Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(13): 4814-9, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24707045

RESUMEN

Glycine max symbiotic ammonium transporter 1 was first documented as a putative ammonium (NH4(+)) channel localized to the symbiosome membrane of soybean root nodules. We show that Glycine max symbiotic ammonium transporter 1 is actually a membrane-localized basic helix-loop-helix (bHLH) DNA-binding transcription factor now renamed Glycine max bHLH membrane 1 (GmbHLHm1). In yeast, GmbHLHm1 enters the nucleus and transcriptionally activates a unique plasma membrane NH4(+) channel Saccharomyces cerevisiae ammonium facilitator 1. Ammonium facilitator 1 homologs are present in soybean and other plant species, where they often share chromosomal microsynteny with bHLHm1 loci. GmbHLHm1 is important to the soybean rhizobium symbiosis because loss of activity results in a reduction of nodule fitness and growth. Transcriptional changes in nodules highlight downstream signaling pathways involving circadian clock regulation, nutrient transport, hormone signaling, and cell wall modification. Collectively, these results show that GmbHLHm1 influences nodule development and activity and is linked to a novel mechanism for NH4(+) transport common to both yeast and plants.


Asunto(s)
Compuestos de Amonio/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Transporte de Catión/metabolismo , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Proteínas de Soja/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Unión Proteica , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/ultraestructura , Saccharomyces cerevisiae/metabolismo , Glycine max/genética , Glycine max/ultraestructura
2.
Microbiology (Reading) ; 161(7): 1435-46, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25855763

RESUMEN

The NrtA and NrtB nitrate transporters are paralogous members of the major facilitator superfamily in Aspergillus nidulans. The availability of loss-of-function mutations allowed individual investigation of the specificity and inhibitor sensitivity of both NrtA and NrtB. In this study, growth response tests were carried out at a growth-limiting concentration of nitrate (1 mM) as the sole nitrogen source, in the presence of a number of potential nitrate analogues at various concentrations, to evaluate their effect on nitrate transport. Both chlorate and chlorite inhibited fungal growth, with chlorite exerting the greater inhibition. The main transporter of nitrate, NrtA, proved to be more sensitive to chlorate than the minor transporter, NrtB. Similarly, the cation caesium was shown to exert differential effects, strongly inhibiting the activity of NrtB, but not NrtA. In contrast, no inhibition of nitrate uptake by NrtA or NrtB transporters was observed in either growth tests or uptake assays in the presence of bicarbonate, formate, malonate or oxalate (sulphite could not be tested in uptake assays owing to its reaction with nitrate), indicating significant specificity of nitrate transport. Kinetic analyses of nitrate uptake revealed that both chlorate and chlorite inhibited NrtA competitively, while these same inhibitors inhibited NrtB in a non-competitive fashion. The caesium ion appeared to inhibit NrtA in a non-competitive fashion, while NrtB was inhibited uncompetitively. The results provide further evidence of the distinctly different characteristics as well as the high specificity of nitrate uptake by these two transporters.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Proteínas de Transporte de Anión/genética , Antifúngicos/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/crecimiento & desarrollo , Cesio/metabolismo , Cloratos/metabolismo , Cloruros/metabolismo , Medios de Cultivo/química , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana , Nitrógeno/metabolismo , Especificidad por Sustrato , Sulfitos/metabolismo
3.
Plant Cell Environ ; 38(8): 1490-502, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25474587

RESUMEN

In plants that have been deprived of nitrate for a significant length of time, a constitutive high-affinity nitrate transport system (cHATS) is responsible for initial nitrate uptake. This absorbed nitrate leads to the induction of the major nitrate transporters and enzymes involved in nitrate assimilation. By use of (13) NO3 (-) influx measurements and Blue Native polyacrylamide gel electrophoresis we examined the role of AtNRT2.5 in cHATS in wild type (WT) and various T-DNA mutants of Arabidopsis thaliana. We demonstrate that AtNRT2.5 is predominantly expressed in roots of nitrate-deprived WT plants as a 150 kDa molecular complex with AtNAR2.1. This complex represents the major contributor to cHATS influx, which is reduced by 63% compared with WT in roots of Atnrt2.5 mutants. The remaining cHATS nitrate influx in these mutants is due to a residual contribution by the inducible high-affinity transporter encoded by AtNRT2.1/AtNAR2.1. Estimates of the kinetic properties of the NRT2.5 transporter reveal that its low Km for nitrate makes this transporter ideally suited to detect and respond to trace quantities of nitrate in the root environment.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Nitratos/metabolismo , Proteínas de Transporte de Anión/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Western Blotting , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Hidroponía , Funciones de Verosimilitud , Peso Molecular , Mutagénesis Insercional/genética , Mutación , Electroforesis en Gel de Poliacrilamida Nativa , Isótopos de Nitrógeno , Fenotipo , Filogenia , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo
4.
New Phytol ; 200(1): 201-210, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23763619

RESUMEN

Nitrite-specific plasma membrane transporters have been described in bacteria, algae and fungi, but there is no evidence of a nitrite-specific plasma membrane transporter in higher plants. We have used 13NO2(-) to characterize nitrite influx into roots of Arabidopsis thaliana. Hydroponically grown Arabidopsis mutants, defective in high-affinity nitrate transport, were used to distinguish between nitrate and nitrite uptake by means of the short-lived tracers 13NO2(-) and 13NO3(-). This approach allowed us to characterize a nitrite-specific transporter. The Atnar2.1-2 mutant, lacking a functional high-affinity nitrate transport system, is capable of nitrite influx that is constitutive and thermodynamically active. The corresponding fluxes conform to a rectangular hyperbola, exhibiting saturation at concentrations above 200 µM (Km = 185 µM and Vmax = 1.89 µmol g(-1) FW h(-1)). Nitrite influx via the putative nitrite transporter is not subject to competitive inhibition by nitrate but is downregulated after 6 h exposure to ammonium. These results signify the existence of a nitrite-specific transporter in Arabidopsis. This transporter enables Atnar2.1-2 mutants, which are incapable of sustained growth on low nitrate, to maintain significant growth on low nitrite. In wild-type plants, this nitrite flux may increase nitrogen acquisition and also participate in the induction of genes specifically induced by nitrite.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transporte Iónico , Nitritos/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Compuestos de Amonio/farmacología , Proteínas de Transporte de Anión/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutación , Nitratos/metabolismo
5.
New Phytol ; 194(3): 724-731, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22432443

RESUMEN

• Interactions between the Arabidopsis NitRate Transporter (AtNRT2.1) and Nitrate Assimilation Related protein (AtNAR2.1, also known as AtNRT3.1) have been well documented, and confirmed by the demonstration that AtNRT2.1 and AtNAR2.1 form a 150-kDa plasma membrane complex, thought to constitute the high-affinity nitrate transporter of Arabidopsis thaliana roots. Here, we have investigated interactions between the remaining AtNRT2 family members (AtNRT2.2 to AtNRT2.7) and AtNAR2.1, and their capacity for nitrate transport. • Three different systems were used to examine possible interactions with AtNAR2.1: membrane yeast split-ubiquitin, bimolecular fluorescence complementation in A. thaliana protoplasts and nitrate uptake in Xenopus oocytes. • All NRT2s, except for AtNRT2.7, restored growth and ß-galactosidase activity in the yeast split-ubiquitin system, and split-YFP fluorescence in A. thaliana protoplasts only when co-expressed with AtNAR2.1. Thus, except for AtNRT2.7, all other NRT2 transporters interact strongly with AtNAR2.1. • Co-injection into Xenopus oocytes of cRNA of all NRT2 genes together with cRNA of AtNAR2.1 resulted in statistically significant increases of uptake over and above that resulting from single cRNA injections.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Mutación , Isótopos de Nitrógeno/análisis , Oocitos , Hojas de la Planta , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Mapeo de Interacción de Proteínas , Protoplastos , ARN Complementario/genética , ARN de Planta/genética , Proteínas Recombinantes de Fusión , Técnicas del Sistema de Dos Híbridos , Xenopus/genética , Xenopus/metabolismo
6.
Eukaryot Cell ; 10(12): 1724-32, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22021238

RESUMEN

High-affinity nitrite influx into mycelia of Aspergillus nidulans has been characterized by use of (13)NO(2)(-), giving average K(m) and V(max) values of 48 ± 8 µM and 228 ± 49 nmol mg(-1) dry weight (DW) h(-1), respectively. Kinetic analysis of a plot that included an additional large number of low-concentration fluxes gave an excellent monophasic fit (r(2) = 0.96), with no indication of sigmoidal kinetics. Two-dimensional (2D) and three-dimensional (3D) models of AnNitA are presented, and the possible roles of conserved asparagine residues N122 (transmembrane domain 3 ]Tm 3]), N173 (Tm 4), N214 (Tm 5), and N246 (Tm 6) are discussed.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Nitritos/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aspergillus nidulans/crecimiento & desarrollo , Membrana Celular/metabolismo , Secuencia Conservada , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Cinética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/aislamiento & purificación , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
7.
Plant J ; 63(5): 739-48, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20561257

RESUMEN

AtNRT2.1, a polypeptide of the Arabidopsis thaliana two-component inducible high-affinity nitrate transport system (IHATS), is located within the plasma membrane. The monomeric form of AtNRT2.1 has been reported to be the most abundant form, and was suggested to be the form that is active in nitrate transport. Here we have used immunological and transient protoplast expression methods to demonstrate that an intact two-component complex of AtNRT2.1 and AtNAR2.1 (AtNRT3.1) is localized in the plasma membrane. A. thaliana mutants lacking AtNAR2.1 have virtually no IHATS capacity and exhibit extremely poor growth on low nitrate as the sole source of nitrogen. Near-normal growth and nitrate transport in the mutant were restored by transformation with myc-tagged AtNAR2.1 cDNA. Membrane fractions from roots of the restored myc-tagged line were solubilized in 1.5% dodecyl-ß-maltoside and partially purified in the first dimension by blue native gel electrophoresis. Using anti-NRT2.1 antibodies, an oligomeric polypeptide (approximate molecular mass 150 kDa) was identified, but monomeric AtNRT2.1 was absent. This oligomer was also observed in the wild-type, and was resolved, using SDS-PAGE for the second dimension, into two polypeptides with molecular masses of approximately 48 and 26 kDa, corresponding to AtNRT2.1 and myc-tagged AtNAR2.1, respectively. This result, together with the finding that the oligomer is absent from NRT2.1 or NAR2.1 mutants, suggests that this complex, rather than monomeric AtNRT2.1, is the form that is active in IHATS nitrate transport. The molecular mass of the intact oligomer suggests that the functional unit for high-affinity nitrate influx may be a tetramer consisting of two subunits each of AtNRT2.1 and AtNAR2.1.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Transporte de Anión/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Western Blotting , Membrana Celular/metabolismo , Electroforesis en Gel Bidimensional , Prueba de Complementación Genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Complejos Multiproteicos/metabolismo , Mutación , Transportadores de Nitrato , Nitratos/metabolismo , Raíces de Plantas/genética , Unión Proteica , Protoplastos/metabolismo
9.
Fungal Genet Biol ; 45(2): 94-102, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18024100

RESUMEN

Disruption of the Aspergillus nidulans high-affinity nitrate transporter genes (nrtA and nrtB) prevents growth on nitrate but not nitrite. We identified a distinct nitrite transporter (K(m)=4.2+/-1 microM, V(max)=168+/-21 nmolmg(-1)DW(-1)h(-1)), designated NitA. Disruption of nrtA, nrtB and nitA blocked growth on nitrite, despite low rates of nitrite depletion we ascribe to passive nitrous acid permeation. Growth of the single mutant nitA16 on nitrite was wild-type, suggesting that NrtA and/or NrtB transports nitrite as well as nitrate. Indeed, NrtA and NrtB transport nitrite at higher rates than NitA; K(m) and V(max) values were 16+/-4 microM and 808+/-67 nmolmg(-1)DW(-1)h(-1) (NrtA) and 11+/-1 microM and 979+/-17 nmolmg(-1)DW(-1)h(-1) (NrtB). We suggest that NrtA is a nitrate/nitrite transporter, NrtB absorbs nitrite in preference to nitrate and NitA is exclusively a nitrite transporter.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Proteínas de Transporte de Anión/genética , Aspergillus nidulans/crecimiento & desarrollo , Transporte Biológico Activo , Proteínas Fúngicas/genética , Eliminación de Gen , Genes Fúngicos/genética , Transportadores de Nitrato
10.
New Phytol ; 155(3): 373-380, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33873307

RESUMEN

• We report the first use of tracer 13 NH4 + (13 N-ammonium) efflux and retention data to analyse subcellular fluxes and compartmentation of NH4 + in the leaves of a higher plant (wheat, Triticum aestivum). • Leaf segments, 1-2 mm, were obtained from 8-d-old seedlings. The viability of the segments, and stability of NH 4 + acquisition over time, were confirmed using oxygen-exchange and NH 4 + -depletion measurements. Fluxes of NH 4 + and compartment sizes were estimated using tracer efflux kinetics and retention data. • Influx and efflux across the plasma membrane, half-lives of exchange and cytosolic pool sizes were broadly similar to those in root systems. As the external concentration of NH 4 + ([NH 4 + ] o ) increased from 10 µ m to 10 m m , both influx and efflux greatly increased, with a sixfold increase in the ratio of efflux to influx. Half-lives were similar among treatments, except at [NH 4 + ] o  = 10 m m , where they declined. Concentrations of NH 4 + in the cytosol ([NH 4 + ] c ) increased from 2.6 to 400 m m . • Although [NH 4 + ] c became large as [NH 4 + ] o increased, the ratio of [NH 4 + ] c to [NH 4 + ] o decreased more than sixfold. The apparently futile cycling of NH 4 + at high [NH 4 + ] o suggested by the large fluxes of NH 4 + in both directions across the membrane indicate that leaf cells respond to potentially toxic NH 4 + concentrations in a manner similar to root cells.

11.
New Phytol ; 157(1): 93-103, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33873697

RESUMEN

• Sodium, potassium, calcium, and magnesium ion uptake physiology and tolerance to sodium and magnesium were characterized in two edaphic races (A and C) of two closely related species in the Lasthenia californica complex. • Uptake rates of race A plants were 20-fold higher for Na + , and 2-fold higher for Ca 2+ and Mg 2+ than those of race C plants. Race A translocated c.  50% of absorbed Na + to the shoot compared with < 30% in race C. For Ca 2+ and Mg 2+ corresponding values for the two races were > 95% and ≤ 50%, respectively. • Germination, root growth and survivorship estimates indicated greater tolerance by race A to Na + and Mg 2+ . Significant genotype treatment interactions were observed, suggesting that these races are genetically differentiated in their tolerance responses. • The study suggests parallel evolution of physiological traits in populations belonging to the two species and points to intriguing correlations between the presence of sulfated flavonoids and the capacities for the uptake of and tolerance to specific ions.

12.
New Phytol ; 175(4): 699-706, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17688585

RESUMEN

Here, influx and efflux of (13)NO(3)(-), and net fluxes of (14)NO(3)(-) and (14)NO(2)(-), were measured in Aspergillus nidulans mutants niaD171 and niiA5, devoid of nitrate reductase (NR) and nitrite reductase (NiR) activities, respectively. Transcript and protein abundances of NrtA, the A. nidulans principal high-affinity NO(3)(-) transporter, were determined using semiquantitative reverse transcription-polymerase chain reaction and western blots, respectively. (13)NO(3)(-) influx in niaD171 was negligible relative to wild-type values, whereas efflux to influx ratios increased nine-fold. Nevertheless, NrtA mRNA and NrtA protein were expressed at levels more than two-fold and three-fold higher, respectively, in niaD171 than in the wild-type strain. This is the first demonstration of diminished high-affinity NO(3)(-) influx associated with elevated transporter levels, providing evidence that, in addition to transcriptional regulation, control of NrtA expression operates at the post-translational level. This mechanism allows for rapid control of NO(3)(-) transport at the protein level, reduces the extent of futile cycling of NO(3)(-) that would otherwise represent a significant energy drain when influx exceeds the capacity for assimilation or storage, and may be responsible for the rapid switching between the on and off state that is associated with simultaneous provision of NH(4)(+) to mycelia absorbing NO(3)(-).


Asunto(s)
Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nitratos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Aspergillus nidulans/metabolismo , Transporte Biológico Activo , Regulación Fúngica de la Expresión Génica , Mutación , Óxidos de Nitrógeno/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Plant Physiol ; 143(1): 425-33, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17085507

RESUMEN

Using a new Arabidopsis (Arabidopsis thaliana) mutant (Atnrt2.1-nrt2.2) we confirm that concomitant disruption of NRT2.1 and NRT2.2 reduces inducible high-affinity transport system (IHATS) by up to 80%, whereas the constitutive high-affinity transport system (CHATS) was reduced by 30%. Nitrate influx via the low-affinity transport system (LATS) was unaffected. Shoot-to-root ratios were significantly reduced compared to wild-type plants, the major effect being upon shoot growth. In another mutant uniquely disrupted in NRT2.1 (Atnrt2.1), IHATS was reduced by up to 72%, whereas neither the CHATS nor the LATS fluxes were significantly reduced. Disruption of NRT2.1 in Atnrt2.1 caused a consistent and significant reduction of shoot-to-root ratios. IHATS influx and shoot-to-root ratios were restored to wild-type values when Atnrt2.1-nrt2.2 was transformed with a NRT2.1 cDNA isolated from Arabidopsis. Disruption of NRT2.2 in Atnrt2.2 reduced IHATS by 19% and this reduction was statistically significant only at 6 h after resupply of nitrate to nitrogen-deprived plants. Atnrt2.2 showed no significant reduction of CHATS, LATS, or shoot-to-root ratios. These results define NRT2.1 as the major contributor to IHATS. Nevertheless, when maintained on agar containing 0.25 mm KNO(3) as the sole nitrogen source, Atnrt2.1-nrt2.2 consistently exhibited greater stress and growth reduction than Atnrt2.1. Evidence from real-time PCR revealed that NRT2.2 transcript abundance was increased almost 3-fold in Atnrt2.1. These findings suggest that NRT2.2 normally makes only a small contribution to IHATS, but when NRT2.1 is lost, this contribution increases, resulting in a partial compensation.


Asunto(s)
Proteínas de Transporte de Anión/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Familia de Multigenes , Agar , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiología , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Nitratos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo
14.
Funct Plant Biol ; 33(4): 339-346, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-32689240

RESUMEN

In rice (Oryza sativa L.) OsAMT1.1 is the most active and / or most N-responsive gene responsible for high-affinity NH4+ transport (HATS) activity. We measured 13NH4+ influx and plant biomass in transgenic overexpression lines and two wild type cultivars of rice, Jarrah and Taipei, with one or more copies of OsAMT1.1. 13NH4+ influx was higher for the overexpression lines of Jarrah line when grown at 10 µm external NH4+ concentration, but not for the overexpression lines of Taipei. For seedlings grown at 2 mm external NH4+ concentration Jarrah lines 77-1 and 75-4 showed an increased influx; however, two overexpression lines of Taipei showed reduced influx rates. The biomasses of the transgenic lines grown at low and high external NH4+ concentrations were either reduced or showed no statistically significant differences compared with wild type lines. While 13NH4+ influx into roots of Jarrah line 75-4 grown at 10 µm external NH4+ concentration was significantly higher than in wild type, measurements of 13NH efflux revealed no differences, and thus net uptake of NH4+ was higher in this overexpression line.

15.
Plant Physiol ; 140(3): 1036-46, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16415212

RESUMEN

The NAR2 protein of Chlamydomonas reinhardtii has no known transport activity yet it is required for high-affinity nitrate uptake. Arabidopsis (Arabidopsis thaliana) possesses two genes, AtNRT3.1 and AtNRT3.2, that are similar to the C. reinhardtii NAR2 gene. AtNRT3.1 accounts for greater than 99% of NRT3 mRNA and is induced 6-fold by nitrate. AtNRT3.2 was expressed constitutively at a very low level and did not compensate for the loss of AtNRT3.1 in two Atnrt3.1 mutants. Nitrate uptake by roots and nitrate induction of gene expression were analyzed in two T-DNA mutants, Atnrt3.1-1 and Atnrt3.1-2, disrupted in the AtNRT3.1 promoter and coding regions, respectively, in 5-week-old plants. Nitrate induction of the nitrate transporter genes AtNRT1.1 and AtNRT2.1 was reduced in Atnrt3.1 mutant plants, and this reduced expression was correlated with reduced nitrate concentrations in the tissues. Constitutive high-affinity influx was reduced by 34% and 89%, respectively, in Atnrt3.1-1 and Atnrt3.1-2 mutant plants, while high-affinity nitrate-inducible influx was reduced by 92% and 96%, respectively, following induction with 1 mm KNO(3) after 7 d of nitrogen deprivation. By contrast, low-affinity influx appeared to be unaffected. Thus, the constitutive high-affinity influx and nitrate-inducible high-affinity influx (but not the low-affinity influx) of higher plant roots require a functional AtNRT3 (NAR2) gene.


Asunto(s)
Proteínas de Transporte de Anión/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Nitratos/metabolismo , Secuencia de Aminoácidos , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Iónico/genética , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Alineación de Secuencia
16.
Biochemistry ; 44(14): 5471-7, 2005 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-15807540

RESUMEN

All eight cysteine residues, C90, C94, C143, C147, C219, C325, C367, and C431, present in transmembrane domains of the Aspergillus nidulans NrtA nitrate transporter protein were altered individually by site-specific mutagenesis. The results indicate that six residues, C90, C147, C219, C325, C367, and C431, are not required for nitrate transport. Although alterations of C94 and C143 are less well tolerated, these residues are not mandatory and their possible role is discussed. A series of constructs, all completely devoid of cysteine residues, was generated to permit future cysteine-scanning mutagenesis. The optimum cysteine-less combination was identified as C90A, C94A, C143A, C147T, C219S, C325S, C367S, and C431S. This mutant combination yielded transformant strains with up to 40% of wild-type nitrate transport activity. Furthermore, the K(m) value and the level of protein expression were found to be similar to those of the wild-type. This cysteine-less vector should allow us to investigate in detail potentially interesting NrtA amino acids (e.g. identified from homology comparisons) which may be involved in transport, by altering these singly to cysteine and studying such residues by thiol chemistry.


Asunto(s)
Proteínas de Transporte de Anión/química , Proteínas Portadoras/química , Cisteína/química , Proteínas Fúngicas/química , Aspergillus nidulans/metabolismo , Transporte Biológico , Proteínas Portadoras/genética , Mutagénesis Sitio-Dirigida , Nitratos/metabolismo
17.
Plant Cell Physiol ; 44(3): 304-17, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12668777

RESUMEN

Four low-affinity (NRT1), and seven high-affinity (NRT2) nitrate transporter gene homologues have been identified in Arabidopsis thaliana. We investigated the transcript abundances of all eleven genes in shoot and root tissues in response to the provision of 1 mM NO(3)(-), using relative quantitative RT-PCR. Based upon this criterion, genes were classified as nitrate-inducible, nitrate-repressible, or nitrate-constitutive. AtNRT1.1, 2.1, and 2.2 were strongly induced by NO(3)(-), peaking at 3-12 h and subsequently declining. By contrast AtNRT2.4 showed only modest induction both in shoots and roots. Expression of AtNRT2.5, one of the nitrate-repressible genes, was strongly suppressed by nitrate provision in both roots and shoots. The last group, characterized by a constitutive expression pattern, included AtNRT1.2, 1.4, 2.3, 2.6, and 2.7. Correlation coefficients between (13)NO(3)(-) influx from 100 micro M and 5 mM [NO(3)(-)], suggest that high- and low-affinity transport systems are mediated primarily by AtNRT2.1 and AtNRT1.1, respectively. Functional roles for the other members of these families remain uncertain.


Asunto(s)
Proteínas de Transporte de Anión/genética , Proteínas de Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Nitratos/farmacología , Proteínas de Plantas , Secuencia de Aminoácidos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Datos de Secuencia Molecular , Familia de Multigenes/genética , Transportadores de Nitrato , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
18.
Proc Natl Acad Sci U S A ; 101(50): 17549-54, 2004 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-15576512

RESUMEN

This study represents the first attempt to investigate the molecular mechanisms by which nitrate, an anion of significant ecological, agricultural, and medical importance, is transported into cells by high-affinity nitrate transporters. Two charged residues, R87 and R368, located within hydrophobic transmembrane domains 2 and 8, respectively, are conserved in all 52 high-affinity nitrate transporters sequenced thus far. Site-directed replacements of either of R87 or R368 residues by lysine were found to be tolerated, but such residue changes increased the K(m) for nitrate influx from micromolar to millimolar values. Seven other amino acid substitutions of R87 or R368 all led to loss of function and lack of growth on nitrate. No evidence was obtained of R87 or R368 forming a salt-bridge with conserved acidic residues. Remarkably, the phenotype of loss-of-function mutant R87T was found to be alleviated by an alteration to lysine of N459, present in the second copy of the nitrate signature (transmembrane domain 11), suggesting a structural or functional interplay between residues R87 and N459 in the three-dimensional NrtA protein structure. Failure of the potential reciprocal second site suppressor N168K (in the first nitrate signature copy of transmembrane domain 5) to revert R368T was observed. Taken with recent structural studies of other major facilitator superfamily proteins, the results suggest that R87 and R368 are involved in substrate binding and probably located in a region of the protein close to N459.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Arginina/metabolismo , Secuencia Conservada , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Arginina/genética , Aspergillus niger/citología , Aspergillus niger/genética , Aspergillus niger/metabolismo , Proliferación Celular , Secuencia Conservada/genética , Expresión Génica , Cinética , Mutación/genética , Transportadores de Nitrato , Nitratos/metabolismo , Sales (Química)/farmacología , Especificidad por Sustrato
19.
J Biol Chem ; 279(27): 28182-6, 2004 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-15123642

RESUMEN

The ability to transport net nitrate was conferred upon transformant cells of the non-nitrate-assimilating yeast Pichia pastoris after the introduction of two genes, one encoding nitrate reductase and the other nitrate transport. It was observed that cells of this lower eukaryote transformed with the nitrate transporter gene alone failed to display net nitrate transport despite having the ability to produce the protein. In addition, loss-of-function nitrate reductase mutants isolated from several nitrate-assimilating fungi appeared to be unable to accumulate nitrate. Uptake assays using the tracer (13)NO(3)(-) showed that nitrate influx is negligible in cells of a nitrate reductase null mutant. In parallel studies using a higher eukaryotic plant, Arabidopsis thaliana, loss-of-function nitrate reductase strains homozygous for both NIA1 insertion and NIA2 deletion were found to have no detectable nitrate reductase mRNA or nitrate reductase activity but retained the ability to transport nitrate. The reasons for these fundamental differences in nitrate transport into the cells of representative members of these two eukaryotic kingdoms are discussed.


Asunto(s)
Nitrato Reductasas/metabolismo , Nitratos/farmacocinética , Pichia/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Aspergillus nidulans/metabolismo , Western Blotting , División Celular , Cloratos/metabolismo , ADN Complementario/metabolismo , Hongos/metabolismo , Eliminación de Gen , Homocigoto , Mutación , Nitrato-Reductasa , Nitratos/química , Óxido Nítrico/metabolismo , Plásmidos/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Factores de Tiempo
20.
Plant Physiol ; 130(3): 1263-75, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12427993

RESUMEN

NH(4)(+) acquisition by plant roots is thought to involve members of the NH(4)(+) transporter family (AMT) found in plants, yeast, bacteria, and mammals. In Arabidopsis, there are six AMT genes of which AtAMT1;1 demonstrates the highest affinity for NH(4)(+). Ammonium influx into roots and AtAMT1;1 mRNA expression levels are highly correlated diurnally and when plant nitrogen (N) status is varied. To further investigate the involvement of AtAMT1;1 in high-affinity NH(4)(+) influx, we identified a homozygous T-DNA mutant with disrupted AtAMT1;1 activity. Contrary to expectation, high-affinity (13)NH(4)(+) influx in the amt1;1:T-DNA mutant was similar to the wild type when grown with adequate N. Removal of N to increase AtAMT1;1 expression decreased high-affinity (13)NH(4)(+) influx in the mutant by 30% compared with wild-type plants, whereas low-affinity (13)NH(4)(+) influx (250 microM-10 mM NH(4)(+)) exceeded that of wild-type plants. In these N-deprived plants, mRNA copy numbers of root AtAMT1;3 and AtAMT2;1 mRNA were significantly more increased in the mutant than in wild-type plants. Under most growth conditions, amt1;1:T-DNA plants were indistinguishable from the wild type, however, leaf morphology was altered. However, when grown with NH(4)(+) and sucrose, the mutant grew poorly and died. Our results are the first in planta evidence that AtAMT1;1 is a root NH(4)(+) transporter and that redundancies within the AMT family may allow compensation for the loss of AtAMT1;1.


Asunto(s)
Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas de Transporte de Catión , Proteínas de Plantas/genética , Sulfato de Amonio/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Transporte Biológico/fisiología , Proteínas Portadoras/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Perfilación de la Expresión Génica , Mutación , Nitratos/farmacología , Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/fisiología , Compuestos de Potasio/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA