo de la Planta , Análisis Espacial
16.
PLoS One ; 9(2): e89807, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24587050

RESUMEN

A holy grail of conservation is to find simple but reliable measures of environmental change to guide management. For example, particular species or particular habitat attributes are often used as proxies for the abundance or diversity of a subset of other taxa. However, the efficacy of such kinds of species-based surrogates and habitat-based surrogates is rarely assessed, nor are different kinds of surrogates compared in terms of their relative effectiveness. We use 30-year datasets on arboreal marsupials and vegetation structure to quantify the effectiveness of: (1) the abundance of a particular species of arboreal marsupial as a species-based surrogate for other arboreal marsupial taxa, (2) hollow-bearing tree abundance as a habitat-based surrogate for arboreal marsupial abundance, and (3) a combination of species- and habitat-based surrogates. We also quantify the robustness of species-based and habitat-based surrogates over time. We then use the same approach to model overall species richness of arboreal marsupials. We show that a species-based surrogate can appear to be a valid surrogate until a habitat-based surrogate is co-examined, after which the effectiveness of the former is lost. The addition of a species-based surrogate to a habitat-based surrogate made little difference in explaining arboreal marsupial abundance, but altered the co-occurrence relationship between species. Hence, there was limited value in simultaneously using a combination of kinds of surrogates. The habitat-based surrogate also generally performed significantly better and was easier and less costly to gather than the species-based surrogate. We found that over 30 years of study, the relationships which underpinned the habitat-based surrogate generally remained positive but variable over time. Our work highlights why it is important to compare the effectiveness of different broad classes of surrogates and identify situations when either species- or habitat-based surrogates are likely to be superior.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Marsupiales/fisiología , Árboles , Animales , Biodiversidad , Modelos Lineales , Observación , Dinámica Poblacional , Especificidad de la Especie , Victoria
17.
PLoS One ; 7(11): e48201, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23155378

RESUMEN

Schemes designed to make farming landscapes less hostile to wildlife have been questioned because target taxa do not always respond in the expected manner. Microbats are often overlooked in this process, yet persist in agricultural landscapes and exert top-down control of crop pests. We investigated the relationship between microbats and measures commonly incorporated into agri-environment schemes, to derive management recommendations for their ongoing conservation. We used acoustic detectors to quantify bat species richness, activity, and feeding in 32 linear remnants and adjacent fields across an agricultural region of New South Wales, Australia. Nocturnal arthropods were simultaneously trapped using black-light traps. We recorded 91,969 bat calls, 17,277 of which could be attributed to one of the 13 taxa recorded, and 491 calls contained feeding buzzes. The linear remnants supported higher bat activity than the fields, but species richness and feeding activity did not significantly differ. We trapped a mean 87.6 g (±17.6 g SE) of arthropods per night, but found no differences in biomass between land uses. Wider linear remnants with intact native vegetation supported more bat species, as did those adjacent to unsealed, as opposed to sealed roads. Fields of unimproved native pastures, with more retained scattered trees and associated hollows and logs, supported the greatest bat species richness and activity. We conclude that the juxtaposition of linear remnants of intact vegetation and scattered trees in fields, coupled with less-intensive land uses such as unimproved pastures will benefit bat communities in agricultural landscapes, and should be incorporated into agri-environment schemes. In contrast, sealed roads may act as a deterrent. The "wildlife friendly farming" vs "land sparing" debate has so far primarily focussed on birds, but here we have found evidence that the integration of both approaches could particularly benefit bats.


Asunto(s)
Agricultura , Quirópteros , Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Nueva Gales del Sur
18.
PLoS One ; 7(4): e34527, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22493698

RESUMEN

The value for biodiversity of large intact areas of native vegetation is well established. The biodiversity value of regrowth vegetation is also increasingly recognised worldwide. However, there can be different kinds of revegetation that have different origins. Are there differences in the richness and composition of biotic communities in different kinds of revegetation? The answer remains unknown or poorly known in many ecosystems. We examined the conservation value of different kinds of revegetation through a comparative study of birds in 193 sites surveyed over ten years in four growth types located in semi-cleared agricultural areas of south-eastern Australia. These growth types were resprout regrowth, seedling regrowth, plantings, and old growth. Our investigation produced several key findings: (1) Marked differences in the bird assemblages of plantings, resprout regrowth, seedling regrowth, and old growth. (2) Differences in the number of species detected significantly more often in the different growth types; 29 species for plantings, 25 for seedling regrowth, 20 for resprout regrowth, and 15 for old growth. (3) Many bird species of conservation concern were significantly more often recorded in resprout regrowth, seedling regrowth or plantings but no species of conservation concern were recorded most often in old growth. We suggest that differences in bird occurrence among different growth types are likely to be strongly associated with growth-type differences in stand structural complexity.Our findings suggest a range of vegetation growth types are likely to be required in a given farmland area to support the diverse array of bird species that have the potential to occur in Australian temperate woodland ecosystems. Our results also highlight the inherent conservation value of regrowth woodland and suggest that current policies which allow it to be cleared or thinned need to be carefully re-examined.


Asunto(s)
Aves/fisiología , Especies en Peligro de Extinción , Desarrollo de la Planta , Plantones/crecimiento & desarrollo , Agricultura , Animales , Australia , Biota , Agricultura Forestal , Filogeografía , Dinámica Poblacional
19.
PLoS One ; 7(10): e41864, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071486

RESUMEN

Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.


Asunto(s)
Ecosistema , Eucalyptus , Árboles , Australia , Conservación de los Recursos Naturales/métodos , Incendios
20.
PLoS One ; 7(1): e29212, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22279530

RESUMEN

Losses to life and property from unplanned fires (wildfires) are forecast to increase because of population growth in peri-urban areas and climate change. In response, there have been moves to increase fuel reduction--clearing, prescribed burning, biomass removal and grazing--to afford greater protection to peri-urban communities in fire-prone regions. But how effective are these measures? Severe wildfires in southern Australia in 2009 presented a rare opportunity to address this question empirically. We predicted that modifying several fuels could theoretically reduce house loss by 76%-97%, which would translate to considerably fewer wildfire-related deaths. However, maximum levels of fuel reduction are unlikely to be feasible at every house for logistical and environmental reasons. Significant fuel variables in a logistic regression model we selected to predict house loss were (in order of decreasing effect): (1) the cover of trees and shrubs within 40 m of houses, (2) whether trees and shrubs within 40 m of houses was predominantly remnant or planted, (3) the upwind distance from houses to groups of trees or shrubs, (4) the upwind distance from houses to public forested land (irrespective of whether it was managed for nature conservation or logging), (5) the upwind distance from houses to prescribed burning within 5 years, and (6) the number of buildings or structures within 40 m of houses. All fuel treatments were more effective if undertaken closer to houses. For example, 15% fewer houses were destroyed if prescribed burning occurred at the observed minimum distance from houses (0.5 km) rather than the observed mean distance from houses (8.5 km). Our results imply that a shift in emphasis away from broad-scale fuel-reduction to intensive fuel treatments close to property will more effectively mitigate impacts from wildfires on peri-urban communities.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Incendios , Agricultura Forestal/métodos , Vivienda , Biomasa , Cambio Climático , Ecosistema , Humanos , Modelos Logísticos , Dinámica Poblacional , Árboles/crecimiento & desarrollo , Urbanización , Victoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA