RESUMEN
We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.
Asunto(s)
Genoma Humano , Humanos , Europa (Continente) , Variación Genética , Países Escandinavos y Nórdicos , Reino Unido , Población Blanca/genética , Población Blanca/historia , Migración HumanaRESUMEN
Encephalitis with antibodies to leucine-rich glioma-inactivated 1 (LGI1-Ab-E) is a common form of autoimmune encephalitis, presenting with seizures and neuropsychiatric changes, predominantly in older males. More than 90% of patients carry the human leucocyte antigen (HLA) class II allele, HLA-DRB1*07:01. However, this is also present in 25% of healthy controls. Therefore, we hypothesised the presence of additional genetic predispositions. In this genome-wide association study and meta-analysis, we studied a discovery cohort of 131 French LGI1-Ab-E and a validation cohort of 126 American, British and Irish LGI1-Ab-E patients, ancestry-matched to 2613 and 2538 European controls, respectively. Outside the known major HLA signal, we found two single nucleotide polymorphisms (SNPs) at genome-wide significance (p < 5 x 10-8), implicating PTPRD, a protein tyrosine phosphatase, and LINC00670, a non-protein coding RNA gene. Meta-analysis defined four additional non-HLA loci, including the protein coding COBL gene. Polygenic risk scores with and without HLA variants proposed a contribution of non-HLA loci. In silico network analyses suggested LGI1 and PTPRD mediated interactions via the established receptors of LGI1, ADAM22 and ADAM23. Our results identify new genetic loci in LGI1-Ab-E. These findings present opportunities for mechanistic studies and offer potential markers of susceptibility, prognostics and therapeutic responses.
RESUMEN
Haplotype-based analyses have recently been leveraged to interrogate the fine-scale structure in specific geographic regions, notably in Europe, although an equivalent haplotype-based understanding across the whole of Europe with these tools is lacking. Furthermore, study of identity-by-descent (IBD) sharing in a large sample of haplotypes across Europe would allow a direct comparison between different demographic histories of different regions. The UK Biobank (UKBB) is a population-scale dataset of genotype and phenotype data collected from the United Kingdom, with established sampling of worldwide ancestries. The exact content of these non-UK ancestries is largely uncharacterized, where study could highlight valuable intracontinental ancestry references with deep phenotyping within the UKBB. In this context, we sought to investigate the sample of European ancestry captured in the UKBB. We studied the haplotypes of 5,500 UKBB individuals with a European birthplace; investigated the population structure and demographic history in Europe, showing in parallel the variety of footprints of demographic history in different genetic regions around Europe; and expand knowledge of the genetic landscape of the east and southeast of Europe. Providing an updated map of European genetics, we leverage IBD-segment sharing to explore the extent of population isolation and size across the continent. In addition to building and expanding upon previous knowledge in Europe, our results show the UKBB as a source of diverse ancestries beyond Britain. These worldwide ancestries sampled in the UKBB may complement and inform researchers interested in specific communities or regions not limited to Britain.
Asunto(s)
Haplotipos , Población , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Demografía , Europa (Continente) , Variación Genética , Población/genéticaRESUMEN
We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter-gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a 'Basal Eurasian' lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter-gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter-gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.
Asunto(s)
Agricultura/historia , Genómica , Migración Humana/historia , Filogenia , Grupos Raciales/genética , África Oriental , Animales , Armenia , Asia , ADN/análisis , Europa (Continente) , Historia Antigua , Humanos , Hibridación Genética/genética , Irán , Israel , Jordania , Hombre de Neandertal/genética , Filogeografía , TurquíaRESUMEN
Britain and Ireland are known to show population genetic structure; however, large swathes of Scotland, in particular, have yet to be described. Delineating the structure and ancestry of these populations will allow variant discovery efforts to focus efficiently on areas not represented in existing cohorts. Thus, we assembled genotype data for 2,554 individuals from across the entire archipelago with geographically restricted ancestry, and performed population structure analyses and comparisons to ancient DNA. Extensive geographic structuring is revealed, from broad scales such as a NE to SW divide in mainland Scotland, through to the finest scale observed to date: across 3 km in the Northern Isles. Many genetic boundaries are consistent with Dark Age kingdoms of Gaels, Picts, Britons, and Norse. Populations in the Hebrides, the Highlands, Argyll, Donegal, and the Isle of Man show characteristics of isolation. We document a pole of Norwegian ancestry in the north of the archipelago (reaching 23 to 28% in Shetland) which complements previously described poles of Germanic ancestry in the east, and "Celtic" to the west. This modern genetic structure suggests a northwestern British or Irish source population for the ancient Gaels that contributed to the founding of Iceland. As rarer variants, often with larger effect sizes, become the focus of complex trait genetics, more diverse rural cohorts may be required to optimize discoveries in British and Irish populations and their considerable global diaspora.
Asunto(s)
ADN Antiguo/análisis , Etnicidad/genética , Variación Genética , Genética de Población , Genoma Humano , Humanos , Irlanda , Islas , EscociaRESUMEN
BACKGROUND AND HYPOTHESIS: Kidney grafts from donors who died of stroke and related traits have worse outcomes relative to grafts from both living donors and those who died of other causes. We hypothesise that deceased donors, particularly those who died of stroke, have elevated polygenic burden for cerebrovascular traits. We further hypothesise that this donor polygenic burden is associated with inferior graft outcomes in the recipient. METHODS: Using a dataset of 6666 deceased and living kidney donors from seven different European ancestry transplant cohorts, we investigated the role of polygenic burden for cerebrovascular traits (hypertension, stroke, and intracranial aneurysm (IA)) on donor age of death and recipient graft outcomes. RESULTS: We found that kidney donors who died of stroke had elevated intracranial aneurysm and hypertension polygenic risk scores, compared to healthy controls and living donors. This burden was associated with age of death among donors who died of stroke. Increased donor polygenic risk for hypertension was associated with reduced long term graft survival (HR: 1.44, 95% CI [1.07, 1.93]) and increased burden for hypertension, and intracranial aneurysm was associated with reduced recipient estimated glomerular filtration rate (eGFR) at 1 year. CONCLUSIONS: Collectively, the results presented here demonstrate the impact of inherited factors associated with donors' death on long-term graft function.
Asunto(s)
Supervivencia de Injerto , Hipertensión , Trasplante de Riñón , Accidente Cerebrovascular , Humanos , Trasplante de Riñón/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/etiología , Hipertensión/genética , Hipertensión/complicaciones , Factores de Riesgo , Donantes de Tejidos , Donadores Vivos , Aneurisma Intracraneal/genética , Aneurisma Intracraneal/cirugía , Tasa de Filtración Glomerular , Medición de Riesgo , Resultado del Tratamiento , Herencia Multifactorial , Factores de Tiempo , Factores de Edad , Predisposición Genética a la EnfermedadRESUMEN
The founder population of Newfoundland and Labrador (NL) is a unique genetic resource, in part due to its geographic and cultural isolation, where historical records describe a migration of European settlers, primarily from Ireland and England, to NL in the 18th and 19th centuries. Whilst its historical isolation, and increased prevalence of certain monogenic disorders are well appreciated, details of the fine-scale genetic structure and ancestry of the population are lacking. Understanding the genetic origins and background of functional, disease causing, genetic variants would aid genetic mapping efforts in the Province. Here, we leverage dense genome-wide SNP data on 1,807 NL individuals to reveal fine-scale genetic structure in NL that is clustered around coastal communities and correlated with Christian denomination. We show that the majority of NL European ancestry can be traced back to the south-east and south-west of Ireland and England, respectively. We date a substantial population size bottleneck approximately 10-15 generations ago in NL, associated with increased haplotype sharing and autozygosity. Our results reveal insights into the population history of NL and demonstrate evidence of a population conducive to further genetic studies and biomarker discovery.
Asunto(s)
Genética de Población , Población Blanca , Humanos , Terranova y Labrador , Irlanda , Migración HumanaRESUMEN
Pathological low birth weight due to fetal growth restriction (FGR) is an important predictor of adverse obstetric and neonatal outcomes. It is more common amongst native lowlanders when gestating in the hypoxic environment of high altitude, whilst populations who have resided at high altitude for many generations are relatively protected. Genetic study of pregnant populations at high altitude permits exploration of the role of hypoxia in FGR pathogenesis, and perhaps of FGR pathogenesis more broadly. We studied the umbilical cord blood DNA of 316 neonates born to pregnant women managed at the Sonam Norboo Memorial Hospital, Ladakh (altitude 3540m) between February 2017 and January 2019. Principal component, admixture and genome wide association studies (GWAS) were applied to dense single nucleotide polymorphism (SNP) genetic data, to explore ancestry and genetic predictors of low birth weight. Our findings support Tibetan ancestry in the Ladakhi population, with subsequent admixture with neighboring Indo-Aryan populations. Fetal growth protection was evident in Ladakhi neonates. Although no variants achieved genome wide significance, we observed nominal association of seven variants across genes (ZBTB38, ZFP36L2, HMGA2, CDKAL1, PLCG1) previously associated with birthweight.
Asunto(s)
Altitud , Estudio de Asociación del Genoma Completo , Peso al Nacer/genética , Femenino , Desarrollo Fetal , Retardo del Crecimiento Fetal/epidemiología , Retardo del Crecimiento Fetal/genética , Humanos , Hipoxia , Recién Nacido , EmbarazoRESUMEN
Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.
Asunto(s)
Peste , Humanos , Peste/epidemiología , Peste/genética , Pandemias/historia , Metagenómica , Genoma Bacteriano , FilogeniaRESUMEN
Polycystic kidney diseases (PKDs) comprise the most common Mendelian forms of renal disease. It is characterised by the development of fluid-filled renal cysts, causing progressive loss of kidney function, culminating in the need for renal replacement therapy or kidney transplant. Ireland represents a valuable region for the genetic study of PKD, as family sizes are traditionally large and the population relatively homogenous. Studying a cohort of 169 patients, we describe the genetic landscape of PKD in Ireland for the first time, compare the clinical features of patients with and without a molecular diagnosis and correlate disease severity with autosomal dominant pathogenic variant type. Using a combination of molecular genetic tools, including targeted next-generation sequencing, we report diagnostic rates of 71-83% in Irish PKD patients, depending on which variant classification guidelines are used (ACMG or Mayo clinic respectively). We have catalogued a spectrum of Irish autosomal dominant PKD pathogenic variants including 36 novel variants. We illustrate how apparently unrelated individuals carrying the same autosomal dominant pathogenic variant are highly likely to have inherited that variant from a common ancestor. We highlight issues surrounding the implementation of the ACMG guidelines for variant pathogenicity interpretation in PKD, which have important implications for clinical genetics.
Asunto(s)
Mutación , Enfermedades Renales Poliquísticas/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Efecto Fundador , Sitios Genéticos , Humanos , Irlanda , Masculino , Persona de Mediana Edad , Fenotipo , Enfermedades Renales Poliquísticas/patologíaRESUMEN
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
RESUMEN
Opportunities to directly study the founding of a human population and its subsequent evolutionary history are rare. Using genome sequence data from 27 ancient Icelanders, we demonstrate that they are a combination of Norse, Gaelic, and admixed individuals. We further show that these ancient Icelanders are markedly more similar to their source populations in Scandinavia and the British-Irish Isles than to contemporary Icelanders, who have been shaped by 1100 years of extensive genetic drift. Finally, we report evidence of unequal contributions from the ancient founders to the contemporary Icelandic gene pool. These results provide detailed insights into the making of a human population that has proven extraordinarily useful for the discovery of genotype-phenotype associations.
Asunto(s)
Evolución Biológica , Flujo Genético , Genoma Humano , Población/genética , ADN Antiguo , Femenino , Efecto Fundador , Pool de Genes , Genotipo , Humanos , Islandia , Masculino , FenotipoRESUMEN
The Irish Travellers are a population with a history of nomadism; consanguineous unions are common and they are socially isolated from the surrounding, 'settled' Irish people. Low-resolution genetic analysis suggests a common Irish origin between the settled and the Traveller populations. What is not known, however, is the extent of population structure within the Irish Travellers, the time of divergence from the general Irish population, or the extent of autozygosity. Using a sample of 50 Irish Travellers, 143 European Roma, 2232 settled Irish, 2039 British and 6255 European or world-wide individuals, we demonstrate evidence for population substructure within the Irish Traveller population, and estimate a time of divergence before the Great Famine of 1845-1852. We quantify the high levels of autozygosity, which are comparable to levels previously described in Orcadian 1st/2nd cousin offspring, and finally show the Irish Traveller population has no particular genetic links to the European Roma. The levels of autozygosity and distinct Irish origins have implications for disease mapping within Ireland, while the population structure and divergence inform on social history.
Asunto(s)
Etnicidad/genética , Genética de Población , Genómica , Migrantes , Humanos , Irlanda , Población BlancaRESUMEN
The extent of population structure within Ireland is largely unknown, as is the impact of historical migrations. Here we illustrate fine-scale genetic structure across Ireland that follows geographic boundaries and present evidence of admixture events into Ireland. Utilising the 'Irish DNA Atlas', a cohort (n = 194) of Irish individuals with four generations of ancestry linked to specific regions in Ireland, in combination with 2,039 individuals from the Peoples of the British Isles dataset, we show that the Irish population can be divided in 10 distinct geographically stratified genetic clusters; seven of 'Gaelic' Irish ancestry, and three of shared Irish-British ancestry. In addition we observe a major genetic barrier to the north of Ireland in Ulster. Using a reference of 6,760 European individuals and two ancient Irish genomes, we demonstrate high levels of North-West French-like and West Norwegian-like ancestry within Ireland. We show that that our 'Gaelic' Irish clusters present homogenous levels of ancient Irish ancestries. We additionally detect admixture events that provide evidence of Norse-Viking gene flow into Ireland, and reflect the Ulster Plantations. Our work informs both on Irish history, as well as the study of Mendelian and complex disease genetics involving populations of Irish ancestry.